Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (1): 49-59.DOI: 10.16085/j.issn.1000-6613.2023-1472
• Column: Chemical process intensification • Previous Articles Next Articles
WANG Kexu1,2(), ZHANG Xiangping2,3, WANG Hongyan2, BAI Yan1(), WANG Hui2,3()
Received:
2023-08-22
Revised:
2023-11-24
Online:
2024-02-05
Published:
2024-01-20
Contact:
BAI Yan, WANG Hui
王棵旭1,2(), 张香平2,3, 王红岩2, 柏䶮1(), 王慧2,3()
通讯作者:
柏?,王慧
作者简介:
王棵旭(1997—),男,博士研究生,研究方向为电流响应催化剂的设计及催化裂解性能。E-mail:wangkexu@ipe.ac.cn。
基金资助:
CLC Number:
WANG Kexu, ZHANG Xiangping, WANG Hongyan, BAI Yan, WANG Hui. Progress on current-responsive catalysts and their applications in intensifying typical reactions[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 49-59.
王棵旭, 张香平, 王红岩, 柏䶮, 王慧. 电流响应催化剂及其强化典型反应的研究进展[J]. 化工进展, 2024, 43(1): 49-59.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1472
催化剂 | 制备方法 | 电场参数 | 压力 /MPa | 温度 /K | 原料组成 /sccm | 氨生成速率 /μmol·g-1·h-1 | 文献 | ||
---|---|---|---|---|---|---|---|---|---|
电流 /mA | 电压 /kV | 功率 /W | |||||||
Cs/Ru/SrZrO3 | 柠檬酸络合-浸渍法 | 6 | 0.47 | 2.82 | 0.9 | 623 | N2=60 H2=180 | 30099 | [ |
Co/Ce0.5Zr0.5O2 | 柠檬酸络合-浸渍法 | 6 | 0.19 | 1.14 | 0.1 | 721.7 | N2=60 H2=180 | 2128.4 | [ |
Fe/CeO2 | 浸渍法 | 6 | 0.2 | 1.2 | 0.1 | 373 | N2=60 H2=180 | 150 | [ |
Fe/Ce0.4Al0.1Zr0.5O2-δ | 柠檬酸络合-液相还原法 | 6 | 0.41 | 2.46 | 0.1 | 476.2 | N2=60 H2=180 | 1045.5 | [ |
Ru/CeO2 | 浸渍法 | 6 | 0.28 | 1.68 | 0.1 | 378 | N2=60 H2=180 | 266.4 | [ |
Ru/Sr1-x Ba x ZrO3(0≤x≤0.50) | 柠檬酸络合-浸渍法 | 6 | 0.284 | 1.704 | 0.1 | 646.4 | N2=60 H2=180 | 3937.7 | [ |
催化剂 | 制备方法 | 电场参数 | 压力 /MPa | 温度 /K | 原料组成 /sccm | 氨生成速率 /μmol·g-1·h-1 | 文献 | ||
---|---|---|---|---|---|---|---|---|---|
电流 /mA | 电压 /kV | 功率 /W | |||||||
Cs/Ru/SrZrO3 | 柠檬酸络合-浸渍法 | 6 | 0.47 | 2.82 | 0.9 | 623 | N2=60 H2=180 | 30099 | [ |
Co/Ce0.5Zr0.5O2 | 柠檬酸络合-浸渍法 | 6 | 0.19 | 1.14 | 0.1 | 721.7 | N2=60 H2=180 | 2128.4 | [ |
Fe/CeO2 | 浸渍法 | 6 | 0.2 | 1.2 | 0.1 | 373 | N2=60 H2=180 | 150 | [ |
Fe/Ce0.4Al0.1Zr0.5O2-δ | 柠檬酸络合-液相还原法 | 6 | 0.41 | 2.46 | 0.1 | 476.2 | N2=60 H2=180 | 1045.5 | [ |
Ru/CeO2 | 浸渍法 | 6 | 0.28 | 1.68 | 0.1 | 378 | N2=60 H2=180 | 266.4 | [ |
Ru/Sr1-x Ba x ZrO3(0≤x≤0.50) | 柠檬酸络合-浸渍法 | 6 | 0.284 | 1.704 | 0.1 | 646.4 | N2=60 H2=180 | 3937.7 | [ |
催化剂 | 制备方法 | 电场参数 | 温度/K | 原料组成/sccm | 转化率/% | 产物生成速率 /μmol·min-1 | 文献 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
电流/mA | 电压/kV | 功率/W | CO2 | CO | H2 | ||||||
Pd/CeO2 | 浸渍法 | 3 | 0.44 | 1.32 | 523 | CH4/H2O/Ar=12/24/18; GHSV: 22500h-1 | 20.3 | 81.4 | 18.0 | 375.3 | [ |
Ru/CeO2 | 0.92 | 2.78 | 27.5 | 97.4 | 32.4 | 509.3 | [ | ||||
Pt/CeO2 | 0.93 | 2.80 | 13.9 | 62.5 | 4.8 | 263.6 | [ | ||||
Ni/CeO2 | 0.55 | 1.66 | 487 | 14.5 | 67.9 | 5.1 | 281.4 | [ | |||
Pd/Ce0.25Zr0.75O2 | 尿素沉积沉淀法、浸渍法 | 3 | 1.16 | 3.47 | 536 | 41.0 | 147.8 | 62.2 | 761.9 | [ | |
Ru/Ce0.25Zr0.75O2 | 1.15 | 3.46 | 544 | 42.3 | 140.4 | 71.0 | 756.9 | [ | |||
Pt/Ce0.25Zr0.75O2 | 0.94 | 2.83 | 526 | 39.1 | 139.6 | 62.8 | 725.2 | [ | |||
Ni/Ce0.25Zr0.75O2 | 1.18 | 3.54 | 535 | 41.6 | 126.2 | 84.6 | 708.8 | [ | |||
Pd/SrTiO3 | 柠檬酸络合-浸渍法 | 3 | 0.64 | 1.93 | 466 | 13.1 | 30.1 | 31.4 | 225.0 | [ | |
Ru/SrTiO3 | 0.77 | 2.32 | 496 | 22.4 | 88.4 | 23.2 | 431.8 | ||||
Pt/SrTiO3 | 0.66 | 1.97 | 457 | 4.9 | 19.1 | 4.3 | 95.9 | ||||
Ni/SrTiO3 | 0.89 | 2.67 | 499 | 2.9 | 12.2 | 0.6 | 49.0 | ||||
Pt/CeO2(200mg)+ ZrO2(50mg) | 行星式 球磨机混合 | 3 | 0.55 | 1.65 | 475.2 | CH4/H2O/Ar=12/24/18 | 14.0 | 62.8 | 2.3 | 243.3 | [ |
Pt/CeO2(200mg)+ Al2O3(50mg) | 0.76 | 2.28 | 484.3 | 20.4 | 82.7 | 3.7 | 358.9 | ||||
Pt/CeO2(200mg)+ ZrO2(50mg) | 研钵研磨混合 (355~500μm) | 3 | 0.47 | 1.41 | 474.7 | 11.4 | 51.4 | 1.8 | 202.5 | ||
Pt/CeO2(200mg)+ ZrO2(100mg) | 0.66 | 1.98 | 482.8 | 14.6 | 62.3 | 5.2 | 262.9 | ||||
Pt/CeO2 (200mg) + Al2O3 (50mg) | 0.64 | 1.92 | 489.5 | 15.6 | 69.9 | 1.9 | 294.2 | ||||
Pt/CeO2(200mg)+ Al2O3(100mg) | 0.70 | 2.10 | 484.0 | 15.1 | 72.0 | 6.5 | 282.5 | ||||
Pt/CeO2(200mg)+ SiO2(50mg) | 0.59 | 1.77 | 478.8 | 15.2 | 69.4 | 3.8 | 282.2 | ||||
Pd0.9Zn0.1/Ce0.5Zr0.5O2 | 浸渍法 | 3~7 | — | 1.5 | 423 | CH4/H2O/Ar=10/20/70 | 19.6 | TOF-p=31.9s-1 | [ | ||
Pd/Nb2O5 | 9 | 0.144 | 1.30 | 457 | 7.5 | — | — | — | [ | ||
Pd/Ta2O5 | 0.132 | 1.16 | 454 | 6.1 | — | — | — | ||||
Pd/Al-CeO2 | 柠檬酸络合-浸渍法 | 3~9 | — | 0.8 | 473 | CH4/H2O/Ar=12/24/84 | — | r(CO+CO2)= 0.042 mmol/min | [ | ||
Zr0.65Y0.05Ni0.3O2 | 柠檬酸络合法 | — | 1.5 | 473 | 16.3 | r(CO+CO2)=0.113mmol/min | [ |
催化剂 | 制备方法 | 电场参数 | 温度/K | 原料组成/sccm | 转化率/% | 产物生成速率 /μmol·min-1 | 文献 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
电流/mA | 电压/kV | 功率/W | CO2 | CO | H2 | ||||||
Pd/CeO2 | 浸渍法 | 3 | 0.44 | 1.32 | 523 | CH4/H2O/Ar=12/24/18; GHSV: 22500h-1 | 20.3 | 81.4 | 18.0 | 375.3 | [ |
Ru/CeO2 | 0.92 | 2.78 | 27.5 | 97.4 | 32.4 | 509.3 | [ | ||||
Pt/CeO2 | 0.93 | 2.80 | 13.9 | 62.5 | 4.8 | 263.6 | [ | ||||
Ni/CeO2 | 0.55 | 1.66 | 487 | 14.5 | 67.9 | 5.1 | 281.4 | [ | |||
Pd/Ce0.25Zr0.75O2 | 尿素沉积沉淀法、浸渍法 | 3 | 1.16 | 3.47 | 536 | 41.0 | 147.8 | 62.2 | 761.9 | [ | |
Ru/Ce0.25Zr0.75O2 | 1.15 | 3.46 | 544 | 42.3 | 140.4 | 71.0 | 756.9 | [ | |||
Pt/Ce0.25Zr0.75O2 | 0.94 | 2.83 | 526 | 39.1 | 139.6 | 62.8 | 725.2 | [ | |||
Ni/Ce0.25Zr0.75O2 | 1.18 | 3.54 | 535 | 41.6 | 126.2 | 84.6 | 708.8 | [ | |||
Pd/SrTiO3 | 柠檬酸络合-浸渍法 | 3 | 0.64 | 1.93 | 466 | 13.1 | 30.1 | 31.4 | 225.0 | [ | |
Ru/SrTiO3 | 0.77 | 2.32 | 496 | 22.4 | 88.4 | 23.2 | 431.8 | ||||
Pt/SrTiO3 | 0.66 | 1.97 | 457 | 4.9 | 19.1 | 4.3 | 95.9 | ||||
Ni/SrTiO3 | 0.89 | 2.67 | 499 | 2.9 | 12.2 | 0.6 | 49.0 | ||||
Pt/CeO2(200mg)+ ZrO2(50mg) | 行星式 球磨机混合 | 3 | 0.55 | 1.65 | 475.2 | CH4/H2O/Ar=12/24/18 | 14.0 | 62.8 | 2.3 | 243.3 | [ |
Pt/CeO2(200mg)+ Al2O3(50mg) | 0.76 | 2.28 | 484.3 | 20.4 | 82.7 | 3.7 | 358.9 | ||||
Pt/CeO2(200mg)+ ZrO2(50mg) | 研钵研磨混合 (355~500μm) | 3 | 0.47 | 1.41 | 474.7 | 11.4 | 51.4 | 1.8 | 202.5 | ||
Pt/CeO2(200mg)+ ZrO2(100mg) | 0.66 | 1.98 | 482.8 | 14.6 | 62.3 | 5.2 | 262.9 | ||||
Pt/CeO2 (200mg) + Al2O3 (50mg) | 0.64 | 1.92 | 489.5 | 15.6 | 69.9 | 1.9 | 294.2 | ||||
Pt/CeO2(200mg)+ Al2O3(100mg) | 0.70 | 2.10 | 484.0 | 15.1 | 72.0 | 6.5 | 282.5 | ||||
Pt/CeO2(200mg)+ SiO2(50mg) | 0.59 | 1.77 | 478.8 | 15.2 | 69.4 | 3.8 | 282.2 | ||||
Pd0.9Zn0.1/Ce0.5Zr0.5O2 | 浸渍法 | 3~7 | — | 1.5 | 423 | CH4/H2O/Ar=10/20/70 | 19.6 | TOF-p=31.9s-1 | [ | ||
Pd/Nb2O5 | 9 | 0.144 | 1.30 | 457 | 7.5 | — | — | — | [ | ||
Pd/Ta2O5 | 0.132 | 1.16 | 454 | 6.1 | — | — | — | ||||
Pd/Al-CeO2 | 柠檬酸络合-浸渍法 | 3~9 | — | 0.8 | 473 | CH4/H2O/Ar=12/24/84 | — | r(CO+CO2)= 0.042 mmol/min | [ | ||
Zr0.65Y0.05Ni0.3O2 | 柠檬酸络合法 | — | 1.5 | 473 | 16.3 | r(CO+CO2)=0.113mmol/min | [ |
催化剂 | 制备方法 | 电场参数 | 温度/K | 原料组成/sccm | 转化率/% | 产率/% | 参考文献 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
电流/mA | 电压/kV | 功率/W | CH4 | CO2 | CO | H2 | H2/CO | |||||
Pt/CeO2 | 浸渍法 | 20 | 0.14 | 2.81 | 453 | CH4/CO2/Ar=20/20/40 | 15.1 | 16.4 | — | — | 0.76 | [ |
Ni/La-ZrO2 | 柠檬酸络合-浸渍法 | 3 | 1.23 | 3.7 | 555 | CH4/CO2/Ar=25/25/50;W/F①=1.6g·h/mol | 22.8 | 24.8 | 22.8 | — | 0.83 | [ |
Ni0.8Fe0.2/CeO2 | 尿素沉积 沉淀法 | 10 | — | — | 473 | CH4/CO2/Ar=10/10/10 | 6.0 | 6.5 | 5.7 | 6.0 | 0.82 | [ |
Ni-Fe/AC | 浸渍法 | 9 | 1 | 9 | 673 | CH4∶CO2∶N2=1∶1∶2; GHSV:800h-1 | 19.53 | 29.36 | — | — | 0.67 | [ |
催化剂 | 制备方法 | 电场参数 | 温度/K | 原料组成/sccm | 转化率/% | 产率/% | 参考文献 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
电流/mA | 电压/kV | 功率/W | CH4 | CO2 | CO | H2 | H2/CO | |||||
Pt/CeO2 | 浸渍法 | 20 | 0.14 | 2.81 | 453 | CH4/CO2/Ar=20/20/40 | 15.1 | 16.4 | — | — | 0.76 | [ |
Ni/La-ZrO2 | 柠檬酸络合-浸渍法 | 3 | 1.23 | 3.7 | 555 | CH4/CO2/Ar=25/25/50;W/F①=1.6g·h/mol | 22.8 | 24.8 | 22.8 | — | 0.83 | [ |
Ni0.8Fe0.2/CeO2 | 尿素沉积 沉淀法 | 10 | — | — | 473 | CH4/CO2/Ar=10/10/10 | 6.0 | 6.5 | 5.7 | 6.0 | 0.82 | [ |
Ni-Fe/AC | 浸渍法 | 9 | 1 | 9 | 673 | CH4∶CO2∶N2=1∶1∶2; GHSV:800h-1 | 19.53 | 29.36 | — | — | 0.67 | [ |
催化剂 | 制备方法 | 电场参数 | 温度 /K | 原料组成/sccm | 转化率/% | C2/% | 参考 文献 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
电流 /mA | 电压 /kV | 功率 /W | CH4 | O2 | 选择性 | 产率 | |||||
Gd2O3 | — | 3 | 0.8 | 2.4 | 423 | CH4/O2/Ar=25/5/100; W/F=3.2g·h/mol | 10.3 | 46.5 | (C2H6+C2H4):39.2; C2H2:0.8 | — | [ |
Sr-La2O3(Sr/La=1/20) | 柠檬酸 络合法 | 3 | 0.9 | 2.7 | 423 | 8.9 | 51.3 | C2H6:33.5 C2H4:15.5 C2H2:0 | — | [ | |
La-ZrO2 | 3 | 2 | 6 | 423 | CH4/CO2/Ar=25/25/50 W/F=1.67g·h/mol; WHSV:18h-1 | 3.2 | CO2:4.1 | (C2H6+C2H4):31.2 | — | [ | |
La0.7Ca0.3AlO3-δ | 3 | 1.2 | 3.6 | 588 | CH4/O2/Ar=25/5/70 | 17.4 | 77.5 | C2H6:15.8 C2H4:13.3 C2H2:0.2 | 5.1 | [ | |
La0.7Ca0.3AlO3-δ | 3 | 2.5 | 7.5 | 423 | CH4/CO2/Ar=25/25/50 | 10.4 | CO2:14.2 | 19.6 | 2.0 | [ | |
Ce2(WO4)3 | 3 | 0.7 | 2.1 | 659 | CH4/O2/Ar=25/15/60; W/F(CH4):1.5g·h/mol | 9.7 | 11.6 | (C2H6+C2H4+C2H2):41.2 | 4.0 | [ | |
Ce2(WO4)3/CeO2 | 浸渍法 | 3 | 0.8 | 2.5 | 649 | CH4/O2/Ar=25/15/60; W/F(CH4):1.6g·h/mol | 13.6 | — | (C2H6+C2H4+C2H2):39.0 | — | [ |
(TBA)3PW12O40/CeO2 | Copaux法-浸渍法 | 3 | 1.3 | 3.9 | 689 | 14.9 | 20.6 | C2H6:13.8 C2H4:18.4 C2H2:11.2 | 6.5 | [ | |
CePO4 | 水热法 | 7 | 0.8 | 5.6 | 542 | CH4/O2/Ar=15/12/33; W/F(CH4):2.49g·h/mol | 62 | 66 | (C2H6+C2H4+C2H2):29 | 18 | [ |
TiO2/ZSM-5 | 水热法-机械化学法 | 8 | 2.4 | 19.2 | 432 | CH4/O2/Ar=25/15/60; W/F(CH4):1.6g·h/mol | 18.4 | — | C2H6:8.5 C2H4:15.7 C2H2:6.5 C3H6:1.7 | 5.6 | [ |
催化剂 | 制备方法 | 电场参数 | 温度 /K | 原料组成/sccm | 转化率/% | C2/% | 参考 文献 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
电流 /mA | 电压 /kV | 功率 /W | CH4 | O2 | 选择性 | 产率 | |||||
Gd2O3 | — | 3 | 0.8 | 2.4 | 423 | CH4/O2/Ar=25/5/100; W/F=3.2g·h/mol | 10.3 | 46.5 | (C2H6+C2H4):39.2; C2H2:0.8 | — | [ |
Sr-La2O3(Sr/La=1/20) | 柠檬酸 络合法 | 3 | 0.9 | 2.7 | 423 | 8.9 | 51.3 | C2H6:33.5 C2H4:15.5 C2H2:0 | — | [ | |
La-ZrO2 | 3 | 2 | 6 | 423 | CH4/CO2/Ar=25/25/50 W/F=1.67g·h/mol; WHSV:18h-1 | 3.2 | CO2:4.1 | (C2H6+C2H4):31.2 | — | [ | |
La0.7Ca0.3AlO3-δ | 3 | 1.2 | 3.6 | 588 | CH4/O2/Ar=25/5/70 | 17.4 | 77.5 | C2H6:15.8 C2H4:13.3 C2H2:0.2 | 5.1 | [ | |
La0.7Ca0.3AlO3-δ | 3 | 2.5 | 7.5 | 423 | CH4/CO2/Ar=25/25/50 | 10.4 | CO2:14.2 | 19.6 | 2.0 | [ | |
Ce2(WO4)3 | 3 | 0.7 | 2.1 | 659 | CH4/O2/Ar=25/15/60; W/F(CH4):1.5g·h/mol | 9.7 | 11.6 | (C2H6+C2H4+C2H2):41.2 | 4.0 | [ | |
Ce2(WO4)3/CeO2 | 浸渍法 | 3 | 0.8 | 2.5 | 649 | CH4/O2/Ar=25/15/60; W/F(CH4):1.6g·h/mol | 13.6 | — | (C2H6+C2H4+C2H2):39.0 | — | [ |
(TBA)3PW12O40/CeO2 | Copaux法-浸渍法 | 3 | 1.3 | 3.9 | 689 | 14.9 | 20.6 | C2H6:13.8 C2H4:18.4 C2H2:11.2 | 6.5 | [ | |
CePO4 | 水热法 | 7 | 0.8 | 5.6 | 542 | CH4/O2/Ar=15/12/33; W/F(CH4):2.49g·h/mol | 62 | 66 | (C2H6+C2H4+C2H2):29 | 18 | [ |
TiO2/ZSM-5 | 水热法-机械化学法 | 8 | 2.4 | 19.2 | 432 | CH4/O2/Ar=25/15/60; W/F(CH4):1.6g·h/mol | 18.4 | — | C2H6:8.5 C2H4:15.7 C2H2:6.5 C3H6:1.7 | 5.6 | [ |
催化剂 | 制备方法 | 电场参数 | 温度/K | 原料组成/sccm | C3H8 | C3H6 | 参考文献 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
电流/mA | 电压/kV | 功率/W | 转化率/% | 选择性/% | 产率/% | ||||||
Pt-In/TiO2 | 浸渍法 | 60 | 0.05 | 3 | 523 | C3H8/He=10/10 | 5 | 100 | 10.2 | [ | |
Pt-In/Sm-TiO2 | 水热法-浸渍法 | 50 | 0.107 | 5.35 | 573 | 19.7 | 97.7 | 19.3 | [ |
催化剂 | 制备方法 | 电场参数 | 温度/K | 原料组成/sccm | C3H8 | C3H6 | 参考文献 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
电流/mA | 电压/kV | 功率/W | 转化率/% | 选择性/% | 产率/% | ||||||
Pt-In/TiO2 | 浸渍法 | 60 | 0.05 | 3 | 523 | C3H8/He=10/10 | 5 | 100 | 10.2 | [ | |
Pt-In/Sm-TiO2 | 水热法-浸渍法 | 50 | 0.107 | 5.35 | 573 | 19.7 | 97.7 | 19.3 | [ |
1 | WANG Jun, USMAN Muhammad, SAQIB Najia, et al. Asymmetric environmental performance under economic complexity, globalization and energy consumption: Evidence from the world’s largest economically complex economy[J]. Energy, 2023, 279: 128050. |
2 | Venkata MOHAN S, KATAKOJWALA Ranaprathap. The circular chemistry conceptual framework: A way forward to sustainability in industry 4.0[J]. Current Opinion in Green and Sustainable Chemistry, 2021, 28: 100434. |
3 | CHEN Jianfeng. Green chemical engineering for a better life[J]. Engineering, 2017, 3(3): 279. |
4 | YANG Jing, LI Lingyue, LIANG Yuhan, et al. Sustainability performance of global chemical industry based on green total factor productivity[J]. Science of the Total Environment, 2022, 830: 154787. |
5 | 黄仲涛, 李雪辉, 王乐夫. 21世纪化工发展趋势[J]. 化工进展, 2001, 20(4): 1-4, 11. |
HUANG Zhongtao, LI Xuehui, WANG Lefu. The development trend of chemical engineering in the 21st century[J]. Chemical Industry and Engineering Progress, 2001, 20(4): 1-4, 11. | |
6 | 杨贺勤, 刘志成, 谢在库. 绿色化工技术研究新进展[J]. 化工进展, 2016, 35(6): 1575-1586. |
YANG Heqin, LIU Zhicheng, XIE Zaiku. Review of recent development of green chemical technologies[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1575-1586. | |
7 | JENNINGS Neil, RAO Mala. Towards a carbon neutral NHS[J]. BMJ, 2020: m3884. |
8 | KIM Jin-Kuk. Studies on the conceptual design of energy recovery and utility systems for electrified chemical processes[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112718. |
9 | 张香平, 海彬. 基于智慧能源系统的低碳化工过程[J]. 中国科学基金, 2023, 37(2): 238-245. |
ZHANG Xiangping, Bin HAI. Low-carbon chemical processes based on smart energy systems[J]. Bulletin of National Natural Science. Foundation of China, 2023, 37(2): 238-245. | |
10 | BIAN Wenjuan, WU Wei, WANG Baoming, et al. Revitalizing interface in protonic ceramic cells by acid etch[J]. Nature, 2022, 604(7906): 479-485. |
11 | TANG Duoyue, LU Guilong, SHEN Zewen, et al. A review on photo-, electro- and photoelectro-catalytic strategies for selective oxidation of alcohols[J]. Journal of Energy Chemistry, 2023, 77: 80-118. |
12 | YUDAI Hisai, MA Quanbao, THOMAS Qureishy, et al. Enhanced activity of catalysts on substrates with surface protonic current in an electrical field: A review[J]. Chemical Communications, 2021, 57(47): 5737-5749. |
13 | TANG Rui, HUANG Jun. Enclosing the nitrogen cycle: Ammonia synthesis by NO x reduction[J]. Current Opinion in Green and Sustainable Chemistry, 2022, 38: 100681. |
14 | YE Dongpei, EDMAN Tsang Shik Chi. Prospects and challenges of green ammonia synthesis[J]. Nature Synthesis, 2023, 2: 612-623. |
15 | BEZDEK Máté J, CHIRIK Paul J. A fresh approach to synthesizing ammonia from air and water[J]. Nature, 2019, 568(7753): 464-466. |
16 | PRASIDHA Willie, WIDYATAMA Arif, AZIZ Muhammad. Energy-saving and environmentally-benign integrated ammonia production system[J]. Energy, 2021, 235: 121400. |
17 | Cheema IZZAT-IQBAL, ULRIKE Krewer. Operating envelope of Haber-Bosch process design for power-to-ammonia[J]. RSC Advances, 2018, 8(61): 34926-34936. |
18 | WANG Changlong, WALSH Stuart D C, LONGDEN Thomas, et al. Optimising renewable generation configurations of off-grid green ammonia production systems considering Haber-Bosch flexibility[J]. Energy Conversion and Management, 2023, 280: 116790. |
19 | 刘福建, 郑勇, 曹彦宁, 等. 高炉煤气/转炉煤气低碳高效合成氨工艺流程[J]. 过程工程学报, 2023, 23(3): 350-358. |
LIU Fujian, ZHENG Yong, CAO Yanning, et al. Low-carbon and high-efficiency ammonia synthesis process from blast furnace gas/converter gas[J]. The Chinese Journal of Process Engineering, 2023, 23(3): 350-358. | |
20 | 刘化章. 合成氨工业: 过去、现在和未来——合成氨工业创立100周年回顾、启迪和挑战[J]. 化工进展, 2013, 32(9): 1995-2005. |
LIU Huazhang. Ammonia synthesis industry: Past, present and future—Retrospect, enlightenment and challenge from 100 years of ammonia synthesis industry[J]. Chemical Industry and Engineering Progress, 2013, 32(9): 1995-2005. | |
21 | McPherson IAN-JAMES, Sudmeier TIM, JOSHUA Fellowes, et al. Materials for electrochemical ammonia synthesis[J]. Dalton Transactions, 2019, 48(5): 1562-1568. |
22 | CHEN Aling, XIA Baoyu. Ambient dinitrogen electrocatalytic reduction for ammonia synthesis[J]. Journal of Materials Chemistry A, 2019, 7(41): 23416-23431. |
23 | KIBSGAARD Jakob, NØRSKOV Jens K, CHORKENDORFF Ib. The difficulty of proving electrochemical ammonia synthesis[J]. ACS Energy Letters, 2019, 4(12): 2986-2988. |
24 | KYRIAKOU Vasileios, GARAGOUNIS Ioannis, VOURROS Anastasios, et al. An electrochemical Haber-Bosch process[J]. Joule, 2020, 4(1): 142-158. |
25 | SWEARER Dayne F, KNOWLES Nicola R, EVERITT Henry O, et al. Light-driven chemical looping for ammonia synthesis[J]. ACS Energy Letters, 2019, 4(7): 1505-1512. |
26 | ZHANG Guoqiang, LI Yongliang, HE Chuanxin, et al. Recent progress in 2D catalysts for photocatalytic and electrocatalytic artificial nitrogen reduction to ammonia[J]. Advanced Energy Materials, 2021, 11(11): 2003294. |
27 | TAN Jiangdan, REN Hanjie, ZHAO Zhanfeng, et al. Ca2+ doped metal organic frameworks for enhanced photocatalytic ammonia synthesis[J]. Chemical Engineering Journal, 2023, 466: 143259. |
28 | LIU Sisi, WANG Mengfan, JI Haoqing, et al. Solvent-in-gas system for promoted photocatalytic ammonia synthesis on porous framework materials[J]. Advanced Materials, 2023, 35(14): 2211730. |
29 | FOSTER Shelby L, BAKOVIC Sergio I Perez, DUDA Royce D, et al. Catalysts for nitrogen reduction to ammonia[J]. Nature Catalysis, 2018, 1(7): 490-500. |
30 | SUN Wuji, LI Lanxin, ZHANG Haoyu, et al. A bioinspired iron-centered electrocatalyst for selective catalytic reduction of nitrate to ammonia[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(18): 5958-5965. |
31 | WANG Yaolin, MICHAEL Craven, YU Xiaotong, et al. Plasma-enhanced catalytic synthesis of ammonia over a Ni/Al2O3 catalyst at near-room temperature: Insights into the importance of the catalyst surface on the reaction mechanism[J]. ACS Catalysis, 2019, 9(12): 10780-10793. |
32 | Jose OSORIO-TEJADA, TRAN Nam N, HESSEL Volker. Techno-environmental assessment of small-scale haber-bosch and plasma-assisted ammonia supply chains[J]. Science of the Total Environment, 2022, 826: 154162. |
33 | ZENG Xin, ZHANG Shuai, HU Xiucui, et al. Recent advances in plasma-enabled ammonia synthesis: State-of-the-art, challenges, and outlook[J]. Faraday Discussions, 2023, 243: 473-491. |
34 | SEKINE Yasushi. Low temperature ammonia synthesis by surface protonics over metal supported catalysts[J]. Faraday Discussions, 2023, 243: 179-197. |
35 | MANABE R, NAKATSUBO H, GONDO A, et al. Electrocatalytic synthesis of ammonia by surface proton hopping[J]. Chemical Science, 2017, 8(8): 5434-5439. |
36 | MURAKAMI Kota, MANABE Ryo, NAKATSUBO Hideaki, et al. Elucidation of the role of electric field on low temperature ammonia synthesis using isotopes[J]. Catalysis Today, 2018, 303: 271-275. |
37 | Gondo AMI, Manabe RYO, RYUYA Sakai, et al. Ammonia synthesis over cocatalyst in an electric field[J]. Catalysis Letters, 2018, 148(7): 1929-1938. |
38 | MURAKAMI Kota, TANAKA Yuta, SAKAI Ryuya, et al. The important role of N2H formation energy for low-temperature ammonia synthesis in an electric field[J]. Catalysis Today, 2020, 351: 119-124. |
39 | SAKAI Ryuya, MURAKAMI Kota, MIZUTANI Yuta, et al. Agglomeration suppression of a Fe-supported catalyst and its utilization for low-temperature ammonia synthesis in an electric field[J]. ACS Omega, 2020, 5(12): 6846-6851. |
40 | KOTA Murakami, YUTA Tanaka, RYUYA Sakai, et al. Key factor for the anti-Arrhenius low-temperature heterogeneous catalysis induced by H+ migration: H+ coverage over support[J]. Chemical Communications, 2020, 56(23): 3365-3368. |
41 | YUTA Tanaka, KOTA Murakami, Doi SAE, et al. Effects of a-site composition of perovskite (Sr1- x Ba x ZrO3) oxides on H atom adsorption, migration, and reaction[J]. RSC Advances, 2021, 11(13): 7621-7626. |
42 | Wioletta RARÓG-PILECKA, Elżbieta MIŚKIEWICZ, Leszek KĘPIŃSKI, et al. Ammonia synthesis over barium-promoted cobalt catalysts supported on graphitised carbon[J]. Journal of Catalysis, 2007, 249(1): 24-33. |
43 | TAKISE Kent, MANABE Shota, MURAGUCHI Keisuke, et al. Anchoring effect and oxygen redox property of Co/La0.7Sr0.3AlO3- δ perovskite catalyst on toluene steam reforming reaction[J]. Applied Catalysis A: General, 2017, 538: 181-189. |
44 | ISHIKAWA Atsushi, Toshiki DOI, NAKAI Hiromi. Catalytic performance of Ru, Os, and Rh nanoparticles for ammonia synthesis: A density functional theory analysis[J]. Journal of Catalysis, 2018, 357: 213-222. |
45 | PARRA David, VALVERDE Luis, Javier PINO F, et al. A review on the role, cost and value of hydrogen energy systems for deep decarbonisation[J]. Renewable and Sustainable Energy Reviews, 2019, 101: 279-294. |
46 | BIAN Zhoufeng, WANG Zhigang, JIANG Bo, et al. A review on perovskite catalysts for reforming of methane to hydrogen production[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110291. |
47 | OSHIMA Kazumasa, SHINAGAWA Tatsuya, SEKINE Yasushi. Methane conversion assisted by plasma or electric field[J]. Journal of the Japan Petroleum Institute, 2013, 56(1): 11-21. |
48 | TORIMOTO Maki, MURAKAMI Kota, SEKINE Yasushi. Low-temperature heterogeneous catalytic reaction by surface protonics[J]. Bulletin of the Chemical Society of Japan, 2019, 92(10): 1785-1792. |
49 | SEKINE Yasushi, Manabe RYO. Reaction mechanism of low-temperature catalysis by surface protonics in an electric field[J]. Faraday Discussions, 2021, 229: 341-358. |
50 | SEKINE Yasushi, HARAGUCHI Masayuki, TOMIOKA Masahiko, et al. Low-temperature hydrogen production by highly efficient catalytic system assisted by an electric field[J]. The Journal of Physical Chemistry A, 2010, 114(11): 3824-3833. |
51 | SEKINE Yasushi, HARAGUCHI Masayuki, MATSUKATA Masahiko, et al. Low temperature steam reforming of methane over metal catalyst supported on Ce x Zr1- x O2 in an electric field[J]. Catalysis Today, 2011, 171(1): 116-125. |
52 | MANABE R, OKADA S, INAGAKI R, et al. Surface protonics promotes catalysis[J]. Scientific Reports, 2016, 6: 38007. |
53 | OKADA S, MANABE R, INAGAKI R, et al. Methane dissociative adsorption in catalytic steam reforming of methane over Pd/CeO2 in an electric field[J]. Catalysis Today, 2018, 307: 272-276. |
54 | OSHIMA Kazumasa, SHINAGAWA Tatsuya, HARAGUCHI Masayuki, et al. Low temperature hydrogen production by catalytic steam reforming of methane in an electric field[J]. International Journal of Hydrogen Energy, 2013, 38(7): 3003-3011. |
55 | MAKI Torimoto, SHUHEI Ogo, DANNY Harjowinoto, et al. Enhanced methane activation on diluted metal-metal ensembles under an electric field: Breakthrough in alloy catalysis[J]. Chemical Communications, 2019, 55(47): 6693-6695. |
56 | MAKI Torimoto, SHUHEI Ogo, YUDAI Hisai, et al. Support effects on catalysis of low temperature methane steam reforming[J]. RSC Advances, 2020, 10(44): 26418-26424. |
57 | TAKAHASHI Ayako, INAGAKI Reona, TORIMOTO Maki, et al. Effects of metal cation doping in CeO2 support on catalytic methane steam reforming at low temperature in an electric field[J]. RSC Advances, 2020, 10(25): 14487-14492. |
58 | NAGAKAWA Kaho, SAMPEI Hiroshi, TAKAHASHI Ayako, et al. Evaluating the effects of OH-groups on the Ni surface on low-temperature steam reforming in an electric field[J]. RSC Advances, 2022, 12(39): 25565-25569. |
59 | 王莉, 敖先权, 王诗瀚. 甲烷与二氧化碳催化重整制取合成气催化剂[J]. 化学进展, 2012, 24(9): 1696-1706. |
WANG Li, AO Xianquan, WANG Shihan. Catalysts for carbon dioxide catalytic reforming of methane to synthesis gas[J]. Progress in Chemistry, 2012, 24(9): 1696-1706. | |
60 | LAVOIE Jean-Michel. Review on dry reforming of methane, a potentially more environmentally-friendly approach to the increasing natural gas exploitation[J]. Frontiers in Chemistry, 2014, 2: 81. |
61 | OWGI A H K, JALIL A A, AZIZ M A A, et al. The preferable Ni quantity to boost the performance of FSA for dry reforming of methane[J]. Fuel, 2023, 332: 126124. |
62 | ABDULGHANI Abdullah J AL, PARK Jung-Hyun, KOZLOV Sergey M, et al. Methane dry reforming on supported cobalt nanoparticles promoted by boron[J]. Journal of Catalysis, 2020, 392: 126-134. |
63 | Sonali DAS, BHATTAR Srikar, LIU Lina, et al. Effect of partial Fe substitution in La0.9Sr0.1NiO3 perovskite-derived catalysts on the reaction mechanism of methane dry reforming[J]. ACS Catalysis, 2020, 10(21): 12466-12486. |
64 | SINGHA R K, SHUKLA A, SANDUPATLA A, et al. Synthesis and catalytic activity of a Pd doped Ni-MgO catalyst for dry reforming of methane[J]. Journal of Materials Chemistry A, 2017, 5(30): 15688-15699. |
65 | 卢君颖, 郭禹, 刘其瑞, 等. 甲烷二氧化碳重整制合成气钴基催化剂[J]. 化学进展, 2017, 29(12): 1471-1479. |
LU Junying, GUO Yu, LIU Qirui, et al. Co-based catalysts for carbon dioxide reforming of methane to synthesis gas[J]. Progress in Chemistry, 2017, 29(12): 1471-1479. | |
66 | 姜洪涛, 华炜, 计建炳. 甲烷重整制合成气镍催化剂积炭研究[J]. 化学进展, 2013, 25(5): 859-868. |
JIANG Hongtao, HUA Wei, JI Jianbing. Study of coke deposition on Ni catalysts for methane reforming to syngas[J]. Progress in Chemistry, 2013, 25(5): 859-868. | |
67 | YABE Tomohiro, SEKINE Yasushi. Methane conversion using carbon dioxide as an oxidizing agent: A review[J]. Fuel Processing Technology, 2018, 181: 187-198. |
68 | MAKI Torimoto, SEKINE Yasushi. Effects of alloying for steam or dry reforming of methane: A review of recent studies[J]. Catalysis Science & Technology, 2022, 12(11): 3387-3411. |
69 | ZHANG Ziang, LI Caiting, DU Xueyu, et al. Deciphering exogenous electric field promoting catalysis from the perspectives of electric energy and electron transfer: A review[J]. Chemical Engineering Journal, 2023, 452: 139098. |
70 | NAOYA Nakano, MAKI Torimoto, HIROSHI Sampei, et al. Elucidation of the reaction mechanism on dry reforming of methane in an electric field by in situ DRIFTs[J]. RSC Advances, 2022, 12(15): 9036-9043. |
71 | YABE Tomohiro, MITARAI Kenta, OSHIMA Kazumasa, et al. Low-temperature dry reforming of methane to produce syngas in an electric field over La-doped Ni/ZrO2 catalysts[J]. Fuel Processing Technology, 2017, 158: 96-103. |
72 | YABE Tomohiro, YAMADA Kensei, MURAKAMI Kota, et al. Role of electric field and surface protonics on low-temperature catalytic dry reforming of methane[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5690-5697. |
73 | AYAKA Motomura, YUKI Nakaya, CLARENCE Sampson, et al. Synergistic effects of Ni-Fe alloy catalysts on dry reforming of methane at low temperatures in an electric field[J]. RSC Advances, 2022, 12(44): 28359-28363. |
74 | MOTOMURA Ayaka, TORIMOTO Maki, SAMPSON Clarence, et al. In-situ analysis of alloy effects in low-temperature methane dry reforming in an electric field[J]. Chemistry Letters, 2023, 52(4): 259-262. |
75 | SONG Zhanlong, ZHANG Jianheng, CHEN Kezhen, et al. Research on CH4-CO2 reforming over Ni-Fe catalyst enhanced by electric field[J]. Journal of CO2 Utilization, 2022, 65: 102255. |
76 | 井强山, 方林霞, 楼辉, 等. 甲烷临氧催化转化制合成气研究进展[J]. 化工进展, 2008, 27(4): 503-507. |
JING Qiangshan, FANG Linxia, LOU Hui, et al. Progress of catalytic conversion of methane to syngas in the presence of oxygen[J]. Chemical Industry and Engineering Progress, 2008, 27(4): 503-507. | |
77 | IZQUIERDO U, BARRIO V L, REQUIES J, et al. Tri-reforming: A new biogas process for synthesis gas and hydrogen production[J]. International Journal of Hydrogen Energy, 2013, 38(18): 7623-7631. |
78 | YABE Tomohiro, YAMADA Kensei, OGURI Task, et al. Ni-Mg supported catalysts on low-temperature electrocatalytic tri-reforming of methane with suppressed oxidation[J]. ACS Catalysis, 2018, 8(12): 11470-11477. |
79 | LIU Jiao, YUE Junrong, LV Mei, et al. From fundamentals to chemical engineering on oxidative coupling of methane for ethylene production: A review[J]. Carbon Resources Conversion, 2022, 5(1): 1-14. |
80 | SONG Hui, MENG Xianguang, WANG Zhoujun, et al. Solar-energy-mediated methane conversion[J]. Joule, 2019, 3(7): 1606-1636. |
81 | 王保伟, 许根慧, 刘昌俊, 等. 电促进甲烷偶联合成碳二烃研究进展[J]. 化工进展, 2001, 20(4): 14-18. |
WANG Baowei, XU Genhui, LIU Changjun, et al. Conversion of methane coupling to C2 hydrocarbon by electric promotion[J]. Chemical Industry and Engineering Progress, 2001, 20(4): 14-18. | |
82 | WANG Pengwei, ZHAO Guofeng, WANG Yu, et al. MnTiO3-driven low-temperature oxidative coupling of methane over TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst[J]. Science Advances, 2017, 3: 1603180. |
83 | Shuhei OGO, SEKINE Yasushi. Catalytic reaction assisted by plasma or electric field[J]. The Chemical Record, 2017, 17(8): 726-738. |
84 | OSHIMA K, TANAKA K, YABE T, et al. Catalytic oxidative coupling of methane with a dark current in an electric field at low external temperature[J]. International Journal of Plasma Environmental Science and Technology, 2012, 6(3): 266-271. |
85 | TANAKA Keisuke, SEKINE Yasushi, OSHIMA Kazumasa, et al. Catalytic oxidative coupling of methane assisted by electric power over a semiconductor catalyst[J]. Chemistry Letters, 2012, 41(4): 351-353. |
86 | OSHIMA Kazumasa, TANAKA Keisuke, YABE Tomohiro, et al. Oxidative coupling of methane using carbon dioxide in an electric field over La-ZrO2 catalyst at low external temperature[J]. Fuel, 2013, 107: 879-881. |
87 | SATO Ayaka, Shuhei OGO, TAKENO Yuna, et al. Electric field and mobile oxygen promote low-temperature oxidative coupling of methane over La1- x Ca x AlO3- δ perovskite catalysts[J]. ACS Omega, 2019, 4(6): 10438-10443. |
88 | YABE Tomohiro, KAMITE Yukiko, SUGIURA Kei, et al. Low-temperature oxidative coupling of methane in an electric field using carbon dioxide over Ca-doped LaAlO3 perovskite oxide catalysts[J]. Journal of CO2 Utilization, 2017, 20: 156-162. |
89 | Shuhei OGO, NAKATSUBO Hideaki, IWASAKI Kousei, et al. Electron-hopping brings lattice strain and high catalytic activity in the low-temperature oxidative coupling of methane in an electric field[J]. The Journal of Physical Chemistry C, 2018, 122(4): 2089-2096. |
90 | SUGIURA Kei, Shuhei OGO, IWASAKI Kousei, et al. Low-temperature catalytic oxidative coupling of methane in an electric field over a Ce-W-O catalyst system[J]. Scientific Reports, 2016, 6: 25154. |
91 | Shuhei OGO, IWASAKI Kousei, SUGIURA Kei, et al. Catalytic oxidative conversion of methane and ethane over polyoxometalate-derived catalysts in electric field at low temperature[J]. Catalysis Today, 2018, 299: 80-85. |
92 | AYAKA Sato, Shuhei OGO, KEIGO Kamata, et al. Ambient-temperature oxidative coupling of methane in an electric field by a cerium phosphate nanorod catalyst[J]. Chemical Communications, 2019, 55(28): 4019-4022. |
93 | HAN Qiao, TANAKA Atsuhiro, MATSUMOTO Masayuki, et al. Conversion of methane to C2 and C3 hydrocarbons over TiO2/ZSM-5 core-shell particles in an electric field[J]. RSC Advances, 2019, 9(60): 34793-34803. |
94 | LUNSFORD Jack H. The catalytic oxidative coupling of methane[J]. Angewandte Chemie International Edition in English, 1995, 34(9): 970-980. |
95 | BORCHERT Holger, BAERNS Manfred. The effect of oxygen-anion conductivity of metal-oxide doped lanthanum oxide catalysts on hydrocarbon selectivity in the oxidative coupling of methane[J]. Journal of Catalysis, 1997, 168(2): 315-320. |
96 | ZHAO Dan, TIAN Xinxin, DORONKIN Dmitry E, et al. In situ formation of ZnO x species for efficient propane dehydrogenation[J]. Nature, 2021, 599(7884): 234-238. |
97 | FRICKE Charles, RAJBANSHI Biplab, WALKER Eric A, et al. Propane dehydrogenation on platinum catalysts: Identifying the active sites through Bayesian analysis[J]. ACS Catalysis, 2022, 12(4): 2487-2498. |
98 | ZHANG Jianshuo, MA Ruoyun, Hyungwon HAM, et al. Electroassisted propane dehydrogenation at low temperatures: Far beyond the equilibrium limitation[J]. JACS Au, 2021, 1(10): 1688-1693. |
99 | ZHANG Jianshuo, NAKAYA Yuki, SHIMIZU Ken-ichi, et al. Surface engineering of titania boosts electroassisted propane dehydrogenation at low temperature[J]. Angewandte Chemie International Edition, 2023, 62(18): e202300744. |
[1] | WANG Darui, SUN Hongmin, WANG Yiyan, TANG Zhimou, LI Rui, FAN Xueyan, YANG Weimin. Recent progress in zeolite for efficient catalytic reaction process [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 1-18. |
[2] | LUO Fen, YANG Xiaoqi, DUAN Fanglin, LI Xiaojiang, WU Liang, XU Tongwen. Recent advances in the bipolar membrane and its applications [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 145-163. |
[3] | GAI Hongwei, ZHANG Chenjun, QU Jingying, SUN Huailu, TUO Yongxiao, WANG Bin, JIN Xu, ZHANG Xi, FENG Xiang, CHEN De. Research progress on catalytic dehydrogenation process intensification for liquid organic hydride carrier hydrogen storage [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 164-185. |
[4] | ZHANG Jiahao, LI Yingying, XU Yanlin, YIN Jiabin, ZHANG Jisong. Research advancement of continuous reductive amination in microreactors [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 186-197. |
[5] | HENG Linyu, DENG Zhuoran, CHENG Daojian, WEI Bin, ZHAO Liqiang. Progress of high-throughput synthesis device for process reinforcement of metal catalyst preparation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 246-259. |
[6] | WANG Yiyan, WANG Darui, SHEN Zhenhao, HE Junlin, SUN Hongmin, YANG Weimin. Preparation and catalytic performance of fully crystalline MCM-22 zeolite catalyst [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 285-291. |
[7] | YU Xiaoxiao, CHAO Yanhong, LIU Haiyan, ZHU Wenshuai, LIU Zhichang. Enhanced photoelectric properties and photocatalytic CO2 conversion by D-A conjugated polymerization [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 292-301. |
[8] | SUN Jin, CHEN Xiaozhen, LIU Mingrui, LIU Li, NIU Shikun, GUO Rong. Deactivation mechanism of sodium poisoning hydrodesulfurization catalyst [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 407-413. |
[9] | ZHANG Haipeng, WANG Shuzhen, MA Mengxi, ZHANG Wei, XIANG Jiangnan, WANG Yuting, WANG Yan, FAN Binbin, ZHENG Jiajun, LI Ruifeng. Synthesis of ZSM-22 molecular sieve and its n-dodecane hydroisomerization performance: Effect of template agent and dynamic crystallization [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 414-421. |
[10] | YANG Chenggong, HUANG Rong, WANG Dong’e, TIAN Zhijian. Electrocatalytic hydrogen evolution performance of nitrogen-doped molybdenum disulfide nanocatalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 465-472. |
[11] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[12] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[13] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[14] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[15] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |