Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (5): 2760-2775.DOI: 10.16085/j.issn.1000-6613.2024-0098
• Carbon dioxide capture and utilization • Previous Articles
HUANG Peng1(), ZOU Ying2, WANG Baohuan2, WANG Xiaoyan2, ZHAO Yong1, LAING Xin2(), HU Di1
Received:
2024-01-14
Revised:
2024-04-25
Online:
2024-06-15
Published:
2024-05-15
Contact:
LAING Xin
黄澎1(), 邹颖2, 王宝焕2, 王逍妍2, 赵勇1, 梁鑫2(), 胡迪1
通讯作者:
梁鑫
作者简介:
黄澎(1982—),男,博士,研究员,研究方向为煤炭洁净转化、固废利用、CO2还原和精细化学品等。E-mail:squallok@qq.com。
基金资助:
CLC Number:
HUANG Peng, ZOU Ying, WANG Baohuan, WANG Xiaoyan, ZHAO Yong, LAING Xin, HU Di. Research progress of electrocatalysts towards electrocatalytic reduction reaction of carbon dioxide to syngas[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2760-2775.
黄澎, 邹颖, 王宝焕, 王逍妍, 赵勇, 梁鑫, 胡迪. 二氧化碳电催化还原反应制合成气催化剂研究进展[J]. 化工进展, 2024, 43(5): 2760-2775.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0098
电化学半反应 | 电极电位(vs. SHE)/ V |
---|---|
2H+ + 2e- | -0.420 |
CO2 (g) + 2H+ + 2e- | -0.250 |
CO2 (g) + H2O (l) + e- | -1.078 |
CO2 (g) + 2H+ + 2e- | -0.106 |
CO2 (g) + H2O (l) + 2e- | -0.934 |
电化学半反应 | 电极电位(vs. SHE)/ V |
---|---|
2H+ + 2e- | -0.420 |
CO2 (g) + 2H+ + 2e- | -0.250 |
CO2 (g) + H2O (l) + e- | -1.078 |
CO2 (g) + 2H+ + 2e- | -0.106 |
CO2 (g) + H2O (l) + 2e- | -0.934 |
催化剂名称 | 过电位(vs. RHE)/V | 电流密度/mA·cm-2 | 电解质 | 法拉第效率/% | 参考文献 |
---|---|---|---|---|---|
Fe3+-N-C | -0.45 | 15 | 0.5mol/L KHCO3 | 90 | [ |
Mn-NO/CNs | -0.46 | 8 | 0.5mol/L KHCO3 | 96 | [ |
Ni-N4-C | -0.4 | 8 | 0.5mol/L KHCO3 | 90.2 | [ |
P/Ni-0@Ni-N-C | -0.8 | 20 | 0.5mol/L KHCO3 | 91 | [ |
ZnN/CNO | -0.47 | 5.5 | 0.5mol/L KHCO3 | 97 | [ |
Fe1-Ni1-N-C | -0.5 | 7 | 0.5mol/L KHCO3 | 96.2 | [ |
Au NWs | -0.35 | 8 | 0.5mol/L KHCO3 | 94 | [ |
DDT-Au | -1.1 | 2.4 | 0.1mol/L KHCO3+3.4μmol/L EDTA | 40 | [ |
ID-Ag | -0.7 | 18 | 0.5mol/L KHCO3 | 94.5 | [ |
Ag | -0.49 | 3 | 0.1mol/L KHCO3 | 80 | [ |
AuCu/CNT | -0.4 | 2 | 0.5mol/L KHCO3 | 95.2 | [ |
Cu/Ni(OH)2 | -0.39 | 4.3 | 0.5mol/L NaHCO3 | 92 | [ |
ZnCa-MOF74 | -1.9V (vs.SCE) | 4 | 0.1mol/L KHCO3 | 93 | [ |
Zn x Cd1-x @S-胺 | -1.16 | 25 | 0.5mol/L NaHCO3 | 60 | [ |
p-Cu@Zn(101) | -0.39 | 11.36 | 0.1mol/L KHCO3 | 85 | [ |
FeNPCN | -0.5 | 3 | 0.1mol/L KHCO3 | 94 | [ |
Ni SAs/NCNTs | -0.75 | 22 | 0.5mol/L KHCO3 | 95 | [ |
CoPc/CNT | -0.52 | 15 | 0.1mol/L KHCO3 | 96 | [ |
NC-900 | -0.35 | 5 | 0.5mol/L NaHCO3 | 90 | [ |
1D/2D NR/CS-900 | -0.45 | 16 | 0.5mol/L KHCO3 | 94.2 | [ |
NSHPC | -0.6 | 5.58 | 0.1mol/L KHCO3 | 87.8 | [ |
SD-AgPMRs | -0.38 | 2.3 | 0.1mol/L KHCO3 | 80 | [ |
NP-C | -0.59 | 5.5 | 0.1mol/L KHCO3 | 81 | [ |
BPNC | -0.5 | 3 | 0.1mol/L KHCO3 | 81.8 | [ |
催化剂名称 | 过电位(vs. RHE)/V | 电流密度/mA·cm-2 | 电解质 | 法拉第效率/% | 参考文献 |
---|---|---|---|---|---|
Fe3+-N-C | -0.45 | 15 | 0.5mol/L KHCO3 | 90 | [ |
Mn-NO/CNs | -0.46 | 8 | 0.5mol/L KHCO3 | 96 | [ |
Ni-N4-C | -0.4 | 8 | 0.5mol/L KHCO3 | 90.2 | [ |
P/Ni-0@Ni-N-C | -0.8 | 20 | 0.5mol/L KHCO3 | 91 | [ |
ZnN/CNO | -0.47 | 5.5 | 0.5mol/L KHCO3 | 97 | [ |
Fe1-Ni1-N-C | -0.5 | 7 | 0.5mol/L KHCO3 | 96.2 | [ |
Au NWs | -0.35 | 8 | 0.5mol/L KHCO3 | 94 | [ |
DDT-Au | -1.1 | 2.4 | 0.1mol/L KHCO3+3.4μmol/L EDTA | 40 | [ |
ID-Ag | -0.7 | 18 | 0.5mol/L KHCO3 | 94.5 | [ |
Ag | -0.49 | 3 | 0.1mol/L KHCO3 | 80 | [ |
AuCu/CNT | -0.4 | 2 | 0.5mol/L KHCO3 | 95.2 | [ |
Cu/Ni(OH)2 | -0.39 | 4.3 | 0.5mol/L NaHCO3 | 92 | [ |
ZnCa-MOF74 | -1.9V (vs.SCE) | 4 | 0.1mol/L KHCO3 | 93 | [ |
Zn x Cd1-x @S-胺 | -1.16 | 25 | 0.5mol/L NaHCO3 | 60 | [ |
p-Cu@Zn(101) | -0.39 | 11.36 | 0.1mol/L KHCO3 | 85 | [ |
FeNPCN | -0.5 | 3 | 0.1mol/L KHCO3 | 94 | [ |
Ni SAs/NCNTs | -0.75 | 22 | 0.5mol/L KHCO3 | 95 | [ |
CoPc/CNT | -0.52 | 15 | 0.1mol/L KHCO3 | 96 | [ |
NC-900 | -0.35 | 5 | 0.5mol/L NaHCO3 | 90 | [ |
1D/2D NR/CS-900 | -0.45 | 16 | 0.5mol/L KHCO3 | 94.2 | [ |
NSHPC | -0.6 | 5.58 | 0.1mol/L KHCO3 | 87.8 | [ |
SD-AgPMRs | -0.38 | 2.3 | 0.1mol/L KHCO3 | 80 | [ |
NP-C | -0.59 | 5.5 | 0.1mol/L KHCO3 | 81 | [ |
BPNC | -0.5 | 3 | 0.1mol/L KHCO3 | 81.8 | [ |
1 | LI Xiang, DAMARTZIS Theodoros, STADLER Zoe, et al. Decarbonization in complex energy systems: A study on the feasibility of carbon neutrality for Switzerland in 2050[J]. Frontiers in Energy Research, 2020, 8: 549615. |
2 | Simelys HERNÁNDEZ, AMIN FARKHONDEHFAL M, SASTRE Francesc, et al. Syngas production from electrochemical reduction of CO2: Current status and prospective implementation[J]. Green Chemistry, 2017, 19(10): 2326-2346. |
3 | 王深, 吕连宏, 张保留, 等. 基于多目标模型的中国低成本碳达峰、碳中和路径[J]. 环境科学研究, 2021, 34(9): 2044-2055. |
WANG Shen, Lianhong LÜ, ZHANG Baoliu, et al. Multi objective programming model of low-cost path for China’s peaking carbon dioxide emissions and carbon neutrality[J]. Research of Environmental Sciences, 2021, 34(9): 2044-2055. | |
4 | HE Yajun, CHEN Xin, HUANG Chi, et al. Encapsulation of Co single sites in covalent triazine frameworks for photocatalytic production of syngas[J]. Chinese Journal of Catalysis, 2021, 42(1): 123-130. |
5 | REZAEI Ebrahim, DZURYK Stephen. Techno-economic comparison of reverse water gas shift reaction to steam and dry methane reforming reactions for syngas production[J]. Chemical Engineering Research and Design, 2019, 144: 354-369. |
6 | MORENO-GONZÁLEZ M, BERGER Angelina, Tory BORSBOOM-HANSON, et al. Carbon-neutral fuels and chemicals: Economic analysis of renewable syngas pathways via CO2 electrolysis[J]. Energy Conversion and Management, 2021, 244: 114452. |
7 | JIAO Long, ZHU Juntong, ZHANG Yan, et al. Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction[J]. Journal of the American Chemical Society, 2021, 143(46): 19417-19424. |
8 | WANG Yangang, LI Tian, YAO Yonggang, et al. Dramatic enhancement of CO2 photoreduction by biodegradable light-management paper[J]. Advanced Energy Materials, 2018, 8(16): 1703136. |
9 | APPEL Aaron M, BERCAW John E, BOCARSLY Andrew B, et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation[J]. Chemical Reviews, 2013, 113(8): 6621-6658. |
10 | XIA Wenjie, CHEN Rui, LI Yang, et al. Photo-driven heterogeneous microbial consortium reducing CO2 to hydrocarbons fuel[J]. Journal of Cleaner Production, 2021, 326: 129397. |
11 | PAN Fuping, YANG Yang. Designing CO2 reduction electrode materials by morphology and interface engineering[J]. Energy & Environmental Science, 2020, 13(8): 2275-2309. |
12 | CAI Bin, Alexander EYCHMÜLLER. Promoting electrocatalysis upon aerogels[J]. Advanced Materials, 2019, 31(31): e1804881. |
13 | XIE Huan, WANG Tanyuan, LIANG Jiashun, et al. Cu-based nanocatalysts for electrochemical reduction of CO2 [J]. Nano Today, 2018, 21: 41-54. |
14 | DUTTA Abhijit, MORSTEIN Carina Elisabeth, RAHAMAN Motiar, et al. Beyond copper in CO2 electrolysis: Effective hydrocarbon production on silver-nanofoam catalysts[J]. ACS Catalysis, 2018, 8(9): 8357-8368. |
15 | ZHANG Wenjun, HU Yi, MA Lianbo, et al. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals[J]. Advanced Science, 2018, 5(1): 1700275. |
16 | AGARWAL Arun S, ZHAI Yumei, HILL Davion, et al. The electrochemical reduction of carbon dioxide to formate/formic acid: Engineering and economic feasibility[J]. ChemSusChem, 2011, 4(9): 1301-1310. |
17 | HORI Yoshio, WAKEBE Hidetoshi, TSUKAMOTO Toshio, et al. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media[J]. Electrochimica Acta, 1994, 39(11/12): 1833-1839. |
18 | ZHU Dong dong, LIU Jin long, QIAO Shi zhang. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide[J]. Advanced Materials, 2016, 28(18): 3423-3452. |
19 | SHEN Jing, KORTLEVER Ruud, Recep KAS, et al. Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin[J]. Nature Communications, 2015, 6: 8177. |
20 | BIRDJA Yuvraj Y, Elena PÉREZ-GALLENT, FIGUEIREDO Marta C, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels[J]. Nature Energy, 2019, 4: 732-745. |
21 | JIN Song, HAO Zhimeng, ZHANG Kai, et al. Advances and challenges for the electrochemical reduction of CO2 to CO: From fundamentals to industrialization[J]. Angewandte Chemie International Edition, 2021, 60(38): 20627-20648. |
22 | ROSS Michael B, DE LUNA Phil, LI Yifan, et al. Designing materials for electrochemical carbon dioxide recycling[J]. Nature Catalysis, 2019, 2: 648-658. |
23 | ZHANG Lei, ZHAO Zhijian, GONG Jinlong. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms[J]. Angewandte Chemie International Edition, 2017, 56(38): 11326-11353. |
24 | PAN Fuping, LI Boyang, SARNELLO Erik, et al. Pore-edge tailoring of single-atom iron-nitrogen sites on graphene for enhanced CO2 reduction[J]. ACS Catalysis, 2020, 10(19): 10803-10811. |
25 | QIAO Jinli, LIU Yuyu, HONG Feng, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014, 43(2): 631-675. |
26 | KORTLEVER Ruud, SHEN Jing, SCHOUTEN Klaas Jan P, et al. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide[J]. The Journal of Physical Chemistry Letters, 2015, 6(20): 4073-4082. |
27 | LIU Subiao, TAO Hongbiao, ZENG Li, et al. Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates[J]. Journal of the American Chemical Society, 2017, 139(6): 2160-2163. |
28 | Michael Shincheon JEE, KIM Haeri, JEON Hyo Sang, et al. Stable surface oxygen on nanostructured silver for efficient CO2 electroreduction[J]. Catalysis Today, 2017, 288: 48-53. |
29 | DENG Yilin, HUANG Yun, REN Dan, et al. On the role of sulfur for the selective electrochemical reduction of CO2 to formate on CuS x catalysts[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 28572-28581. |
30 | ROSEN Jonathan, HUTCHINGS Gregory S, LU Qi, et al. Mechanistic insights into the electrochemical reduction of CO2 to CO on nanostructured Ag surfaces[J]. ACS Catalysis, 2015, 5(7): 4293-4299. |
31 | MA Ming, TRZEŚNIEWSKI Bartek J, XIE Jie, et al. Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts[J]. Angewandte Chemie International Edition, 2016, 55(33): 9748-9752. |
32 | CHENG Cheng, FANG Weihai, LONG Run, et al. Water splitting with a single-atom Cu/TiO2 photocatalyst: Atomistic origin of high efficiency and proposed enhancement by spin selection[J]. JACS Au, 2021, 1(5): 550-559. |
33 | WANG Yuchao, XU Liang, ZHAN Longsheng, et al. Electron accumulation enables Bi efficient CO2 reduction for formate production to boost clean Zn-CO2 batteries[J]. Nano Energy, 2022, 92: 106780. |
34 | ZHU Chengzhou, SHI Qiurong, FENG Shuo, et al. Single-atom catalysts for electrochemical water splitting[J]. ACS Energy Letters, 2018, 3(7): 1713-1721. |
35 | CHEN Yuanjun, JI Shufang, CHEN Chen, et al. Single-atom catalysts: Synthetic strategies and electrochemical applications[J]. Joule, 2018, 2(7): 1242-1264. |
36 | JONES John, XIONG Haifeng, DELARIVA Andrew T, et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping[J]. Science, 2016, 353(6295): 150-154. |
37 | DENG Jiao, LI Haobo, XIAO Jianping, et al. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping[J]. Energy & Environmental Science, 2015, 8(5): 1594-1601. |
38 | WANG Chunhua, SHI Huimin, LIU Huaizhi, et al. Quasi-atomic-scale platinum anchored on porous titanium nitride nanorod arrays for highly efficient hydrogen evolution[J]. Electrochimica Acta, 2018, 292: 727-735. |
39 | YAN Chengcheng, LI Haobo, YE Yifan, et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction[J]. Energy & Environmental Science, 2018, 11(5): 1204-1210. |
40 | GU Jun, HSU Chia-Shuo, BAI Lichen, et al. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO[J]. Science, 2019, 364(6445): 1091-1094. |
41 | DONG Wenfei, ZHANG Nan, LI Sanxiu, et al. A Mn single atom catalyst with Mn-N2O2 sites integrated into carbon nanosheets for efficient electrocatalytic CO2 reduction[J]. Journal of Materials Chemistry A, 2022, 10(20): 10892-10901. |
42 | MOU Kaiwen, CHEN Zhipeng, ZHANG Xinxin, et al. Highly efficient electroreduction of CO2 on nickel single-atom catalysts: Atom trapping and nitrogen anchoring[J]. Small, 2019, 15(49): e1903668. |
43 | YE Chengyu, YU Xiaofei, LI Wencui, et al. Engineering of bifunctional nickel Phosphide@Ni-N-C catalysts for selective electroreduction of CO2-H2O to syngas[J]. Acta Physico Chimica Sinica, 2020, 38(4): 107-117. |
44 | HAO Zhongjing, CHEN Junxiang, ZHANG Dafeng, et al. Coupling effects of Zn single atom and high curvature supports for improved performance of CO2 reduction[J]. Science Bulletin, 2021, 66(16): 1649-1658. |
45 | WANG Zhongli, LI Cuiling, YAMAUCHI Yusuke. Nanostructured nonprecious metal catalysts for electrochemical reduction of carbon dioxide[J]. Nano Today, 2016, 11(3): 373-391. |
46 | ZHU Wenlei, MICHALSKY Ronald, Önder METIN, et al. Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO[J]. Journal of the American Chemical Society, 2013, 135(45): 16833-16836. |
47 | ZHU Wenlei, ZHANG Yinjia, ZHANG Hongyi, et al. Active and selective conversion of CO2 to CO on ultrathin Au nanowires[J]. Journal of the American Chemical Society, 2014, 136(46): 16132-16135. |
48 | SHANG Hongyu, WALLENTINE Spencer K, HOFMANN Daniel M, et al. Effect of surface ligands on gold nanocatalysts for CO2 reduction[J]. Chemical Science, 2020, 11(45): 12298-12306. |
49 | ZHANG Ya, JI Lei, QIU Weibin, et al. Iodide-derived nanostructured silver promotes selective and efficient carbon dioxide conversion into carbon monoxide[J]. Chemical Communications, 2018, 54(21): 2666-2669. |
50 | MAURICE V, KLEIN L H, H-H STREHBLOW, et al. In situ STM study of the surface structure, dissolution, and early stages of electrochemical oxidation of the Ag(111) electrode[J]. The Journal of Physical Chemistry C, 2007, 111(44): 16351-16361. |
51 | CHEN Hao, LI Zihao, ZHANG Zihao, et al. Synthesis of composition-tunable syngas from efficiently electrochemical conversion of CO2 over AuCu/CNT bimetallic catalyst[J]. Industrial & Engineering Chemistry Research, 2019, 58(34): 15425-15431. |
52 | LIU Anmin, GAO Mengfan, REN Xuefeng, et al. Current progress in electrocatalytic carbon dioxide reduction to fuels on heterogeneous catalysts[J]. Journal of Materials Chemistry A, 2020, 8(7): 3541-3562. |
53 | DAI Lei, QIN Qing, WANG Pei, et al. Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide[J]. Science Advances, 2017, 3(9): e1701069. |
54 | VAN PHUC Tran, KANG Sung Gu, CHUNG Jin Suk, et al. Highly CO selective Ca and Zn hybrid metal-organic framework electrocatalyst for the electrochemical reduction of CO2 [J]. Current Applied Physics, 2021, 27: 31-37. |
55 | BHUGUN Iqbal, LEXA Doris, Jean-Michel SAVÉANT. Catalysis of the electrochemical reduction of carbon dioxide by iron(0) porphyrins. Synergistic effect of Lewis acid cations[J]. The Journal of Physical Chemistry, 1996, 100(51): 19981-19985. |
56 | KARLSEN Elly J, NYGREN Martin A, PETTERSSON Lars G M. Comparative study on structures and energetics of NO x, SO x, and CO x adsorption on alkaline-earth-metal oxides[J]. The Journal of Physical Chemistry B, 2003, 107(31): 7795-7802. |
57 | MENG Nannan, LIU Cuibo, LIU Yang, et al. Efficient electrosynthesis of syngas with tunable CO/H2 ratios over Zn x Cd1– x S-amine inorganic-organic hybrids[J]. Angewandte Chemie International Edition, 2019, 58(52): 18908-18912. |
58 | QIN Binhao, LI Yuhang, FU Hongquan, et al. Electrochemical reduction of CO2 into tunable syngas production by regulating the crystal facets of earth-abundant Zn catalyst[J]. ACS Applied Materials & Interfaces, 2018, 10(24): 20530-20539. |
59 | XIONG Bo, YANG Yingju, LIU Jing, et al. Crystal orientation effects on the electrochemical conversion of CO2 to syngas over Cu-M (M=Ag, Ni, Zn, Cd, and Pd) bimetal catalysts[J]. Applied Surface Science, 2021, 567: 150839. |
60 | WU Zhiyi, IQBAL Zafar, WANG Xianqin. Metal-free, carbon-based catalysts for oxygen reduction reactions[J]. Frontiers of Chemical Science and Engineering, 2015, 9(3): 280-294. |
61 | WU Jingjie, LIU Mingjie, SHARMA Pranav P, et al. Incorporation of nitrogen defects for efficient reduction of CO2 via two-electron pathway on three-dimensional graphene foam[J]. Nano Letters, 2016, 16(1): 466-470. |
62 | SONG Yanfang, CHEN Wei, ZHAO Chengcheng, et al. Metal-free nitrogen-doped mesoporous carbon for electroreduction of CO2 to ethanol[J]. Angewandte Chemie International Edition, 2017, 56(36): 10840-10844. |
63 | LIU Yanming, CHEN Shuo, QUAN Xie, et al. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond[J]. Journal of the American Chemical Society, 2015, 137(36): 11631-11636. |
64 | KUMAR Bijandra, ASADI Mohammad, PISASALE Davide, et al. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction[J]. Nature Communications, 2013, 4: 2819. |
65 | SHARMA Pranav P, WU Jingjie, YADAV Ram Manohar, et al. Nitrogen-doped carbon nanotube arrays for high-efficiency electrochemical reduction of CO2: On the understanding of defects, defect density, and selectivity[J]. Angewandte Chemie International Edition, 2015, 54(46): 13701-13705. |
66 | WANG Wei, BORSE Rahul Anil, XIE Jiafang, et al. Spontaneously producing syngas from MFC-MEC coupling system based on biocompatible bifunctional metal-free electrocatalyst[J]. Science China Materials, 2021, 64(3): 592-600. |
67 | GONG Kuanping, DU Feng, XIA Zhenhai, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323(5915): 760-764. |
68 | WANG Xingpu, LI Xueyan, DING Shaosong, et al. Constructing ample active sites in nitrogen-doped carbon materials for efficient electrocatalytic carbon dioxide reduction[J]. Nano Energy, 2021, 90: 106541. |
69 | WANG Yue, ZHANG Chen, LI Xinjian, et al. Metal-free carbon-based nanomaterials for electrochemical nitrogen and carbon dioxide reductions[J]. Materials Research Bulletin, 2021, 140: 111294. |
70 | ZHANG Zheng, YU Liang, TU Yunchuan, et al. Unveiling the active site of metal-free nitrogen-doped carbon for electrocatalytic carbon dioxide reduction[J]. Cell Reports Physical Science, 2020, 1(8): 100145. |
71 | ZHOU Wenyang, SHEN Haoming, WANG Qian, et al. N-doped peanut-shaped carbon nanotubes for efficient CO2 electrocatalytic reduction[J]. Carbon, 2019, 152: 241-246. |
72 | LI Fengwang, XUE Mianqi, KNOWLES Gregory P, et al. Porous nitrogen-doped carbon derived from biomass for electrocatalytic reduction of CO2 to CO[J]. Electrochimica Acta, 2017, 245: 561-568. |
73 | HAO Xiaoqiong, AN Xiaowei, PATIL Amar M, et al. Biomass-derived N-doped carbon for efficient electrocatalytic CO2 reduction to CO and Zn-CO2 batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(3): 3738-3747. |
74 | MUKHERJEE Shreya, CULLEN David A, KARAKALOS Stavros, et al. Metal-organic framework-derived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes[J]. Nano Energy, 2018, 48: 217-226. |
75 | WANG Riming, SUN Xiaohui, Samy OULD-CHIKH, et al. Metal-organic-framework-mediated nitrogen-doped carbon for CO2 electrochemical reduction[J]. ACS Applied Materials & Interfaces, 2018, 10(17): 14751-14758. |
76 | ZHU Ying, LV Kuilin, WANG Xingpu, et al. 1D/2D nitrogen-doped carbon nanorod arrays/ultrathin carbon nanosheets: Outstanding catalysts for the highly efficient electroreduction of CO2 to CO[J]. Journal of Materials Chemistry A, 2019, 7(24): 14895-14903. |
77 | YE Lin, YING Yiran, SUN Dengrong, et al. Highly efficient porous carbon electrocatalyst with controllable N-species content for selective CO2 reduction[J]. Angewandte Chemie International Edition, 2020, 59(8): 3244-3251. |
78 | NING Hui, GUO Dianliang, WANG Xiaoshan, et al. Efficient CO2 electroreduction over N-doped hieratically porous carbon derived from petroleum pitch[J]. Journal of Energy Chemistry, 2021, 56: 113-120. |
79 | LI Yao, LIU Nan, ZHANG Tao, et al. Highly microporous nitrogen-doped carbons from anthracite for effective CO2 capture and CO2/CH4 separation[J]. Energy, 2020, 211: 118561. |
80 | LIU Song, YANG Hongbin, HUANG Xiang, et al. Identifying active sites of nitrogen-doped carbon materials for the CO2 reduction reaction[J]. Advanced Functional Materials, 2018, 28(21): 1800499. |
81 | ZHONG Haixia, MENG Fanlu, ZHANG Qi, et al. Highly efficient and selective CO2 electro-reduction with atomic Fe-C-N hybrid coordination on porous carbon nematosphere[J]. Nano Research, 2019, 12(9): 2318-2323. |
82 | LU Peilong, YANG Yijun, YAO Jiannian, et al. Facile synthesis of single-nickel-atomic dispersed N-doped carbon framework for efficient electrochemical CO2 reduction[J]. Applied Catalysis B: Environmental, 2019, 241: 113-119. |
83 | ZHANG Xing, WU Zishan, ZHANG Xiao, et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures[J]. Nature Communications, 2017, 8: 14675. |
84 | YAO Pengfei, QIU Yanling, ZHANG Taotao, et al. N-doped nanoporous carbon from biomass as a highly efficient electrocatalyst for the CO2 reduction reaction[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 5249-5255. |
85 | LI Ruru, LIU Feng, ZHANG Yihao, et al. Nitrogen, sulfur co-doped hierarchically porous carbon as a metal-free electrocatalyst for oxygen reduction and carbon dioxide reduction reaction[J]. ACS Applied Materials & Interfaces, 2020, 12(40): 44578-44587. |
86 | YANG Jinman, DU Huishuang, YU Qing, et al. Porous silver microrods by plasma vulcanization activation for enhanced electrocatalytic carbon dioxide reduction[J]. Journal of Colloid and Interface Science, 2022, 606(Pt 1): 793-799. |
87 | LIU Tianfu, Sajjad ALI, LIAN Zan, et al. Phosphorus-doped onion-like carbon for CO2 electrochemical reduction: The decisive role of the bonding configuration of phosphorus[J]. Journal of Materials Chemistry A, 2018, 6(41): 19998-20004. |
88 | HAN Juan, DENG Ximing, CHEN Keyu, et al. Electrochemical conversion of CO2 into tunable syngas on a B, P, N tri-doped carbon[J]. Renewable Energy, 2021, 177: 636-642. |
89 | FENG Caixia, ZHANG Xiaodong, JIN Huige, et al. Integrating carbon vacancy modified carbon quantum dots with carbon nitride for efficient photocatalytic CO2 reduction to syngas with tunable hydrogen to carbon monoxide ratio[J]. Carbon, 2023, 203: 671-685. |
90 | WEI Bing, HAO Jinhui, GE Baoxin, et al. Highly efficient electrochemical carbon dioxide reduction to syngas with tunable ratios over pyridinic-nitrogen rich ultrathin carbon nanosheets[J]. Journal of Colloid and Interface Science, 2022, 608(Pt 3): 2650-2659. |
91 | STANLEY Philip M, SU Alice Y, RAMM Vanessa, et al. Photocatalytic CO2-to-syngas evolution with molecular catalyst metal-organic framework nanozymes[J]. Advanced Materials, 2023, 35(6): e2207380. |
92 | JIANG Yuhang, WANG Yating, CHEN Rongzhen, et al. Minireview and perspectives of bimetallic metal-organic framework electrocatalysts for carbon dioxide reduction[J]. Energy & Fuels, 2023, 37(23): 17951-17965. |
93 | MIN Zhaojun, CHANG Bing, SHAO Chunfeng, et al. Enhancing CO2 electroreduction to syngas by active protons of imidazolium ionic liquids: From performance to mechanism[J]. Applied Catalysis B: Environmental, 2023, 326: 122185. |
94 | ALIPOUR Zahra, BABU BORUGADDA Venu, WANG Hui, et al. Syngas production through dry reforming: A review on catalysts and their materials, preparation methods and reactor type[J]. Chemical Engineering Journal, 2023, 452: 139416. |
95 | POUREBRAHIMI Sina, PIROOZ Majid, AHMADI Shabnam, et al. Nanoengineering of metal-based electrocatalysts for carbon dioxide (CO2) reduction: A critical review[J]. Materials Today Physics, 2023, 38: 101250. |
96 | LIU Guangbo, YANG Guohui, PENG Xiaobo, et al. Recent advances in the routes and catalysts for ethanol synthesis from syngas[J]. Chemical Society Reviews, 2022, 51(13): 5606-5659. |
97 | TIMOFEEVA S S, KARAEVA J V, KOVALEV A A, et al. Steam gasification of digestate after anaerobic digestion and dark fermentation of lignocellulosic biomass to produce syngas with high hydrogen content[J]. International Journal of Hydrogen Energy, 2023, 48(21): 7559-7568. |
98 | SU Bo, ZHENG Mei, LIN Wei, et al. S-scheme Co9S8@Cd0.8Zn0.2S-DETA hierarchical nanocages bearing organic CO2 activators for photocatalytic syngas production[J]. Advanced Energy Materials, 2023, 13(15): 2203290. |
99 | CHEN Huimin, WANG Min, FAN Kaicai, et al. One stone three birds: An aqueous Mg-CO2 battery for generation of electricity, syngas, and high-value phosphate[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(7): 3123-3132. |
100 | WANG Linjie, LUO Zichang, FENG Sitong, et al. Synthesis of MOF-derived hybrids for efficient electrocatalytic reduction of CO2 to syngas[J]. Catalysis Letters, 2023, 153(5): 1527-1535. |
[1] | WANG Jiarui, LIU Dawei, DENG Yao, XU Jin, MA Xiaoxun, XU Long. Research progress of oxygen carriers in chemical looping reforming reaction of methane [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2235-2253. |
[2] | ZHOU Anning, JIANG Yuhan, LIU Moxuan, ZHAO Wei, LI Zhen. Research progress in hydrogen production from electrolytic coal slurry: Effects of coal rank and minerals, and the evolution of coal structure [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2294-2310. |
[3] | WU Da, JIANG Shujiao, WEI Qiang, YUAN Shenghua, YANG Gang, ZHANG Cheng. Research progress on efficient utilization technology of residue in energy transition [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2343-2353. |
[4] | JIANG Andi, DING Xuexing, WANG Shipeng, DING Junhua, LI Ning. Research progress on thermodynamic performance of supercritical CO2 dry gas seal [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2354-2369. |
[5] | GUI Xin, CHEN Huiyong, BAI Boyang, JIA Yongliang, MA Xiaoxun. Catalytic hydrogenation of pyrene over Mo-doped NiC/Al-MCM-41 [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2386-2395. |
[6] | DING Sijia, JIANG Shujiao, YANG Zhanlin, PENG Shaozhong, JIANG Qianmin. Design of heavy oil hydrodenitrogenation catalysts based on hydrogenation performance determined by structure of nitrogen compounds [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2436-2448. |
[7] | LI Si, TAO Yiyue, XIAO Zhenchong, ZHANG Liang, LI Jun, ZHU Xun, LIAO Qiang. Electrochemical characteristics of the coupled system of thermally regenerative battery stack and electrochemical CO2 reduction cell [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2568-2575. |
[8] | WANG Xinyu, WANG Chao, ZHANG Mengjuan, LIU Fangzheng, LI Hanyang, WANG Zhenglin, JIA Xin, SONG Xingfei, XU Guangwen, HAN Zhennan. Process stability verification of the two-stage fluidized bed gasification for pine particles to produce clean gas [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2576-2586. |
[9] | DUAN Xiang, TIAN Ye, DONG Wenwei, SONG Song, LI Xingang. Research progress on reaction networks and catalytic reaction mechanisms of phthalic anhydride synthesis [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2587-2599. |
[10] | FANG Yao, LIU Lei, GAO Zhihua, HUANG Wei, ZUO Zhijun. Advances in anode catalysts for photo-assisted direct methanol fuel cells [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2611-2628. |
[11] | ZHANG Jinpeng, QU Ting, JING Jieying, LI Wenying. Composite catalyst of sorption enhanced water gas shift for hydrogen production: A review [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2629-2644. |
[12] | LIU Siyu, YANG Juan, CHEN Pei, CHEN Zutian, YAN Bin, LIU Yuhong, QIU Jieshan. Tuning N-doped configurations of N-enriched porous carbon nanosheets for high-performance zinc ion storage [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2673-2683. |
[13] | LI Na, ZHAO Wantong, LING Lixia, WANG Baojun, ZHANG Riguang. Confined environment of RhCu catalyst to regulate the reaction performance for synthesis gas conversion to CH x [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2684-2695. |
[14] | FENG Yongqiang, WANG Jieru, WANG Chaoxian, LI Fang, SU Wanting, SUN Yu, ZHAO Binran. Influence of Ni, Fe, and Cu loaded on γ-Al2O3 in CO2/CH4 conversion via dielectric barrier discharge plasma [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2705-2713. |
[15] | XIE Zhongkai, SHI Weidong. Research progress of charge polarized photocatalysts in photoconversion carbon dioxide into multi-carbon chemicals [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2714-2722. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |