膜分离过程中的膜污染和浓差极化现象,可通过超声场产生的机械振动、声冲流及声空化等实现有效控制。本文对超声场强化膜分离过程的机理与研究现状进行了分析,从超声场强化膜分离集成系统、膜材料、结构及其稳定性,超声场与其它方法协同强化膜分离过程等方面的研究工作进行了综述,并对超声场强化膜分离技术在含颗粒体系、生物食品领域、水处理领域中的应用特点进行了分析和总结。在此基础上,对超声场强化膜分离过程的发展方向和研究前景进行了展望。
研究混合器的停留时间分布对进一步研究混合器内的流型、混合等具有重要的意义。首先介绍了用于描述停留时间分布(RTD)的统计特征参量,根据测试原理及示踪剂输入方式等对停留时间的实验方法进行分类介绍。着重回顾了化学反应工程方法中RTD模型的发展,对有关RTD流场模拟中的常用模型进行了对比分析,并对统计学方法在RTD中的应用加以描述。最后展望了对上述方法在停留时间分布中的进一步应用。
主要综述了采用分子模拟技术考察分子在分子筛上扩散行为的多角度、多层次研究进展,包括分子筛结构、负载量、温度和多组分扩散等因素对扩散系数的影响;在此基础上,进一步介绍了扩散相互作用能和过渡态理论的研究进展,并讨论了分子模拟方法在分子筛扩散研究方面所面临的问题和发展方向。
介绍了近年来多杂质水网络集成研究进展,讨论了当前设计多杂质水网络的几种方法,包括水夹点及图解方法、数学规划法、中间水道技术及基于经验的设计方法。探讨了各种方法的特点以及各方法涉及废水的直接回用、再生回用和再生循环。最后对今后的发展方向做了展望。
针对无溶剂法双氧水氧化环己烯合成环氧环己烷的油相反应液,采用常压精馏的方法对其进行了分离纯化,并得到了常压精馏操作的较佳工艺条件。在此工艺条件下,环氧环己烷的纯度和单程收率分别达到99.59%和85.87%,对常压精馏后的塔釜高沸点残留物进行减压精馏回收后,环氧环己烷总收率可以达90%以上,为其工业化生产提供重要的实验依据。
采用柱层析法分离羊毛脂中的胆固醇,以胆固醇与杂质羊毛甾醇的分离度为判定依据来筛选吸附剂及优化层析工艺,同时对吸附剂进行了再生考察。实验表明,当以200~300目粗孔硅胶为吸附剂、丙酮/正己烷混合溶剂(体积比4∶96)为流动相、35 ℃下胆固醇上载量为2.4%(质量分数)时,胆固醇的分离效果较好,所得胆固醇含量可达84.36%,收率为85.67%。另外选用丙酮/正己烷混合溶剂(体积比50∶50)对吸附剂进行再生处理,硅胶经7次使用再生循环,分离效果未降低。
将超声用于石油化工循环冷却水中异养菌的灭菌处理,详细系统地考察了各个影响因素:超声频率、声强、声场形式对冷却水净化处理的影响规律。通过正交实验得出,在超声声强为0.30 W/cm2下,采用28/40 kHz混频超声处理1000 mL循环冷却水,处理时间为60 min时灭菌率达到94.6%。抑菌实验表明,经过72 h后抑菌率仍为82.1%。结果说明了超声灭菌不仅能起到较好的灭菌效果,还有长久抑菌的作用。同时,利用超声处理KI溶液后的吸光度变化表示超声频率、声强与超声空化强度的关系,以此探索了超声灭菌的机理,认为超声空化作用是超声灭菌的一个重要原因,将超声用于循环冷却水灭菌过程将成为绿色环保的工业循环冷却水净化新方法。
以乙二醇为溶剂,对异丙醚-异丙醇-水三元共沸物采用间歇萃取精馏进行分离研究,考察了在溶剂不同进料速率、回流比、进料温度等条件下的分离情况,找到了实验条件下分离此三元共沸物的最佳条件。最佳条件为:溶剂进料位置为塔顶,回流比为2,溶剂进料速率在分离异丙醚和分离异丙醇两个阶段分别为11.4 g/min和8.08 g/min,溶剂进料温度分别为70.0 ℃和100.0 ℃。在此条件下,异丙醚产品质量分数可达0.95,收率为0.985;异丙醇产品质量分数可达0.97,收率为0.968。
通过溶剂选择原理粗选出萃取精馏制备甲缩醛产品的溶剂,既而通过Chemcad软件模拟和汽液平衡实验确定合适的溶剂及溶剂比。结果表明,N,N-二甲基甲酰胺(DMF)能够消除甲缩醛-甲醇共沸物系的共沸点;采用UNIQUAC模型对常压下甲缩醛-甲醇物系和加入溶剂N,N-二甲基甲酰胺的汽液平衡进行模拟,模拟结果和实验数据吻合较好。用间歇萃取精馏实验对甲缩醛粗品进行了分离,在实验条件下,可以从塔顶得到质量浓度为99.9%的高纯度甲缩醛产品。
将被动式DMFC阳极通道内气泡形成过程简化为CO2气体注入充满静态甲醇溶液中形成气泡的过程。利用可视化实验研究了气体垂直注入静态甲醇溶液中形成气泡以及气泡脱离的过程,考察了气体流量、液层高度、孔径大小、甲醇浓度对气泡形成及长大脱离过程的影响。结果表明:在气泡的生长过程中,接触角先是快速下降后又迅速上升,然后趋于稳定值直到脱离。随着气体流量的增加,脱离时气泡的直径变化甚微,脱离时间先下降较快后趋于稳定。随着液层高度的增加,气泡的脱离直径变小,产生的频率加快,脱离时间先是减小后趋于稳定;气体流量在此条件下对脱离时间的影响减弱。随着孔径的增加,气泡的脱离直径增加,产生气泡的频率减慢,气泡的脱离时间减小。随着甲醇浓度的增加,气泡的脱离直径变小且波动明显,气泡产生的频率变快,脱离时间先是减小后趋于稳定,对低浓度的溶液影响较为明显。
减压转油线作为原油蒸馏中减压单元的重要组成部分,对于减压装置的稳定操作、减压深拔、改善油品质量和节能意义重大。本文在采集大量工业数据的基础上,按照转油线结构中是否存在突扩、渐扩和三通等,特别是根据过渡段与低速段的连接方式,将典型的减压转油线分为A型、B型和C型。利用基于多级闪蒸模型和压降模型的一维两相流模型对七套工业转油线内压力、温度、流速和汽化率沿转油线轴向的变化情况进行计算。结果表明,A型直插式转油线合流处压力陡降,压降最大;B型渐扩式转油线合流处压力缓慢下降,压降最小;C型二次扩径式结构压力出现两处陡降,压降较小。
生物柴油是重要的可再生液体燃料,但其在制备方法及自身燃料性质上仍存在一定的缺陷。近年来出现的热化学方法提供了较有前景的解决方案。本文综述了油脂热化学转化制备生物质柴油新方法。重点介绍了直接热解、催化热裂解两种转化方式的现状及特点,并探讨了热化学转化方法还存在的问题。对催化裂解过程所用不同功能催化剂的性能及特点作了详细的介绍,指出了目前油脂裂解过程催化剂的研究方向。
介绍了石油路线、煤路线生产乙二醇技术的最新进展,对国内外乙二醇生产、市场状况及发展前景进行了分析。结论认为,我国聚酯产业的快速发展推动了对乙二醇的需求,乙二醇发展前景广阔;煤制乙二醇作为我国煤化工发展重点之一,建设新装置应根据原料资源和市场状况谨慎决策;我国乙二醇生产要努力降低成本,积极应对国外进口产品的竞争;应加强乙二醇生产新技术研发,同时拓展乙二醇产品的应用领域。
甲醇不仅是一种重要的有机化工原料,而且可以单独或与汽油混合作为汽车燃料,具有节能与环保的双重优势。甲醇合成反应研究尽管有四十多年的历史,但有关甲醇合成反应机理及催化剂活性中心类型等方面的问题仍存在争议。本文综述了近几年来在铜基催化剂上甲醇合成催化反应机理及催化剂活性中心的研究进展,以期提高人们对甲醇合成反应催化本质的认识,并为优良催化剂的开发提供一定借鉴。
目前苯选择加氢制环己烯催化剂已广泛应用于合成纤维工业及其它领域中。本文综述了国内外苯选择加氢制环已烯催化剂的研究现状,重点介绍了活性组分、载体、助剂、制备方法及添加剂对催化剂活性及选择性的影响,分析了其影响原因,并指出了提高环己烯选择性的关键因素,最后在此基础上展望了苯选择加氢催化剂的发展方向。
简述了不同反应物组合在碳材料表面的行为特征,单组分NO可以形成吸附态的NO2、二聚体(NO)2、—NO2或吡啶类的化合物;O2存在时NO被吸附态的氧氧化成NO2;NO、O2和NH3同时存在时,反应发生在吸附态的NH3和吸附态的NO2之间。着重详述了活性碳纤维(activated carbon fibers,ACF)催化剂上的选择性催化还原(selective catalytic reduction,SCR)NO的机理为:低温时以NH3为还原剂的SCR(NH3-SCR)遵循Langmuir-Hinshelwood机理,较高温度时NH3-SCR 遵循Eley-Rideal机理;分析指出了催化剂孔结构特征和表面化学官能团是ACF能低温选择性催化还原NO的主要影响因素。
TiO2·Al2O3多孔复合氧化物是新型的催化剂载体材料,因其在加氢精制工艺上能够显著增加催化剂的脱硫、脱氮活性而逐渐受到重视。本文综述了国内外关于TiO2·Al2O3多孔材料的制备方法,分析了制备方法对材料的比表面积、孔结构、表面酸性等载体性能影响的一般规律。通过对国内外研究者的TiO2·Al2O3合成方法的综合评述,指出了有待发展提高的方向。
采用反相(W/O)微乳液法制备负载型Pt基催化剂,以间氯硝基苯(m-CNB)选择加氢反应为探针,考察微乳液组成、助表面活性剂和油相种类、还原剂用量及载体种类等制备参数对催化剂活性的影响,并对Pt粒子及催化剂进行TEM表征。结果表明:选择十六烷基三甲基溴化胺(CTAB)/正丁醇/环己烷/H2PtCl6溶液的W/O微乳体系,m(CTAB)∶m(正丁醇)=3∶7,m(CTAB+正丁醇)∶m(环己烷)=3∶7,H2PtCl6溶液含量3.6%,N2H4·H2O用量100 μL时制备的Pt/γ-Al2O3催化剂对m-CNB选择加氢活性最高。TEM分析表明催化剂中Pt粒子均匀分散在载体上。
以硅烷化凹凸棒黏土为载体,满孔浸渍法制备了负载型杂多酸盐催化剂,采用X射线衍射、比表面积测定、傅里叶变换红外光谱等手段对催化剂进行了表征。分别考察了双氧水用量、杂多酸盐负载量及循环使用次数等因素对环己烷氧化反应的影响。结果表明,负载型杂多酸盐CoH7P2Mo15V3O62能显著提高环己烷氧化能力;催化剂回收烘干后可直接重复利用,催化活性没有明显降低。在优化条件下,环己烷转化率达到35.28%,目标产物环己醇和环己酮的总收率达到12.48%。实验表明,负载型杂多酸盐CoH7P2Mo15V3O62是一种具有应用前景的催化剂,便于与产物分离,且对设备和环境污染小。
以乙酸镁为前体,采用等体积浸渍法制备不同负载量的MgO/ZSM-5催化剂,在气相连续流动固定床反应器上对甲苯与碳酸二甲酯(DMC)择形烷基化合成对二甲苯进行了研究。采用XRD、NH3-TPD、吡啶吸附红外和2,4-二甲基喹啉吸附红外等手段对催化剂进行了表征。结果表明:B酸中心是甲苯与DMC烷基化反应的活性中心;随着MgO负载量的增加,甲苯转化率下降,对二甲苯的选择性上升;当MgO负载量大于9%时,甲苯转化率和对二甲苯选择性基本保持不变。2,4-二甲基喹啉吸附红外表征结果表明,乙酸镁在改性过程中未进入ZSM-5孔道内,焙烧分解生成的MgO主要分布在分子筛的外表面,分子筛孔内酸位并未受到影响。随着MgO负载量的增加,催化剂外表面的B酸位数量下降,当负载量大于9%时,外表面的B酸位基本消失。
采用溶胶凝胶法制备TiO2载体,在负载Mn(Ac)2制备Mn/TiO2催化剂时掺杂铈,制备了Mn-Ce/TiO2催化剂。考察了Ce的掺杂量、活性组分负载量及焙烧温度等制备条件和空速、NO进口浓度及O2含量等工艺条件对其催化氧化NO性能的影响。对催化剂进行了XRD、BET及PL表征。结果表明,Ce的添加有利于活性组分在载体表面的分散,增强了活性组分与载体之间的相互作用,增大了催化剂的比表面积及催化剂对氧的吸附能力。当Ce掺杂量为 [Ce]/[Mn]=1/3、负载量为10%、焙烧温度为300 ℃条件下制备的Mn-Ce/TiO2催化剂,在反应温度200 ℃、空速41000 h-1、NO含量为300 μL/L及O2含量为10%的条件下,NO氧化率可达58%,满足NOx最高吸收率的要求。
为了扩展石墨烯的应用范围,克服石墨烯在溶液中难于溶解和难以分散等缺陷,石墨烯的表面功能化处理势在必行。而非共价键功能化由于对石墨烯结构的非破坏性可以更好地保持发挥石墨烯本身的优异性能而备受研究者的重视。本文重点综述了近年来石墨烯在非共价键功能化研究方面的进展,包括π-π相互作用、表面活性剂与石墨烯之间的疏水作用和氢键作用,并对非共价键功能化石墨烯在电极材料、电催化、场效应晶体管和透明导体方面的应用研究进行了简要的介绍。最后对石墨烯在非共价键功能化方面的发展前景进行了展望和预测。
近年来,聚苯乙烯树脂作为重要固体碱催化剂得到了广泛应用和发展。本文在对聚苯乙烯树脂催化羟醛缩合反应研究进展进行较为全面综述的基础上,重点讨论了聚苯乙烯树脂本身性质及其修饰对羟醛缩合反应的影响,并由此展望了未来聚苯乙烯树脂可能的研究方向。
纤维素作为一种最丰富的可再生自然资源具有很好的开发前景,但由于纤维素多氢键的超分子结构,致使其不溶于普通的有机溶剂,限制了其应用。而离子液体的出现为纤维素的应用提供了一个广阔的平台。本文综述了纤维素在咪唑类离子液体中的溶解性能及可能的溶解机理。总结指出阴离子为Cl-、CH3CHOO-和(MeO)RPO2-的离子液体对纤维素有较好的溶解能力;而烷基咪唑酯盐因一步合成、热稳定性好且溶解工艺简单等优点占有很大优势;咪唑阳离子的结构对溶解性也有很大影响。最后展望了该领域的发展前景。
综述了氯化聚丙烯(CPP)的主要生产工艺,提出了几种不使用四氯化碳(CTC)的CPP生产新工艺。分析了不同生产工艺的可行性和适用性,得出非CTC溶剂法是生产油墨用途的低氯化度CPP的最佳选择,而水相悬浮法适用于生产材料等用途的CPP产品,固相法虽有节能减排的特点但还不成熟,值得深入研究的结论。建议大力开发CPP新品种,满足日益多样化的产品需求。
以聚醚多元醇和MDI-50为原料,采用预聚物法合成预聚体,再和扩链剂MOCA进行扩链合成聚氨酯弹性体。研究了预聚体中不同异氰酸酯基(—NCO)质量分数对MDI-50型聚氨酯弹性体性能的影响。采用差示扫描量热分析(DSC)、热重分析(TG)、红外光谱(FTIR)及力学性能等测试方法对聚氨酯弹性体的结构与性能进行了表征和分析。结果表明:预聚体反应体系中NCO/OH摩尔比增大,预聚体中—NCO质量分数增加,预聚体的黏度降低,相应的聚氨酯弹性体的硬度和玻璃化转变温度提高,断裂伸长率降低,而拉伸强度和撕裂强度先增加后下降;当NCO/OH摩尔比为2.22时,聚氨酯弹性体力学性能较好;—NCO质量分数对聚氨酯弹性体的热稳定性影响不大。
以PP和LLDPE树脂为基料,采用熔体流变速率和氧化诱导期研究了新型聚烯烃抗氧剂与亚磷酸酯抗氧剂168的协同抗氧化作用。结果表明,添加单一新型复合主抗氧剂的PP和LLDPE树脂具有良好的加工稳定性和热氧稳定性,优于抗氧剂3114。与抗氧剂168并用时,具有良好的协同效果,应用于PP树脂中,其加工稳定和热氧稳定协同效应分别为274.62%和59.90%;应用于LLDPE树脂中,其加工稳定和热氧稳定协同效应分别为257.74%和109.64%;并能较好地改善两类聚烯烃树脂的力学性能。
通过对油酸改性四氧化三铁(Fe3O4)磁性纳米粒子的制备工艺的改进研究,成功制备了分散性好、磁响应性强的平均粒径在18 nm的改性Fe3O4磁性纳米粒子,并通过X射线衍射、红外光谱、透射电镜等对制备的磁性纳米粒子进行了表征。结果表明:当采用60 ℃的反应温度进行改性处理,以蒸馏水进行洗涤时,得到的油酸改性Fe3O4磁性纳米粒子的分散性最好、磁响应性最强。
采用反相悬浮聚合法制备了具有耐盐型的XG-g-P(AA-co-AM)/AC复合高吸水性树脂,并对其吸水性能及其影响因素进行了考察,借助傅里叶红外光谱仪(FT-IR)、X射线衍射仪(XRD)、热重分析仪(TGA)对树脂的结构进行了表征。结果表明,凹凸棒黏土(AC)表面的硅羟基可能与丙烯酸(AM)、丙烯酰胺(AA)和黄胞胶(XG)共同参与了接枝共聚反应,复合树脂的热稳定性有所提高。比较理想的工艺条件下制得的树脂具有良好的吸水和抗盐性能,最高吸水倍率达871.2 g/g,最高吸盐水倍率达119.8 g/g。生物降解性能实验说明了复合树脂可以被土壤中的微生物降解,90天降解率达26.1%。
从醇脱氢酶在不对称还原制备手性醇化合物的应用出发,进行3个重要方面综述:酶分子——作为优质高效的生物催化剂,对红球菌属、乳酸菌属、赖氏菌属及嗜热微生物来源的天然或重组醇脱氢酶的催化作用进行探讨;辅酶的再生方法及优缺点分析——探索适合于特定催化反应的再生方法,以解决大规模应用时添加昂贵的辅酶带来的成本问题;体外进化技术——对目的酶活性、立体选择性与稳定性的提高。最终为酶催化制备医药及精细化工品中间体建立一条绿色高效经济的途径。
为了拓宽L-抗坏血酸酯在维护人体健康中的应用,将L-抗坏血酸转化成L-抗坏血酸酯是经济可行的手段。综述了近年来酶催化L-抗坏血酸有机酸酯的研究进展,重点介绍了有机相中L-抗坏血酸饱和脂肪酸酯、不饱和脂肪酸酯、脂肪酸混合酯的酶促合成,对于酶的种类、有机溶剂的选择及分离纯化方法进行了探讨,并对酶催化L-抗坏血酸有机酸酯合成前景进行了展望。
生物酶催化合成手性药物和中间体具有高效、节能和环境友好等突出的优势,本文从提高催化反应效率的角度,评述了非水相酶催化反应的溶剂效应——溶剂体系对酶的活性和对映选择性的调控作用;介绍了动力学控制合成β-内酰胺类抗生素的不同溶剂体系,包括有机物-水共溶剂体系、有机物-水不共溶剂体系、反胶束体系和双水相体系。提出利用溶剂效应调控动力学合成体系,会有效提高酶催化合成β-内酰胺类抗生素的产率和合成与水解比S/H值,从而实现底物的有效利用。
开发了以磁性多孔微粒作为载体固定化脂肪酶的方法,进行了载体的FTIR、XRD、SEM、TEM、BET、TGA和VSM等测定与分析,考察了固定化时间、酶载量和缓冲液pH值等因素对固定化酶在有机相中催化烯丙醇酮转酯化反应性能的影响。结果表明,制备的磁性微粒是以Fe3O4为磁核,呈现多孔,比表面积12.16 m2/g,平均孔径为171.7 nm,磁铁含量38%并为超顺磁性;在酶与载体质量比为1∶1、pH值8.0及固定化时间6 h制得固定化酶的效果最佳,固定化酶的活力回收率可达240%。以其作为载体制备获得固定化酶操作稳定性得到显著提高,重复利用30批次后残余活力为74.5%,而游离酶7批次后仅为37.1%。
考察了培养基中分别添加Mg2+、Mn2+、Co2+ 3种金属离子对Actinobacillus succinogenes NJ113菌体生长及产酸的影响,并进行了代谢通量分析。结果表明培养基中分别添加6 mmol/L Mg2+、6 mmol/L Mn2+、2 mmol/L Co2+后流向HMP途径的通量r17比对照组分别提高了445.38%、176.23 %和171.67%,使得还原力不足的矛盾得到缓解;流向C4途径的通量r13比对照组分别提高了57.70%、15.94%和2.91%;最终使得流向丁二酸的通量r16比对照组分别提高了62.69%、18.91%和5.01%。此外,关键酶活分析结果显示分别添加Mg2+、Mn2+以及Co2+后,PEP羧化激酶(Pck)比活力由对照组的339.18 U/mg分别提高到568.732 U/mg、728.049 U/mg和339.686 U/mg。最终当培养基中分别添加6 mmol/L Mg2+、6 mmol/L Mn2+、2 mmol/L Co2+后丁二酸产量分别为27.83 g/L、26.27 g/L和23.54 g/L,比对照的22.79 g/L分别提高22.11%、15.27%以及3.4%。
以L-苯丙氨酸和邻香兰素为原料,合成了L-苯丙氨酸缩邻香兰素希夫碱配体及其稀土金属(铽、铕)配合物。经元素分析、红外光谱、紫外光谱分析,确定配合物的组成分别为[Tb2(H2O)2(SL)4](NO3)2和[Eu2(H2O)2(SL)4](NO3)2(SL=C17H17O4N)。用荧光光谱研究了配体和配合物的光物理性能。结果表明,配体和配合物都具有较强的荧光性能;配合物具有良好的热稳定性(分解温度达580 ℃)。
以松香和丙烯酸为原料,在微波辐射条件下合成丙烯海松酸,探讨了反应时间、反应温度、微波功率、物料配比等因素对丙烯海松酸含量的影响。确定了微波辐射条件下丙烯海松酸最佳的合成工艺条件:反应时间为1 h,反应温度为180 ℃,丙烯酸和精制松香的摩尔比为1.2∶1,微波辐射功率为110 W。实验结果表明微波辐射能够显著地加速丙烯酸和松香的加成反应。
燃煤电厂是最主要的汞排放源,本文介绍了电厂燃煤过程中汞的存在形态及影响汞去除率的主要因素;通过介绍燃煤电厂的基本烟气净化流程,指出利用现有烟气净化设备协同除汞的可行性;并较为详细地论述了各种汞排放控制技术的研究进展,同时对烟气脱汞技术的研究趋势进行了展望。
综述了近年来我国高铝粉煤灰精细化利用研究进展。在总结高铝粉煤灰性质的基础上,归纳概括了目前精细化利用的主要工艺方法:石灰石烧结法、酸溶出法、碱溶出法、酸碱联合法。介绍了4种方法的主要工艺实现途径、主要产品以及研究现状,并指出了各种方法的优缺点以及改进和发展方向。
研究了活性污泥利用淀粉酸化废水合成聚-b-羟基脂肪酸酯(PHA)及其表征。结果表明,淀粉废水酸化产物为丁酸、乙酸、丙酸、乙醇、戊酸。以此酸化产物为碳源经活性污泥合成PHA,合成结束后活性污泥中PHA含量为34.7%。活性污泥中PHA采用氯仿提取,并用核磁共振(NMR)、热失重(TG)、差热(DSC)方法对其结构和热性质进行表征。核磁共振图谱结果分析,此PHA样品含有HB和3HV,3HV的含量占8.9 %(摩尔分数)。热分析结果表明,此PHA的熔点为150 ℃,分解温度在270 ℃。
以甜菜粕为原料,在固体磷钨酸为催化剂、聚乙二醇400和丙三醇为复合液化剂的反应体系中,研究了甜菜粕液化降解制备植物基多元醇的方法。结果表明,甜菜粕具有很好的液化效果,在复合液化剂中聚乙二醇400与丙三醇质量比为4∶1、液化温度为160 ℃、催化剂用量为4%、液固比为12∶1、液化时间为160 min时,最高液化率可达99.0%,液化产物的羟值为45~86 mg/g,酸值为0.61~0.75 mg/g,为低羟值植物基多元醇。
研究了采用序列间歇式活性污泥法(SBR工艺)同步去除屠宰废水中高浓度氮、磷和COD。结果表明,SBR工艺采用分步进水,避免了硝化阶段NO3-N和NO2-N的积累,能够提供生物除磷所需的厌氧环境。在温度为35 ℃、污泥龄为14天的条件下,采用两种成分废水作为原水(预发酵废水和屠宰废水混合),经过3个月的启动,当原水中TP、TN和COD浓度分别为36.5 mg/L、226 mg/L和2615 mg/L时,TP、TN和COD的去除率分别高于96%、95%和95.5%,出水中TP、TN和COD浓度分别低于1.4 mg/L、10.8 mg/L和95 mg/L。
采用膜分散方法研究了湿法磷酸的萃取特性,以水/磷酸/TBP+煤油为实验体系,以不同名义孔径的不锈钢纤维烧结膜为分散介质,在自制的萃取器中研究了流量、膜孔径、煤油含量、相比、磷酸浓度、萃取室体积和停留时间对单级萃取效率的影响,找出适宜操作条件。实验结果表明,流量增加,单级萃取效率呈现先增加后降低的趋势;减小膜孔名义直径,增加磷酸浓度,单级效率升高;适度增加萃取室体积,延长停留时间,对萃取有利;萃取剂中混加煤油,萃取效率下降。在分散相流量为1000 mL/min、采用10 μm的不锈钢烧结膜、煤油体积分数为20%、相比1∶1、磷酸质量分数在30%~70%、萃取室体积为30 mL的情况下,单级效率可以达到96%。