化工进展 ›› 2021, Vol. 40 ›› Issue (3): 1238-1247.DOI: 10.16085/j.issn.1000-6613.2020-2008
赵婧1,2,3(), 王盼1,2,3, 刘彦楠1,2,3, 傅荣湛1,2,3, 段志广1,2,3, 范代娣1,2,3()
收稿日期:
2020-10-08
出版日期:
2021-03-05
发布日期:
2021-03-17
通讯作者:
范代娣
作者简介:
赵婧(1986—),博士,副教授,研究方向为抗癌药物、生物医用材料。E-mail:基金资助:
ZHAO Jing1,2,3(), WANG Pan1,2,3, LIU Yannan1,2,3, FU Rongzhan1,2,3, DUAN Zhiguang1,2,3, FAN Daidi1,2,3()
Received:
2020-10-08
Online:
2021-03-05
Published:
2021-03-17
Contact:
FAN Daidi
摘要:
稀有人参皂苷是人参的重要活性成分,但其含量极低或需经过肠道转化才能产生,工业生产中常通过去糖基、脱水等方法将常见人参皂苷转化为稀有人参皂苷。基于此,本文概述了人参皂苷的构效关系及常用转化方法,总结了微生物、酶法定向转化人参皂苷的最新进展,着重介绍了益生菌、食药用真菌转化人参皂苷制备功能食品,以及糖苷酶筛选和组合在提高人参总皂苷转化效率及产率等方面的研究进展;同时探讨了基因工程、溶剂工程、固定化酶等技术对人参皂苷转化效率、产率的影响,展望了蛋白质工程、合成生物学等方法在人参皂苷转化及合成方面的潜在应用价值,为稀有人参皂苷的规模化生产提供了基础。
中图分类号:
赵婧, 王盼, 刘彦楠, 傅荣湛, 段志广, 范代娣. 人参皂苷的定向生物转化研究进展[J]. 化工进展, 2021, 40(3): 1238-1247.
ZHAO Jing, WANG Pan, LIU Yannan, FU Rongzhan, DUAN Zhiguang, FAN Daidi. Recent advances in biotransformation of ginsenosides[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1238-1247.
底物 | 产物 | 转化菌株 | 特点 | 文献 |
---|---|---|---|---|
红参提取物 | Rd | Lactobacillus plantarum KCCM 11613P | 益生菌转化人参皂苷 | [ |
Rb1 | CK | Lactobacillus paralimentarius LH4 | 益生菌转化人参皂苷 | [ |
Rb1 | Rg3、Rh2 | Lactobacillus paracasei subsp. tolerans MJM60396 | 益生菌转化人参皂苷 | [ |
Rb1 | Rd | Lactobacillus rhamnosus GG | 益生菌转化人参皂苷;MRS培养基中添加20g/L纤维二糖提高益生菌β-葡萄糖苷酶产量 | [ |
Rb2、Rc | Rd | Bifidobacterium longum RD47 | 益生菌转化人参皂苷;MRS培养基中添加20g/L抗坏血酸提高α-L-阿拉伯呋喃糖苷酶和α-L-阿拉伯吡喃糖苷酶活性 | [ |
Rb1 | Rg3、CK | Lactococcus lactis(recombinant) | 基因改造益生菌,通过单一菌株发酵及两种菌株顺序发酵分别实现了Rb1向Rg3和CK的转化 | [ |
Rb1 | Rg3、CK | Cordyceps sinensis, Ascomycota sp | 药用虫草真菌转化人参皂苷 | [ |
Rb1 | Rd | Paecilomyces hepiali | 药用虫草真菌蝙蝠蛾拟青霉转化人参皂苷,同时人参促进虫草功效成分腺苷、虫草素和甘露醇的合成,实现协同增效 | [ |
Rb1、Rb3 | CK、C-Mx、 C-Mc | Fusarium sacchari | 土壤真菌转化人参茎叶皂苷 | [ |
Rb1、Rb2、Rc、Rd | CK | Aspergillus niger | GRAS认证真菌转化人参皂苷 | [ |
Re | Rg1、Rg2、Rh1 | Aspergillus niger | GRAS认证真菌转化人参皂苷 | [ |
Re | Rh1 | Aspergillus oryzae | GRAS认证真菌转化人参皂苷 | [ |
红参提取物 | Rd、F2、CK | Saccharomyces cerevisiae HJ-014 | 米酒酿酒酵母转化红参乙醇提取物总皂苷 | [ |
Rc | Rd | Cellulosimicrobium aquatile Lyp51 | 酒曲微生物转化人参皂苷 | [ |
Rb1 | CK | Paecilomyces bainier sp. 229 | 人参土壤真菌转化人参皂苷,通过菌种诱变和发酵工艺优化,提高了转化效率,将发酵体积扩大至6L | [ |
Rb1 | Rg3、CK | GE17-7,GE17-18 | 人参内生细菌及真菌转化人参皂苷 | [ |
表1 微生物法转化人参皂苷
底物 | 产物 | 转化菌株 | 特点 | 文献 |
---|---|---|---|---|
红参提取物 | Rd | Lactobacillus plantarum KCCM 11613P | 益生菌转化人参皂苷 | [ |
Rb1 | CK | Lactobacillus paralimentarius LH4 | 益生菌转化人参皂苷 | [ |
Rb1 | Rg3、Rh2 | Lactobacillus paracasei subsp. tolerans MJM60396 | 益生菌转化人参皂苷 | [ |
Rb1 | Rd | Lactobacillus rhamnosus GG | 益生菌转化人参皂苷;MRS培养基中添加20g/L纤维二糖提高益生菌β-葡萄糖苷酶产量 | [ |
Rb2、Rc | Rd | Bifidobacterium longum RD47 | 益生菌转化人参皂苷;MRS培养基中添加20g/L抗坏血酸提高α-L-阿拉伯呋喃糖苷酶和α-L-阿拉伯吡喃糖苷酶活性 | [ |
Rb1 | Rg3、CK | Lactococcus lactis(recombinant) | 基因改造益生菌,通过单一菌株发酵及两种菌株顺序发酵分别实现了Rb1向Rg3和CK的转化 | [ |
Rb1 | Rg3、CK | Cordyceps sinensis, Ascomycota sp | 药用虫草真菌转化人参皂苷 | [ |
Rb1 | Rd | Paecilomyces hepiali | 药用虫草真菌蝙蝠蛾拟青霉转化人参皂苷,同时人参促进虫草功效成分腺苷、虫草素和甘露醇的合成,实现协同增效 | [ |
Rb1、Rb3 | CK、C-Mx、 C-Mc | Fusarium sacchari | 土壤真菌转化人参茎叶皂苷 | [ |
Rb1、Rb2、Rc、Rd | CK | Aspergillus niger | GRAS认证真菌转化人参皂苷 | [ |
Re | Rg1、Rg2、Rh1 | Aspergillus niger | GRAS认证真菌转化人参皂苷 | [ |
Re | Rh1 | Aspergillus oryzae | GRAS认证真菌转化人参皂苷 | [ |
红参提取物 | Rd、F2、CK | Saccharomyces cerevisiae HJ-014 | 米酒酿酒酵母转化红参乙醇提取物总皂苷 | [ |
Rc | Rd | Cellulosimicrobium aquatile Lyp51 | 酒曲微生物转化人参皂苷 | [ |
Rb1 | CK | Paecilomyces bainier sp. 229 | 人参土壤真菌转化人参皂苷,通过菌种诱变和发酵工艺优化,提高了转化效率,将发酵体积扩大至6L | [ |
Rb1 | Rg3、CK | GE17-7,GE17-18 | 人参内生细菌及真菌转化人参皂苷 | [ |
底物 | 产物 | 转化酶及其来源微生物 | 特点 | 文献 |
---|---|---|---|---|
人参提取物 | CK | Sulfolobus solfataricus β-糖苷酶 | 能够同时转化多种常见人参皂苷 | [ |
Rb1、Rb2、Rc、Rd | CK、CY、C-Mc | Sulfolobus acidocaldarius β-糖苷酶 | 能够同时转化多种常见人参皂苷 | [ |
Rb1、Rb2、Rc | CK | Caldicellulosiruptor bescii β-糖苷酶 | 能够同时转化多种常见人参皂苷,转化率可达100%,产率可达600μmol/(L·h) | [ |
Rb1、Rb2、Rc | CK、CY、C-Mc | Armillaria mellea β-糖苷酶 | 能够同时转化多种常见人参皂苷,蜜环菌作为功能食品有望与人参皂苷实现协同增效 | [ |
Rb1、Rb2、Re | CK | Sulfolobus solfataricus β-糖苷酶 Thermotoga petrophila α-L-阿拉伯呋喃糖苷酶 | 人参提取物、红参提取物及人参叶提取物向CK的转化率可达100%,产率分别可达276mg/(L·h)、196mg/(L·h)及420mg/(L·h) | [ |
Rb1、Rb2、Rc、Rd | 20(S)-Rg3 | Thermotoga petrophlia β-葡萄糖苷酶 Thermotoga thermarum DSM5069 Thermotoga petrophlia β-葡萄糖苷酶 | 能够在3h内、90℃、pH 5.0条件下将10g/L PPD型总皂苷转化为3.93g/L 20(S)-Rg3,转化率可达98.19%,产率可达1.31g/(L·h) | [ |
表2 酶法转化人参皂苷
底物 | 产物 | 转化酶及其来源微生物 | 特点 | 文献 |
---|---|---|---|---|
人参提取物 | CK | Sulfolobus solfataricus β-糖苷酶 | 能够同时转化多种常见人参皂苷 | [ |
Rb1、Rb2、Rc、Rd | CK、CY、C-Mc | Sulfolobus acidocaldarius β-糖苷酶 | 能够同时转化多种常见人参皂苷 | [ |
Rb1、Rb2、Rc | CK | Caldicellulosiruptor bescii β-糖苷酶 | 能够同时转化多种常见人参皂苷,转化率可达100%,产率可达600μmol/(L·h) | [ |
Rb1、Rb2、Rc | CK、CY、C-Mc | Armillaria mellea β-糖苷酶 | 能够同时转化多种常见人参皂苷,蜜环菌作为功能食品有望与人参皂苷实现协同增效 | [ |
Rb1、Rb2、Re | CK | Sulfolobus solfataricus β-糖苷酶 Thermotoga petrophila α-L-阿拉伯呋喃糖苷酶 | 人参提取物、红参提取物及人参叶提取物向CK的转化率可达100%,产率分别可达276mg/(L·h)、196mg/(L·h)及420mg/(L·h) | [ |
Rb1、Rb2、Rc、Rd | 20(S)-Rg3 | Thermotoga petrophlia β-葡萄糖苷酶 Thermotoga thermarum DSM5069 Thermotoga petrophlia β-葡萄糖苷酶 | 能够在3h内、90℃、pH 5.0条件下将10g/L PPD型总皂苷转化为3.93g/L 20(S)-Rg3,转化率可达98.19%,产率可达1.31g/(L·h) | [ |
1 | WONG A S T, CHE C M, LEUNG K W. Recent advances in ginseng as cancer therapeutics: a functional and mechanistic overview[J]. Natural Product Reports, 2015, 32(2): 256-272. |
2 | Future Market Insights. Ginseng market [EB/OL]. [2020-05-15]. . |
3 | 李伟娜,蒋云云,刘彦楠,等. 人参皂苷单体定向转化的生物催化及应用进展[J]. 生物工程学报, 2019, 35(9): 1590-1606. |
LI W N, JIANG Y Y, LIU Y N, et al. Biocatalytic strategies in producing ginsenoside by glycosidase-a review[J]. Chinese Journal of Biotechnology, 2019, 35(9): 1590-1606. | |
4 | XU X H, LI T, FONG C M V, et al. Saponins from chinese medicines as anticancer agents[J]. Molecules, 2016, 21(10): 1326-1353. |
5 | PARK C S, YOO M H, NOH K H, et al. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases[J]. Applied Microbiology and Biotechnology, 2010, 87(1): 9-19. |
6 | LEUNG K W, WONG A S. Pharmacology of ginsenosides: a literature review[J]. Chinese Medical Journal, 2010, 5: 20-27. |
7 | KIM D H. Chemical diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng[J]. Journal of Ginseng Research, 2012, 36(1): 1-15. |
8 | HU M L, YANG J, QU L L, et al. Ginsenoside Rk1 induces apoptosis and downregulates the expression of PD-L1 by targeting the NF-kappa B pathway in lung adenocarcinoma[J]. Food & Function, 2020, 11(1): 456-471. |
9 | SHAO J J, ZHENG X Y, QU L L, et al. Ginsenoside Rg5/Rk1 ameliorated sleep via regulating the GABAergic/serotoninergic signaling pathway in a rodent model[J]. Food & Function, 2020, 11(2): 1245-1257. |
10 | WEI B, DUAN Z G, ZHU C H, et al. Anti-anemia effects of ginsenoside Rk3 and ginsenoside Rh4 on mice with ribavirin-induced anemia[J]. Food & Function, 2018, 9(4): 2447-2455. |
11 | LIU Y, DENG J J, FAN D D. Ginsenoside Rk3 ameliorates high-fat-diet/streptozocin induced type 2 diabetes mellitus in mice via the AMPK/Akt signaling pathway[J]. Food & Function, 2019, 10(5): 2538-2551. |
12 | QU L L, ZHU Y Y, LIU Y N, et al. Protective effects of ginsenoside Rk3 against chronic alcohol-induced liver injury in mice through inhibition of inflammation, oxidative stress, and apoptosis[J]. Food and Chemical Toxicology, 2019, 126: 277-284. |
13 | WU Q, DENG J J, FAN D D, et al. Ginsenoside Rh4 induces apoptosis and autophagic cell death through activation of the ROS/JNK/p53 pathway in colorectal cancer cells[J]. Biochemical Pharmacology, 2018, 148: 64-74. |
14 | DENG X Q, ZHAO J Q, QU L L, et al. Ginsenoside Rh4 suppresses aerobic glycolysis and the expression of PD-L1 via targeting AKT in esophageal cancer[J]. Biochemical Pharmacology, 2020, 17: 114038-114056. |
15 | DUAN Z G, WEI B, DENG J J, et al. The anti-tumor effect of ginsenoside Rh4 in MCF-7 breast cancer cells in vitro and in vivo[J]. Biochemical and Biophysical Research Communications, 2018, 499(3): 482-487. |
16 | LIU Y N, FAN D D. Ginsenoside Rg5 induces apoptosis and autophagy via the inhibition of the PI3K/Akt pathway against breast cancer in a mouse model[J]. Food & Function, 2018, 9(11): 5513-5527. |
17 | LIU Y N, FAN D D. The preparation of ginsenoside Rg5, its antitumor activity against breast cancer cells and its targeting of PI3K[J]. Nutrients, 2020, 12(1): 246-265. |
18 | WEI Y G, YANG H X, ZHU C H, et al. Hypoglycemic effect of ginsenoside Rg5 mediated partly by modulating gut microbiota dysbiosis in diabetic db/db mice[J]. Journal of Agricultural and Food Chemistry, 2020, 68(18): 5107-5117. |
19 | ZHU Y Y, ZHU C H, YANG H X, et al. Protective effect of ginsenoside Rg5 against kidney injury via inhibition of NLRP3 inflammasome activation and the MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic mice[J]. Pharmacological Research, 2020, 155: 104746-104757. |
20 | DENG J J, LIU Y, DUAN Z G, et al. Protopanaxadiol and protopanaxatriol-type saponins ameliorate glucose and lipid metabolism in type 2 diabetes mellitus in high-fat diet/streptozocin-induced mice[J]. Frontiers in Pharmacology, 2017, 8: 506-517. |
21 | LIU Y N, FAN D D. Ginsenoside Rg5 induces G2/M phase arrest, apoptosis and autophagy via regulating ROS-mediated MAPK pathways against human gastric cancer[J]. Biochemical Pharmacology, 2019, 168: 285-304. |
22 | DUAN Z G, DENG J J, DONG Y F, et al. Anticancer effects of ginsenoside Rk3 on non-small cell lung cancer cells: in vitro and in vivo[J]. Food & Function, 2017, 8(10): 3723-3736. |
23 | HONG Y N, FAN D D. Ginsenoside Rk1 induces cell death through ROS-mediated PTEN/PI3K/Akt/mTOR signaling pathway in MCF-7 cells[J]. Journal of Functional Foods, 2019, 57: 255-265. |
24 | HONG Y N, FAN D D. Ginsenoside Rk1 induces cell cycle arrest and apoptosis in MDA-MB-231 triple negative breast cancer cells[J]. Toxicology, 2019, 418: 22-31. |
25 | 范代娣,段志广,惠俊峰,等. 一种利用原人参二醇组皂苷大规模转化生产人参皂苷Rk1的方法: CN201610344506.3[P]. 2016-10-12. |
FAN D D, DUAN Z G, HUI J F, et al. A method for large-scale conversion of protopanaxadiol saponins to ginsenoside Rk1: CN201610344506.3[P]. 2016-10-12. | |
26 | KU S. Finding and producing probiotic glycosylases for the biocatalysis of ginsenosides: a mini review[J]. Molecules, 2016, 21(5): 645-656. |
27 | JUNG J, JANG H J, EOM S J, et al. Fermentation of red ginseng extract by the probiotic Lactobacillus plantarum KCCM 11613P: ginsenoside conversion and antioxidant effects[J]. Journal of Ginseng Research, 2019, 43(1): 20-26. |
28 | QUAN L H, KIM Y J, LI G H, et al. Microbial transformation of ginsenoside Rb1 to compound K by Lactobacillus paralimentarius[J]. World Journal of Microbiology & Biotechnology, 2013, 29(6): 1001-1007. |
29 | PALANIYANDI S A, SON B M, DAMODHARAN K, et al. Fermentative transformation of ginsenoside Rb1 from Panax ginseng C. A. Meyer to Rg(3) and Rh-2 by Lactobacillus paracasei subsp. tolerans MJM60396[J]. Biotechnology and Bioprocess Engineering, 2016, 21(5): 587-594. |
30 | KU S, YOU H J, PARK M S, et al. Whole-cell biocatalysis for producing ginsenoside Rd from Rb1 using Lactobacillus rhamnosus GG[J]. Journal of Microbiology and Biotechnology, 2016, 26(7): 1206-1215. |
31 | KU S, YOU H J, PARK M S, et al. Effects of ascorbic acid on alpha-l-arabinofuranosidase and alpha-l-arabinopyranosidase activities from Bifidobacterium longum RD47 and its application to whole cell bioconversion of ginsenoside[J]. Journal of the Korean Society for Applied Biological Chemistry, 2015, 58(6): 857-865. |
32 | LI L, LEE S J, YUAN Q P, et al. Production of bioactive ginsenoside Rg3(S) and compound K using recombinant Lactococcus lactis[J]. Journal of Ginseng Research, 2018, 42(4): 412-418. |
33 | LI F, WU Z, SUI X. Biotransformation of ginsenoside Rb1 with wild Cordyceps sinensis and Ascomycota sp. and its antihyperlipidemic effects on the diet-induced cholesterol of zebrafish[J]. Journal of Food Biochemistry, 2020, 44(6): e13192. |
34 | 马子君,牛耀祥,高陆,等. 人参对冬虫夏草蝙蝠蛾拟青霉固体发酵的影响[J]. 人参研究, 2015(2): 11-14. |
MA Z J, NIU Y X, GAO L, et al. Effects of Panax ginseng C.A.Mey on the matrix solid-state fermentation of Paecilomyces hepiali[J]. Ginseng Research, 2015(2): 11-14. | |
35 | HAN Y, SUN B, JIANG B, et al. Microbial transformation of ginsenosides Rb1, Rb3 and Rc by Fusarium sacchari[J]. Journal of Applied Microbiology, 2010, 109(3): 792-798. |
36 | LIU C Y, ZHOU R X, SUN C K, et al. Preparation of minor ginsenosides C-Mc, C-Y, F2, and C-K from American ginseng PPD-ginsenoside using special ginsenosidase type-I from Aspergillus niger g.848[J]. Journal of Ginseng Research, 2015, 39(3): 221-229. |
37 | 吴秀丽,刘成,陈靖. 黑曲霉Aspergillus niger 对人参皂苷Re的微生物转化[J]. 中国当代医药, 2011, 18(33): 7-9. |
WU X L, LIU C, CHEN J. Microbial transformation of ginsenoside Re by Aspergillus niger[J]. China Modern Medicine, 2011, 18(33): 7-9. | |
38 | LI Z P, AHN H J, KIM N Y, et al. Korean ginseng berry fermented by mycotoxin non-producing Aspergillus niger and Aspergillus oryzae: ginsenoside analyses and anti-proliferative activities[J]. Biological & Pharmaceutical Bulletin, 2016, 39(9): 1461-1467. |
39 | CHOI H J, KIM E A, KIM D H, et al. The bioconversion of red ginseng ethanol extract into compound K by Saccharomyces cerevisiae HJ-014[J]. Mycobiology, 2014, 42(3): 256-261. |
40 | ZUO S S, WANG Y C, ZHU L, et al. Cloning and characterization of a ginsenoside-hydrolyzing α-L-arabinofuranosidase, CaAraf51, from Cellulosimicrobium aquatile Lyp51[J]. Current Microbiology, 2020, 77(10): 2783-2791. |
41 | ZHOU W, YAN Q, LI J Y, et al. Biotransformation of Panax notoginseng saponins into ginsenoside compound K production by Paecilomyces bainier sp. 229[J]. Journal of Applied Microbiology, 2008, 104(3): 699-706. |
42 | ZHOU W, HUANG H, ZHU H Y, et al. New metabolites from the biotransformation of ginsenoside Rb1 by Paecilomyces bainier sp.229 and activities in inducing osteogenic differentiation by Wnt/beta-catenin signaling activation[J]. Journal of Ginseng Research, 2018, 42(2): 199-207. |
43 | FU Y, YIN Z H, YIN C Y. Biotransformation of ginsenoside Rb1 to ginsenoside Rg3 by endophytic bacterium Burkholderia sp. GE 17-7 isolated from Panax ginseng[J]. Journal of Applied Microbiology, 2017, 122(6): 1579-1585. |
44 | FU Y, YIN Z H, WU L P, et al. Biotransformation of ginsenoside Rb1 to ginsenoside C-K by endophytic fungus Arthrinium sp. GE 17-18 isolated from Panax ginseng[J]. Letters in Applied Microbiology, 2016, 63(3): 196-201. |
45 | NOH K H, SON J W, KIM H J, et al. Ginsenoside compound K production from ginseng root extract by a thermostable beta-glycosidase from Sulfolobus solfataricus[J]. Bioscience Biotechnology and Biochemistry, 2009, 73(2): 316-321. |
46 | NOH K H, OH D K. Production of the rare ginsenosides compound K, compound Y, and compound Mc by a thermostable beta-glycosidase from Sulfolobus acidocaldarius[J]. Biological & Pharmaceutical Bulletin, 2009, 32(11): 1830-1835. |
47 | QUAN L H, MIN J W, JIN Y, et al. Enzymatic biotransformation of ginsenoside Rb1 to compound K by recombinant β-glucosidase from Microbacterium esteraromaticum[J]. Journal of Agricultural and Food Chemistry, 2012, 60(14): 3776-3781. |
48 | SHIN K C, KIM T H, CHOI J H, et al. Complete biotransformation of protopanaxadiol-type ginsenosides to 20-O-β-glucopyranosyl-20(S)-protopanaxadiol using a novel and thermostable β-glucosidase[J]. Journal of Agricultural and Food Chemistry, 2018, 66(11): 2822-2829. |
49 | UPADHYAYA J, KIM M J, KIM Y H, et al. Enzymatic formation of compound-K from ginsenoside Rb1 by enzyme preparation from cultured mycelia of Armillaria mellea[J]. Journal of Ginseng Research, 2016, 40(2): 105-112. |
50 | UPADHYAYA J, YOON M S, KIM M J, et al. Purification and characterization of a novel ginsenoside Rc-hydrolyzing β-glucosidase from Armillaria mellea mycelia[J]. AMB Express, 2016, 6: 112-125. |
51 | KIM M J, UPADHYAYA J, YOON M S, et al. Highly regioselective biotransformation of ginsenoside Rb2 into compound Y and compound K by beta-glycosidase purified from Armillaria mellea mycelia[J]. Journal of Ginseng Research, 2018, 42(4): 504-511. |
52 | KIM T H, YANG E J, SHIN K C, et al. Enhanced production of β-D-glycosidase and α-L-arabinofuranosidase in recombinant Escherichia coli in fed-batch culture for the biotransformation of ginseng leaf extract to ginsenoside compound K[J]. Biotechnology and Bioprocess Engineering, 2018, 23(2): 183-193. |
53 | ZHANG S, LUO J, XIE J, et al. Cooperated biotransformation of ginsenoside extracts into ginsenoside 20(S)-Rg3 by three thermostable glycosidases[J]. Journal of Applied Microbiology, 2020, 128(3): 721-734. |
54 | WEI W, WANG P P, WEI Y J, et al. Characterization of Panax ginseng UDP-glycosyl transferases catalyzing protopanaxatriol and biosyntheses of bioactive ginsenosides F1 and Rh1 in metabolically engineered yeasts[J]. Molecular Plant, 2015, 8(9): 1412-1424. |
55 | ZHAO H. Methods for stabilizing and activating enzymes in ionic liquids-a review[J]. Journal of Chemical Technology and Biotechnology, 2010, 85(7): 891-907. |
56 | LI W N, FAN D D. Biocatalytic strategies for the production of ginsenosides using glycosidase: current state and perspectives[J]. Applied Microbiology and Biotechnology, 2020, 104(9): 3807-3823. |
57 | JUNEIDI I, HAYYAN M, HASHIM M A, et al. Pure and aqueous deep eutectic solvents for a lipase-catalysed hydrolysis reaction[J]. Biochemical Engineering Journal, 2017, 117: 129-138. |
58 | XU W J, HUANG Y K, LI F, et al. Improving β-glucosidase biocatalysis with deep eutectic solvents based on choline chloride[J]. Biochemical Engineering Journal, 2018, 138: 37-46. |
59 | HAN X, LI W N, DUAN Z G, et al. Biocatalytic production of compound K in a deep eutectic solvent based on choline chloride using a substrate fed-batch strategy[J]. Bioresource Technology, 2020, 305: 123039-123047. |
60 | MA Z, MI Y, HAN X, et al. Transformation of ginsenoside via deep eutectic solvents based on choline chloride as an enzymatic reaction medium[J]. Bioprocess and Biosystems Engineering, 2020, 43(7): 1195-1208. |
61 | SHELDON R A, PELT S VAN. Enzyme immobilisation in biocatalysis: why, what and how[J]. Chemical Society Reviews, 2013, 42(15): 6223-6235. |
62 | 姚稼灏,薛雅鞠,赵永亮,等. 多孔纳米材料固定化酶研究进展[J]. 微生物学通报, 2020, 47(7): 2177-2192. |
YAO J H, XUE Y J, ZHAO Y L, et al. Recent advances in immobilization of enzymes on porous nanomaterials[J]. Microbiology China, 2020, 47(7): 2177-2192. | |
63 | BILAL M, IQBAL H M N. Naturally-derived biopolymers: potential platforms for enzyme immobilization[J]. International Journal of Biological Macromolecules, 2019, 130: 462-482. |
64 | LIAN X Z, FANG Y, JOSEPH E, et al. Enzyme-MOF (metal-organic framework) composites[J]. Chemical Society Reviews, 2017, 46(11): 3386-3401. |
65 | CUI C H, JEON B M, FU Y, et al. High-density immobilization of a ginsenoside-transforming β-glucosidase for enhanced food-grade production of minor ginsenosides[J]. Applied Microbiology and Biotechnology, 2019, 103(17): 7003-7015. |
66 | 于兆慧,刘其媛,崔莉,等. 蜗牛酶转化人参皂苷Rb1制备人参稀有皂苷Compound K的研究[J]. 中华中医药杂志, 2015, 30(2): 412-416. |
YU Z H, LIU Q Y, CUI L, et al. Study on the preparation of rare ginsenoside Compound K by enzymolysis of ginsenoside Rb1 with snailase[J].China Journal of Traditional Chinese Medicine and Pharmacy, 2015, 30(2): 412-416. | |
67 | DUAN Z G, ZHU C H, SHI J J, et al. High efficiency production of ginsenoside compound K by catalyzing ginsenoside Rb1 using snailase[J]. Chinese Journal of Chemical Engineering, 2018, 26(7): 1591-1597. |
68 | 于兆慧,刘其媛,崔莉,等. 微球固定化蜗牛酶转化人参皂苷Rb1 制备人参稀有皂苷Compound K研究[J]. 中草药, 2014, 45(21): 3092-3097. |
YU Z H, LIU Q Y, CUI L, et al. Transformation of rare ginsenoside Compound K from ginsenoside Rb1 catalyzed by snailase immobilization onto microspheres[J]. Chinese Traditional and Herbal Drugs, 2014, 45(21): 3092-3097. | |
69 | HASSAN M, RAN X K, YUAN Y, et al. Biotransformation of ginsenoside using covalently immobilized snailase enzyme onto activated carrageenan gel beads[J]. Bulletin of Materials Science, 2019, 42(1): 29-36. |
[1] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[2] | 吕超, 张习文, 金理健, 杨林军. 新型两相吸收剂-离子液体系统高效捕获CO2[J]. 化工进展, 2023, 42(6): 3226-3232. |
[3] | 杨许召, 李庆, 袁康康, 张盈盈, 韩敬莉, 吴诗德. 含Gemini离子液体低共熔溶剂热力学性质[J]. 化工进展, 2023, 42(6): 3123-3129. |
[4] | 陈钰, 刘冲, 邱于荟, 贲梓欣, 牟天成. 离子液体和低共熔溶剂绿色回收废旧锂离子电池的研究进展[J]. 化工进展, 2022, 41(S1): 485-496. |
[5] | 华渠成, 段庆华. 离子液体极压抗磨剂的研究进展[J]. 化工进展, 2022, 41(S1): 331-339. |
[6] | 单清雯, 张娟, 王亚娟, 刘文强. 聚合离子液体的合成及其吸附脱硫性能[J]. 化工进展, 2022, 41(8): 4571-4579. |
[7] | 韩明阳, 乔慧, 付佳铭, 马泽雯, 王妍, 欧阳嘉. 非水溶剂预处理木质纤维原料研究进展[J]. 化工进展, 2022, 41(8): 4086-4097. |
[8] | 阮佳纬, 叶香珠, 陈立芳, 漆志文. 离子液体和低共熔溶剂催化二氧化碳合成有机碳酸酯的研究进展[J]. 化工进展, 2022, 41(3): 1176-1186. |
[9] | 倪清, 来锦波, 彭东岳, 管翠诗, 龙军. 离子液体萃取分离烃类化合物的研究进展[J]. 化工进展, 2022, 41(2): 619-627. |
[10] | 鲁泽平, 裴新华, 薛誉, 张晓光, 胡燚. 甜菜碱类离子液体化学修饰猪胰脂肪酶提升其酶学性能[J]. 化工进展, 2022, 41(11): 6045-6052. |
[11] | 陈亚举, 任清刚, 周贤太, 纪红兵. 多孔有机聚合物催化二氧化碳合成环状碳酸酯研究进展[J]. 化工进展, 2021, 40(7): 3564-3583. |
[12] | 白瑞兵, 王均凤, 王道广, 张延强. 离子液体基萃取体系用于卤水中锂分离的研究进展[J]. 化工进展, 2021, 40(6): 3224-3238. |
[13] | 刘铮, 刘燃, 花儿, 冀健龙. 水分含量对正己胺-Tf2N型质子化离子液体物理化学性质的影响[J]. 化工进展, 2021, 40(4): 2270-2277. |
[14] | 张文林, 刘雪娇, 马青查, 杨双丞, 张永康, 李春利. 高镍锂离子电池三元材料NCM电解质的应用[J]. 化工进展, 2021, 40(4): 2175-2187. |
[15] | 赵朝阳, 罗小燕, 裴宝有, 项小燕, 李佳然, 马瑞勋, 张子姮, 林金清. 多孔超交联聚合物固载离子液体催化二氧化碳环加成反应的研究进展[J]. 化工进展, 2021, 40(3): 1438-1448. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |