Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (1): 34-48.DOI: 10.16085/j.issn.1000-6613.2023-1167
• Column: Chemical process intensification • Previous Articles Next Articles
YUAN Liang1(), CONG Haifeng1,2(), LI Xingang1,2()
Received:
2023-07-10
Revised:
2023-10-25
Online:
2024-02-05
Published:
2024-01-20
Contact:
CONG Haifeng, LI Xingang
通讯作者:
从海峰,李鑫钢
作者简介:
袁谅(1997—),女,博士研究生,研究方向为化工传质与分离技术。E-mail:1022207052@tju.edu.cn。
基金资助:
CLC Number:
YUAN Liang, CONG Haifeng, LI Xingang. Research progress on gas-liquid flow and mass transfer characteristics in microchannels[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 34-48.
袁谅, 从海峰, 李鑫钢. 微通道内气液流动与传质特性的研究进展[J]. 化工进展, 2024, 43(1): 34-48.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1167
模型 | 主要假设 | 出处 | 量纲为1数数量级 | |
---|---|---|---|---|
Pe | Ca | |||
单元传质模型 | 气相和液相在每个单元中都分别混合得很好 从气相到液相的传质只发生在独立单元中 不同单元之间不会发生混合 | Yao等[ | 104~105 | 10-3 |
三层传质模型 | 在段塞中以对流传质为主 | Abiev[ | 105 | 10-2 |
膜层中以扩散为主 | Svetlov等[ | |||
液膜-段塞交换模型 | 薄膜中完美混合 段塞中完美混合 | Butler等[ | 105 | 10-2 |
气泡列流模型 | 气体浓度沿流线均匀 | Eskin等[ | 104~105 | 10-2 |
帽层使用平均传质系数 | Nirmal等[ |
模型 | 主要假设 | 出处 | 量纲为1数数量级 | |
---|---|---|---|---|
Pe | Ca | |||
单元传质模型 | 气相和液相在每个单元中都分别混合得很好 从气相到液相的传质只发生在独立单元中 不同单元之间不会发生混合 | Yao等[ | 104~105 | 10-3 |
三层传质模型 | 在段塞中以对流传质为主 | Abiev[ | 105 | 10-2 |
膜层中以扩散为主 | Svetlov等[ | |||
液膜-段塞交换模型 | 薄膜中完美混合 段塞中完美混合 | Butler等[ | 105 | 10-2 |
气泡列流模型 | 气体浓度沿流线均匀 | Eskin等[ | 104~105 | 10-2 |
帽层使用平均传质系数 | Nirmal等[ |
1 | 骆广生, 王凯, 徐建鸿, 等. 微化工过程研究进展[J]. 中国科学: 化学, 2014, 44(9): 1404-1412. |
LUO Guangsheng, WANG Kai, XU Jianhong, et al. Advances in research of microstructured chemical process[J]. Scientia Sinica Chimica, 2014, 44(9): 1404-1412. | |
2 | PENNEMANN H, WATTS P, HASWELL S J, et al. Benchmarking of microreactor applications[J]. Organic Process Research & Development, 2004, 8(3): 422-439. |
3 | CHENG Hao, FAN Yilin, TARLET Dominique, et al. Microfluidic-based chemical absorption technology for CO2 capture: Mass transfer dynamics, operating factors and performance intensification[J]. Renewable and Sustainable Energy Reviews, 2023, 181: 113357. |
4 | SHENG Lin, WANG Kai, DENG Jian, et al. Gas-liquid microdispersion and microflow for carbon dioxide absorption and utilization: A review[J]. Current Opinion in Chemical Engineering, 2023, 40: 100917. |
5 | LEFORTIER S G R, HAMERSMA P J, BARDOW A, et al. Rapid microfluidic screening of CO2 solubility and diffusion in pure and mixed solvents[J]. Lab on a Chip, 2012, 12(18): 3387. |
6 | MACINNES J M, AYASH A A, DOWSON G R M. CO2 absorption using diethanolamine-water solutions in a rotating spiral contactor[J]. Chemical Engineering Journal, 2017, 307: 1084-1091. |
7 | 郭戎威, 付涛涛, 朱春英, 等. 微通道内气-液两相流及并行放大的研究进展[J]. 化学工业与工程, 2021, 38(6): 74-86. |
GUO Rongwei, FU Taotao, ZHU Chunying, et al. Research progress on gas-liquid two-phase flow and numbering-up strategy in microchannel[J]. Chemical Industry and Engineering, 2021, 38(6): 74-86. | |
8 | LOKHAT David, DOMAH Ashveer Krishen, PADAYACHEE Kuveshan, et al. Gas-liquid mass transfer in a falling film microreactor: Effect of reactor orientation on liquid-side mass transfer coefficient[J]. Chemical Engineering Science, 2016, 155: 38-44. |
9 | STAEDTER M A, GARIMELLA S. Development of a micro-scale heat exchanger based, residential capacity ammonia-water absorption chiller[J]. International Journal of Refrigeration, 2018, 89: 93-103. |
10 | CHAMBERS R D, SPINK R C H. Microreactors for elemental fluorine[J]. Chemical Communications, 1999(10): 883-884. |
11 | CHAMBERS R D, HOLLING D, SPINK R, et al. Elemental fluorine. Part 13. Gas-liquid thin film microreactors for selective direct fluorination[J]. Lab on a Chip, 2001, 1(2): 132-137. |
12 | JÄHNISCH K, BAERNS M, HESSEL V, et al. Direct fluorination of toluene using elemental fluorine in gas/liquid microreactors[J]. Journal of Fluorine Chemistry, 2000, 105(1): 117-128. |
13 | PASHA Mohsin, ZHANG Hong, SHANG Minjing, et al. CO2 absorption with diamine functionalized deep eutectic solvents in microstructured reactors[J]. Process Safety and Environmental Protection, 2022, 159: 106-119. |
14 | KAWAHARA A, M-Y CHUNG P, KAWAJI M. Investigation of two-phase flow pattern, void fraction and pressure drop in a microchannel[J]. International Journal of Multiphase Flow, 2002, 28(9): 1411-1435. |
15 | TRIPLETT K A, GHIAASIAAN S M, ABDEL-KHALIK S I, et al. Gas-liquid two-phase flow in microchannels Part I: Two-phase flow patterns[J]. International Journal of Multiphase Flow, 1999, 25(3): 377-394. |
16 | CHEN W L, TWU M C, PAN C. Gas-liquid two-phase flow in micro-channels[J]. International Journal of Multiphase Flow, 2002, 28(7): 1235-1247. |
17 | ZHAO T S, BI Q C. Co-current air-water two-phase flow patterns in vertical triangular microchannels[J]. International Journal of Multiphase Flow, 2001, 27(5): 765-782. |
18 | BARAJAS A M, PANTON R L. The effects of contact angle on two-phase flow in capillary tubes[J]. International Journal of Multiphase Flow, 1993, 19(2): 337-346. |
19 | AKBAR M K, PLUMMER D A, GHIAASIAAN S M. On gas-liquid two-phase flow regimes in microchannels[J]. International Journal of Multiphase Flow, 2003, 29(5): 855-865. |
20 | SHAO N, GAVRIILIDIS A, ANGELI P. Flow regimes for adiabatic gas-liquid flow in microchannels[J]. Chemical Engineering Science, 2009, 64(11): 2749-2761. |
21 | MEI Mei, LE MEN Claude, Karine LOUBIèRE, et al. Taylor bubble formation and flowing in a straight millimetric channel with a cross-junction inlet geometry. Part I: Bubble dynamics[J]. Chemical Engineering Science, 2022, 255, 117609. |
22 | PANG Zifan, ZHU Chunying, MA Youguang, et al. CO2 absorption by liquid films under Taylor flow in serpentine minichannels[J]. Industrial & Engineering Chemistry Research, 2020, 59(26): 12250-12261. |
23 | YANG Lixia, DIETRICH Nicolas, Karine LOUBIÈRE, et al. Visualization and characterization of gas-liquid mass transfer around a Taylor bubble right after the formation stage in microreactors[J]. Chemical Engineering Science, 2016, 143: 364-368. |
24 | CHEN Yuchao, SHENG Lin, DENG Jian, et al. Geometric effect on gas-liquid bubbly flow in capillary-embedded T-junction microchannels[J]. Industrial & Engineering Chemistry Research, 2021, 60(12): 4735-4744. |
25 | GANAPATHY H, SHOOSHTARI A, DESSIATOUN S, et al. Fluid flow and mass transfer characteristics of enhanced CO2 capture in a minichannel reactor[J]. Applied Energy, 2014, 119: 43-56. |
26 | YAO Chaoqun, ZHU Kai, LIU Yanyan, et al. Intensified CO2 absorption in a microchannel reactor under elevated pressures[J]. Chemical Engineering Journal, 2017, 319: 179-190. |
27 | LIU Hongchen, YAO Chaoqun, ZHAO Yuchao, et al. Desorption of carbon dioxide from aqueous MDEA solution in a microchannel reactor[J]. Chemical Engineering Journal, 2017, 307: 776-784. |
28 | Aghel Babak, Heidaryan Ehsan, Sahraie Sasan, et al. Application of the microchannel reactor to carbon dioxide absorption[J]. Journal of Cleaner Production, 2019, 231: 723-732. |
29 | MA Daofan, ZHU Chunying, FU Taotao, et al. Synergistic effect of functionalized ionic liquid and alkanolamines mixed solution on enhancing the mass transfer of CO2 absorption in microchannel[J]. Chemical Engineering Journal, 2021, 417: 129302. |
30 | YAO Chaoqun, DONG Zhengya, ZHAO Yuchao, et al. The effect of system pressure on gas-liquid slug flow in a microchannel[J]. AIChE Journal, 2014, 60(3): 1132-1142. |
31 | ZHAO Yuchao, CHEN Guangwen, YE Chunbo, et al. Gas-liquid two-phase flow in microchannel at elevated pressure[J]. Chemical Engineering Science, 2013, 87: 122-132. |
32 | YIN Yaran, ZHU Chunying, FU Taotao, et al. Enhancement effect and mechanism of gas-liquid mass transfer by baffles embedded in the microchannel[J]. Chemical Engineering Science, 2019, 201: 264-273. |
33 | ZHANG Shizhe, ZHU Chunying, FENG Huisheng, et al. Intensification of gas-liquid two-phase flow and mass transfer in microchannels by sudden expansions[J]. Chemical Engineering Science, 2021, 229: 116040. |
34 | An Eng LIM, Chun Yee LIM, LAM Yee Cheong, et al. Effect of microchannel junction angle on two-phase liquid-gas Taylor flow[J]. Chemical Engineering Science, 2019, 202: 417-428. |
35 | YANG Gang, FENG Kai, ZHANG Huichen. Pressure drop and bubble length prediction for gas-non-newtonian fluid two-phase flow in a curved microchannel[J]. Chemical Engineering Research and Design, 2023, 197: 405-418. |
36 | YAN Peng, JIN Haibo, TAO Fangfang, et al. Flow characterization of gas-liquid with different liquid properties in a Y-type microchannel using electrical resistance tomography and volume of fluid model[J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 136: 104390. |
37 | AKBARI Mona, RAHIMI Masoud, FARYADI Mahboubeh. Gas-liquid flow mass transfer in a T-shape microreactor stimulated with 1.7 MHz ultrasound waves[J]. Chinese Journal of Chemical Engineering, 2017, 25(9): 1143-1152. |
38 | VAN ELK E P, KNAAP M C, VERSTEEG G F. Application of the penetration theory for gas-liquid mass transfer without liquid bulk[J]. Chemical Engineering Research and Design, 2007, 85(4): 516-524. |
39 | HARKOU Eleana, HAFEEZ Sanaa, MANOS George, et al. CFD study of the numbering up of membrane microreactors for CO2 capture[J]. Processes, 2021, 9(9): 1515. |
40 | JIANG Bin, HE Chengxiang, ZHAN Wei, et al. Mass transfer of chemical absorption of CO2/N2 mixed gas in a microchannel[J]. Chemical Engineering Science, 2023, 280: 118996. |
41 | YANG Lixia, Karine LOUBIÈRE, DIETRICH Nicolas, et al. Local investigations on the gas-liquid mass transfer around Taylor bubbles flowing in a meandering millimetric square channel[J]. Chemical Engineering Science, 2017, 165: 192-203. |
42 | ZHOU Yufei, YAO Chaoqun, ZHANG Peng, et al. Dynamic coupling of mass transfer and chemical reaction for Taylor flow along a serpentine microchannel[J]. Industrial & Engineering Chemistry Research, 2020, 59(19): 9279-9292. |
43 | YIN Yaran, ZHANG Xianming, ZHU Chunying, et al. Hydrodynamics and gas-liquid mass transfer in a cross-flow T-junction microchannel: Comparison of two operation modes[J]. Separation and Purification Technology, 2021, 255: 117697. |
44 | HUANG Mengmeng, ZHU Chunying, FU Taotao, et al. Enhancement of gas-liquid mass transfer by nanofluids in a microchannel under Taylor flow regime[J]. International Journal of Heat and Mass Transfer, 2021, 176: 121435. |
45 | GAO Nana, WANG Jiexin, SHAO Lei, et al. Removal of carbon dioxide by absorption in microporous tube-in-tube microchannel reactor[J]. Industrial & Engineering Chemistry Research, 2011, 50(10): 6369-6374. |
46 | Pakkawat Chalermthai, Nattee Akkarawatkhoosith, Amaraporn Kaewchada, et al. Carbon dioxide removal via absorption using artificial seawater in a microchannel for the case of CO2-rich gas[J]. Chemical Engineering and Processing: Process Intensification, 2022, 175: 108928. |
47 | YANG Lu, TAN Jing, WANG Kai, et al. Mass transfer characteristics of bubbly flow in microchannels[J]. Chemical Engineering Science, 2014, 109: 306-314. |
48 | YIN Yaran, GUO Rongwei, ZHU Chunying, et al. Enhancement of gas-liquid mass transfer in microchannels by rectangular baffles[J]. Separation and Purification Technology, 2020, 236: 116306. |
49 | ZHOU Caijin, XIE Bingqi, CHEN Junxin, et al. Enhancement of gas-liquid mass transfer in curved membrane contactors with the generation of Dean vortices[J]. Journal of Membrane Science, 2021, 636: 119592. |
50 | LIU Xuancheng, LI Hongye, SONG Yibing, et al. Effects of channel wall wettability on gas-liquid dynamics mass transfer under Taylor flow in a serpentine microchannel[J]. Chinese Journal of Chemical Engineering, 2023. |
51 | LIANG Yan, CHU Guangwen, WANG Jiexin, et al. Controllable preparation of nano-CaCO3 in a microporous tube-in-tube microchannel reactor[J]. Chemical Engineering and Processing: Process Intensification, 2014, 79: 34-39. |
52 | YAO Chaoqun, ZHAO Yuchao, MA Haiyun, et al. Two-phase flow and mass transfer in microchannels: A review from local mechanism to global models[J]. Chemical Engineering Science, 2021, 229: 116017. |
53 | YAO Chaoqun, DONG Zhengya, ZHAO Yuchao, et al. An online method to measure mass transfer of slug flow in a microchannel[J]. Chemical Engineering Science, 2014, 112: 15-24. |
54 | ABIEV R S. Bubbles velocity, Taylor circulation rate and mass transfer model for slug flow in milli- and microchannels[J]. Chemical Engineering Journal, 2013, 227: 66-79. |
55 | SVETLOV S D, ABIEV R S. Modeling mass transfer in a Taylor flow regime through microchannels using a three-layer model[J]. Theoretical Foundations of Chemical Engineering, 2016, 50(6): 975-989. |
56 | VAN BATEN J M, KRISHNA R. CFD simulations of mass transfer from Taylor bubbles rising in circular capillaries[J]. Chemical Engineering Science, 2004, 59(12): 2535-2545. |
57 | BUTLER C, CID E, A-M BILLET. Modelling of mass transfer in Taylor flow: Investigation with the PLIF-I technique[J]. Chemical Engineering Research and Design, 2016, 115: 292-302. |
58 | ESKIN Dmitry, MOSTOWFI Farshid. A model of a bubble train flow accompanied with mass transfer through a long microchannel[J]. International Journal of Heat and Fluid Flow, 2012, 33(1): 147-155. |
59 | NIRMAL G M, LEARY T F, ARUN R. Mass transfer dynamics in the dissolution of Taylor bubbles[J]. Soft Matter, 2019, 15(13): 2746-2756. |
60 | YUE Jun, CHEN Guangwen, YUAN Quan, et al. Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel[J]. Chemical Engineering Science, 2007, 62(7): 2096-2108. |
61 | ABOLHASANI Milad, KUMACHEVA Eugenia, Axel GÜNTHER. Peclet number dependence of mass transfer in microscale segmented gas-liquid flow[J]. Industrial & Engineering Chemistry Research, 2015, 54(36): 9046-9051. |
62 | 乐军, 陈光文, 袁权, 等. 微通道内气-液传质研究[J]. 化工学报, 2006, 57(6): 1296-1303. |
YUE Jun, CHEN Guangwen, YUAN Quan, et al. Mass transfer in gas-liquid flow in microchannels[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(6):1296-1303. | |
63 | JI X Y, MA Y G, FU T T, et al. Experimental investigation of the liquid volumetric mass transfer coefficient for upward gas-liquid two-phase flow in rectangular microchannels[J]. Brazilian Journal of Chemical Engineering, 2010, 27(4): 573-582. |
64 | CHU Chunyan, ZHANG Fanbin, ZHU Chunying, et al. Mass transfer characteristics of CO2 absorption into 1-butyl-3-methylimidazolium tetrafluoroborate aqueous solution in microchannel[J]. International Journal of Heat and Mass Transfer, 2019, 128: 1064-1071. |
65 | CHENG Hao, TARLET Dominique, FAN Yilin, et al. Mass transfer enhancement for CO2 chemical absorption in a spiral baffle embedded microchannel[J]. Chemical Engineering Science, 2023, 280: 118968. |
66 | FRIES D M, WAELCHLI S, VON ROHR P R. Gas-liquid two-phase flow in meandering microchannels[J]. Chemical Engineering Journal, 2008, 135: S37-S45. |
67 | PANG Zifan, JIANG Shaokun, ZHU Chunying, et al. Mass transfer of chemical absorption of CO2 in a serpentine minichannel[J]. Chemical Engineering Journal, 2021, 414: 128791. |
68 | TAN J, LU Y C, XU J H, et al. Mass transfer performance of gas-liquid segmented flow in microchannels[J]. Chemical Engineering Journal, 2012, 181/182: 229-235. |
69 | MACINNES J M, PITT M J, PRIESTMAN G H, et al. Analysis of two-phase contacting in a rotating spiral channel[J]. Chemical Engineering Science, 2012, 69(1): 304-315. |
70 | YIN Yaran, CHEN Weiyang, WU Conghao, et al. Bubble dynamics and mass transfer enhancement in split-and-recombine (SAR) microreactor with rapid chemical reaction[J]. Separation and Purification Technology, 2022, 287: 120573. |
71 | SEO Hyeon-Seok, KIM Youn-Jea. A study on the mixing characteristics in a hybrid type microchannel with various obstacle configurations[J]. Materials Research Bulletin, 2012, 47(10): 2948-2951. |
72 | SEHGAL S, ALVARADO J L, HASSAN I G, et al. A comprehensive review of recent developments in falling-film, spray, bubble and microchannel absorbers for absorption systems[J]. Renewable and Sustainable Energy Reviews, 2021, 142: 110807. |
73 | HESSEL V, EHRFELD W, GOLBIG K, et al. Gas/liquid microreactors for direct fluorination of aromatic compounds using elemental fluorine[C]//Ehrfeld W. Microreaction Technology: Industrial Prospects. Berlin, Heidelberg: Springer, 2000: 526-540. |
74 | CHEN Yiyu, ZHU Chunying, FU Taotao, et al. Mass transfer enhancement of CO2 absorption into [Bmim][BF4] aqueous solution in microchannels by heart-shaped grooves[J]. Chemical Engineering and Processing: Process Intensification, 2021, 167: 108536. |
75 | PASHA Mohsin, LIU Saier, ZHANG Jin, et al. Recent advancements on hydrodynamics and mass transfer characteristics for CO2 absorption in microreactors[J]. Industrial & Engineering Chemistry Research, 2022, 61(34): 12249-12268. |
76 | CHEN Jianfeng, CHEN Guizi, WANG Jiexin, et al. High-throughput microporous tube-in-tube microreactor as novel gas-liquid contactor: Mass transfer study[J]. AIChE Journal, 2011, 57(1): 239-249. |
77 | MACINNES J M, ZAMBRI M K S. Hydrodynamic characteristics of a rotating spiral fluid-phase contactor[J]. Chemical Engineering Science, 2015, 126: 427-439. |
78 | CHANDRASEKARAN Sriram, HUGHES Matthew, KINI Girish, et al. A microchannel shell-and-tube absorber for ammonia-water absorption[J]. Applied Thermal Engineering, 2021, 185: 116321. |
79 | CONG Haifeng, ZHAO Zhenyu, LI Xingang, et al. Liquid-bridge flow in the channel of helical string and its application to gas-liquid contacting process[J]. AIChE Journal, 2018, 64(9): 3360-3368. |
80 | HAN Hongming, CONG Haifeng, LI Xingang, et al. Hydraulics and mass transfer characteristics of novel helical liquid-bridge flow structured packings[J]. Chemical Engineering Science, 2021, 240: 116669. |
81 | ZHANG Zhen, HAN Hongming, CONG Haifeng, et al. Liquid-bridge flow on a vertical spiral spring and its mass transfer characteristics[J]. Chemical Engineering Science, 2023, 275: 118738. |
82 | WANG Kuang, CONG Haifeng, LI Xingang. Preparation of novel helical liquid-bridge flow structured catalyst and its catalytic performance in the hydrogenation of 2-ethyl-anthraquinone[J]. Chemical Engineering Journal, 2023, 462: 142320. |
83 | PANG Danya, CONG Haifeng, LI Xingang, et al. Liquid-bridge flow between two slender plates: Formation and fluid mechanics[J]. Chemical Engineering Research and Design, 2021, 170: 304-313. |
[1] | ZHANG Liang, MA Ji, HE Gaohong, JIANG Xiaobin, XIAO Wu. Determination and analysis of combined cooling and antisolvent crystallization metastable zone width of cefuroxime sodium with membrane regulation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 260-268. |
[2] | WANG Lihua, CAI Suhang, JIANG Wentao, LUO Qian, LUO Yong, CHEN Jianfeng. Research progress of micro and nano scale gas-liquid mass transfer to intensify catalytic hydrogenation of oil products [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 19-33. |
[3] | TIAN Shihong, GUO Lei, LI Na, YUWEN Chao, XU Lei, GUO Shenghui, JU Shaohua. Scientific basis and development trend of microwave heating enhanced flash evaporation process [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 135-144. |
[4] | ZHAI Linxiao, CUI Yizhou, LI Chengxiang, SHI Xiaogang, GAO Jinsen, LAN Xingying. Research and application process of microbubble generator [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 111-123. |
[5] | SU Mengjun, LIU Jian, XIN Jing, CHEN Yufei, ZHANG Haihong, HAN Longnian, ZHU Yuanbao, LI Hongbao. Progress in the application of gas-liquid mixing intensification in fixed-bed hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 100-110. |
[6] | LIU Feng, CHU Yang, LI Huifeng, LI Mingfeng, ZHU Mei, ZHANG Runqiang. Reaction process intensification of heavy molecular mercaptan in FCC gasoline catalytic conversion [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 279-284. |
[7] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[8] | ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai. Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157. |
[9] | CHANG Yinlong, ZHOU Qimin, WANG Qingyue, WANG Wenjun, LI Bogeng, LIU Pingwei. Research progress in high value chemical recycling of waste polyolefins [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3965-3978. |
[10] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[11] | CHEN Weiyang, SONG Xin, YIN Yaran, ZHANG Xianming, ZHU Chunying, FU Taotao, MA Youguang. Effect of liquid viscosity on bubble interface in the rectangular microchannel [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3468-3477. |
[12] | LIU Houli, GU Zhonghao, YANG Kang, ZHANG Li. Effect of groove width on pool boiling heat transfer characteristics in 3D printing groove structure [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2282-2288. |
[13] | PANG Liping, YUAN Hu, QIU Wensheng, DUAN Liqiang, LI Wenxue. Hydrodynamic characteristics during peaking operation in utility boiler [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1708-1718. |
[14] | WANG Zizong, LIU Gang, WANG Zhenwei. Progress and reflection on process intensification technology for ethylene/propylene production [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1669-1676. |
[15] | YU Yanfang, LI Yu, MENG Huibo, LIU Huanchen. Enhancement of gas-liquid flow mixing and mass transfer in Lightnin static mixer [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6180-6190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |