Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (5): 2576-2586.DOI: 10.16085/j.issn.1000-6613.2023-2028
• New and renewable energy • Previous Articles
WANG Xinyu1,2(), WANG Chao1,2(), ZHANG Mengjuan1,2(), LIU Fangzheng1,2, LI Hanyang1,2, WANG Zhenglin1,2, JIA Xin1,2, SONG Xingfei1,2, XU Guangwen1,2, HAN Zhennan1,2()
Received:
2023-11-21
Revised:
2024-03-05
Online:
2024-06-15
Published:
2024-05-15
Contact:
WANG Chao, ZHANG Mengjuan, HAN Zhennan
王欣宇1,2(), 王超1,2(), 张梦娟1,2(), 刘方正1,2, 李晗旸1,2, 王正林1,2, 贾鑫1,2, 宋兴飞1,2, 许光文1,2, 韩振南1,2()
通讯作者:
王超,张梦娟,韩振南
作者简介:
王欣宇(1997—),女,硕士研究生,研究方向为生物质气化。E-mail:13032460986@163.com。
基金资助:
CLC Number:
WANG Xinyu, WANG Chao, ZHANG Mengjuan, LIU Fangzheng, LI Hanyang, WANG Zhenglin, JIA Xin, SONG Xingfei, XU Guangwen, HAN Zhennan. Process stability verification of the two-stage fluidized bed gasification for pine particles to produce clean gas[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2576-2586.
王欣宇, 王超, 张梦娟, 刘方正, 李晗旸, 王正林, 贾鑫, 宋兴飞, 许光文, 韩振南. 松木颗粒流态化两段气化制备清洁燃气的工艺稳定性验证[J]. 化工进展, 2024, 43(5): 2576-2586.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-2028
样本 | 元素分析②/%(质量分数) | 低品位热值/MJ·kg-1 | 工业分析②/%(质量分数) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | O① | N | S | 挥发分 | 灰分 | 水分 | 固定碳① | ||
松木屑 | 50.31 | 5.86 | 42.86 | 0.18 | 0 | 19.84 | 84.19 | 0.79 | 7.67 | 7.35 |
外加半焦 | 75.96 | 3.72 | 11.33 | 0.54 | 0 | 32.15 | 32.42 | 8.45 | 2.33 | 56.80 |
样本 | 元素分析②/%(质量分数) | 低品位热值/MJ·kg-1 | 工业分析②/%(质量分数) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
C | H | O① | N | S | 挥发分 | 灰分 | 水分 | 固定碳① | ||
松木屑 | 50.31 | 5.86 | 42.86 | 0.18 | 0 | 19.84 | 84.19 | 0.79 | 7.67 | 7.35 |
外加半焦 | 75.96 | 3.72 | 11.33 | 0.54 | 0 | 32.15 | 32.42 | 8.45 | 2.33 | 56.80 |
条件参数 | 实验 1 | 实验 2 | 实验 3 | |
---|---|---|---|---|
热载体 | Al2O3 | 添加热载体质量/kg | 6 | |
ER | 0.35 | 电炉(T0)温度/℃ | 950 | |
外加半焦 | 商用果木炭 | 添加商用果木炭质量/kg | 1.6 | |
从物料平衡得到的理论提升管反应器气速/m·s-1 | 3 | |||
生物质进料速率/kg·h-1 | 1 | 2 | 3 | |
O2体积分数/% | 8.9 | 17.8 | 26.6 | |
N2体积分数/% | 91.1 | 82.2 | 73.4 | |
气化器(T3)温度/℃ | 826.7 | 831.1 | 851.8 | |
热解器(T1)温度/℃ | 649.3 | 688.1 | 690.3 | |
气体收率(标准)/m3·kg-1 | 0.90 | 0.94 | 1.36 | |
产生气体低品位热值(标准)/MJ·m-3 | 3.26 | 3.86 | 4.80 | |
实际提升管气速/m·s-1 | 2.77 | 3.34 | 4.62 | |
平均焦油含量(标准)/g·m-3 | 0.37 |
条件参数 | 实验 1 | 实验 2 | 实验 3 | |
---|---|---|---|---|
热载体 | Al2O3 | 添加热载体质量/kg | 6 | |
ER | 0.35 | 电炉(T0)温度/℃ | 950 | |
外加半焦 | 商用果木炭 | 添加商用果木炭质量/kg | 1.6 | |
从物料平衡得到的理论提升管反应器气速/m·s-1 | 3 | |||
生物质进料速率/kg·h-1 | 1 | 2 | 3 | |
O2体积分数/% | 8.9 | 17.8 | 26.6 | |
N2体积分数/% | 91.1 | 82.2 | 73.4 | |
气化器(T3)温度/℃ | 826.7 | 831.1 | 851.8 | |
热解器(T1)温度/℃ | 649.3 | 688.1 | 690.3 | |
气体收率(标准)/m3·kg-1 | 0.90 | 0.94 | 1.36 | |
产生气体低品位热值(标准)/MJ·m-3 | 3.26 | 3.86 | 4.80 | |
实际提升管气速/m·s-1 | 2.77 | 3.34 | 4.62 | |
平均焦油含量(标准)/g·m-3 | 0.37 |
1 | NAIK S N, GOUD Vaibhav V, ROUT Prasant K, et al. Production of first and second generation biofuels: A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2010, 14(2): 578-597. |
2 | 徐漓, 吴玉锋, 张元甲 等. “双碳”背景下广东农林废弃物综合利用技术进展[J]. 化工进展, 2023, 42(11): 5648-5660. |
XU Li, WU Yufeng, ZHANG Yuanjia. The progress of comprehensive utilization technology of agricultural and forestry wastes in Guangdong under the background of “carbon peaking and carbon neutrality”[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5648-5660. | |
3 | LI Xiaojing, YAN Pengpeng, MA Chaofan, et al. Structural design and optimization of a solar spouted bed reactor of biomass gasification[J]. Applied Thermal Engineering, 2021, 194: 117058. |
4 | 陈佳慧, 吴石亮, 肖睿. 生物质基长链含氧燃料的制备与应用[J]. 力学学报, 2023, 55(12): 2768-2778. |
CHEN Jiahui, WU Shiliang, XIAO Rui. Preparation and application of biomass-based long-chain oxygenated fuels[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(12): 2768-2778. | |
5 | SIDDIQUI O, DINCER I, Yilbas BS. Development of a novel renewable energy system integrated with biomass gasification combined cycle for cleaner production purposes[J]. Journal of Cleaner Production, 2019, 241: 118345. |
6 | 李美军. 高掺混比例下不同生物质与煤粉混燃试验[J]. 洁净煤技术, 2023, 29(5): 80-88. |
LI Meijun. Experiment of co-combustion characteristics of different biomass and pulverized coal at high blending ratio[J]. Clean Coal Technology, 2023, 29(5): 80-88. | |
7 | 张齐生, 周建斌, 屈永标. 农林生物质的高效、无公害、资源化利用[J]. 林产工业, 2009, 36(1): 3-8. |
ZHANG Qisheng, ZHOU Jianbin, QU Yongbiao. High efficiency and pollution-free resources utilization of agricultural and forest biomass[J]. China Forest Products Industry, 2009, 36(1): 3-8. | |
8 | ZHANG Yimeng, MA Huanhuan, CHEN Dengyu, et al. Technical and benefit evaluation of fruit-wood waste gasification heating coproduction of an activated carbon system[J]. ACS Omega, 2021, 6(1): 633-641. |
9 | REN Jie, LIU Yiling, ZHAO Xiaoyan, et al. Biomass thermochemical conversion: A review on tar elimination from biomass catalytic gasification[J]. Journal of the Energy Institute, 2020, 93(3): 1083-1098. |
10 | ISLAM Md Waliul. A review of dolomite catalyst for biomass gasification tar removal[J]. Fuel, 2020, 267: 117095. |
11 | SANSANIWAL S K, ROSEN M A, TYAGI S K. Global challenges in the sustainable development of biomass gasification: An overview[J]. Renewable and Sustainable Energy Reviews, 2017, 80: 23-43. |
12 | WANG Chao, ZHU Lianfeng, ZHANG Mengjuan, et al. A two-stage circulated fluidized bed process to minimize tar generation of biomass gasification for fuel gas production[J]. Applied Energy, 2022, 323: 119639. |
13 | 杨玉琼, 梁杰, 宣俊. 生物质焦油处理方法的国内研究现状及发展[J]. 化工进展, 2011, 30(S1): 411-413. |
YANG Yuqiong, LIANG Jie, XUAN Jun. Domestic research status and development of biomass tar treatment methods[J]. Chemical Industry and Engineering Progress, 2011, 30(S1): 411-413. | |
14 | HAN Zhengnan, GENG Sulong, ZENG Xi, et al. Reaction decoupling in thermochemical fuel conversion and technical progress based on decoupling using fluidized bed[J]. Carbon Resources Conversion, 2018, 1(2): 109-125. |
15 | 朱莲峰, 王超, 张梦娟 等. 水蒸气/氧流化床两段煤气化制备低焦油合成气工艺实验. 化工学报. 2022; 73(8): 3720-3730. |
ZHU Lianfeng, WANG Chao, ZHANG Mengjuan, et al. Fluidized bed two-stage gasification of coal with steam/O2 for production of low-tar syngas. CIESC Journal. 2022; 73(8): 3720-3730. | |
16 | ZENG Xi, WANG Fang, SUN Yanlin, et al. Characteristics of tar abatement by thermal cracking and char catalytic reforming in a fluidized bed two-stage reactor[J]. Fuel, 2018, 231: 18-25. |
17 | BUI T, LOOF R, BHATTACHARYA S C. Multi-stage reactor for thermal gasification of wood[J]. Energy, 1994, 19(4): 397-404. |
18 | BURHENNE Luisa, ROCHLITZ Lisbeth, LINTNER Christian, et al. Technical demonstration of the novel Fraunhofer ISE biomass gasification process for the production of a tar-free synthesis gas[J]. Fuel Processing Technology, 2013, 106: 751-760. |
19 | BRANDT Peder, LARSEN Elfinn, HENRIKSEN Ulrik. High tar reduction in a two-stage gasifier[J]. Energy & Fuels, 2000, 14(4): 816-819. |
20 | ZENG Xi, DONG Yuping, WANG Fang, et al. Fluidized bed two-stage gasification process for clean fuel gas production from herb residue: Fundamentals and demonstration[J]. Energy & Fuels, 2016, 30(9): 7277-7283. |
21 | ZENG Xi, SHAO Ruyi, WANG Fang, et al. Industrial demonstration plant for the gasification of herb residue by fluidized bed two-stage process[J]. Bioresource Technology, 2016, 206: 93-98. |
22 | LIU Lingqin, HUANG Yaji, CAO Jianhua, et al. Experimental study of biomass gasification with oxygen-enriched air in fluidized bed gasifier[J]. The Science of the Total Environment, 2018, 626: 423-433. |
23 | 谭劭康, 黄晓俊, 戴燕 等. 典型阔叶和针叶生物质燃烧萜烯类化合物排放特征. 环境科学学报. 2024, 44(1): 135-145. |
TAN Shaokang, HUANG Xiaojun, DAI Yan,et al. Emission of terpenoids from typical deciduous and coniferous biomass burning[J]. Acta Scientiae Circumstantiae, 2024, 44(01): 135-145. | |
24 | 王金雨, 丁冰雪, 张丽. 稻壳污泥活性炭的制备及其吸附性能测试[J]. 化学工程师. 2022, 36(3): 6-9. |
WANG Jinyu, DING Bingxue, ZHANG Li. Preparation and adsorption properties of activated carbon from rice husk sludge[J]. Chemical Engineer. 2022; 36(3): 6-9. | |
25 | XU Xiaokang, PAN Renming, CHEN Ruiyu. Combustion characteristics, kinetics, and thermodynamics of pine wood through thermogravimetric analysis[J]. Applied Biochemistry and Biotechnology, 2021, 193(5): 1427-1446. |
26 | XU Guangwen, MURAKAMI Takahiro, SUDA Toshiyuki, et al. Efficient gasification of wet biomass residue to produce middle caloric gas[J]. Particuology, 2008, 6(5): 376-382. |
27 | MAITLO Ghulamullah, UNAR Imran Nazir, SHAH Syed Abdul Karim. Thermogravimetric analysis of Pakistani biomasses using nitrogen and oxygen as a carrier gas[J]. Chemical Papers, 2019, 73(3): 601-609. |
28 | WANG Chao, ZHANG Mengjuan, HAN Zhennan, et al. Pilot verification of a two-stage fluidized bed gasifier with a downer pyrolyzer using oxygen-rich air[J]. Fuel, 2022, 307: 121816. |
29 | CHOI Young-Kon, Ji-Ho KO, KIM Joo-Sik. A new type three-stage gasification of dried sewage sludge: Effects of equivalence ratio, weight ratio of activated carbon to feed, and feed rate on gas composition and tar, NH3, and H2S removal and results of approximately 5h gasification[J]. Energy, 2017, 118: 139-146. |
30 | 姜冠伦, 张新妙, 栾金义. 二氧化碳生物转化制甲烷技术研究进展[J]. 微生物学报, 2023, 63(6): 2245-2260. |
JIANG Guanlun, ZHANG Xinmiao, LUAN Jinyi. Research progress in bio-conversion of carbon dioxide to methane[J]. Acta Microbiologica Sinica, 2023, 63(6): 2245-2260. | |
31 | ASSIMA Gnouyaro Palla, PAQUET Antonin, LAVOIE Jean-Michel. Utilization of MSW-derived char for catalytic reforming of tars and light hydrocarbons in the primary syngas produced during wood chips and MSW-RDF air gasification[J]. Waste and Biomass Valorization, 2019, 10(5): 1203-1222. |
32 | PAULAUSKAS Rolandas, Kęstutis ZAKARAUSKAS, Nerijus STRIŪGAS. An intensification of biomass and waste char gasification in a gasifier[J]. Energies, 2021, 14(7): 1983. |
33 | CHUAYBOON Srirat, ABANADES Stéphane, RODAT Sylvain. Insights into the influence of biomass feedstock type, particle size and feeding rate on thermochemical performances of a continuous solar gasification reactor[J]. Renewable Energy, 2019, 130: 360-370. |
[1] | ZHANG Haixia, ZHU Zhiping, ZHANG Siyuan. Research and application progress of circulating fluidized bed gasification with high-alkaline coal [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2254-2278. |
[2] | WU Da, JIANG Shujiao, WEI Qiang, YUAN Shenghua, YANG Gang, ZHANG Cheng. Research progress on efficient utilization technology of residue in energy transition [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2343-2353. |
[3] | WU Qi, BAI Boyang, YIN Yongjie, MA Xiaoxun. Relationship between the structure of macerals of Ordos lignite and its pyrolysis characteristics [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2370-2385. |
[4] | HAN Wei, HAN Hengwen, CHENG Wei, TANG Weijian. Research progress of biomass fuels technology driven by carbon neutrality [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2463-2474. |
[5] | HUANG Kun, XU Ming, WU Xiujuan, PEI Sijia, LIU Dawei, MA Xiaoxun, XU Long. Research progress on preparation and microstructural characteristics regulation of biomass activated carbon [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2475-2493. |
[6] | SHI Liu, HU Zhenzhong, LI Xian, SUN Yiming, TONG Shan, LIU Xianzhe, GUO Li, LIU Hao, PENG Bing, LI Shuo, LUO Guangqian, YAO Hong. Gas-pressurized torrefaction of biomass: A review [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2494-2511. |
[7] | LIU Miao, JIAO Yingying, DING Ling, LI Chengcheng, HE Ying, SUN Liangliang, HAO Qingqing, CHEN Huiyong, LUO Qunxing. Acid-catalyzed dehydration of hexoses to 5-hydroxymethylfurfural: Reaction, separation and process coupling [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2526-2543. |
[8] | YANG Mengru, PENG Qin, CHANG Yulong, QIU Shuxing, ZHANG Jianbo, JIANG Xia. Research progress of carbon emission reduction technology with biochar replacing pulverized coal/coke for blast furnace ironmaking [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 490-500. |
[9] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[10] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[11] | ZHENG Mengqi, WANG Chengye, WANG Yan, WANG Wei, YUAN Shoujun, HU Zhenhu, HE Chunhua, WANG Jie, MEI Hong. Application and prospect of algal-bacterial symbiosis technology in zero liquid discharge of industrial wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4424-4431. |
[12] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
[13] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[14] | WU Fengzhen, LIU Zhiwei, XIE Wenjie, YOU Yating, LAI Rouqiong, CHEN Yandan, LIN Guanfeng, LU Beili. Preparation of biomass derived Fe/N co-doped porous carbon and its application for catalytic degradation of Rhodamine B via peroxymonosulfate activation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3292-3301. |
[15] | WANG Xue, XU Qiyong, ZHANG Chao. Hydrothermal carbonization of the lignocellulosic biomass and application of the hydro-char [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2536-2545. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |