化工进展 ›› 2021, Vol. 40 ›› Issue (7): 3564-3583.DOI: 10.16085/j.issn.1000-6613.2020-1502
收稿日期:
2020-07-31
修回日期:
2020-08-31
出版日期:
2021-07-06
发布日期:
2021-07-19
通讯作者:
纪红兵
作者简介:
陈亚举(1989—),男,博士,研究方向为绿色催化与合成、CO2捕集与转化。E-mail:基金资助:
CHEN Yaju1(), REN Qinggang2, ZHOU Xiantai3, JI Hongbing1,3()
Received:
2020-07-31
Revised:
2020-08-31
Online:
2021-07-06
Published:
2021-07-19
Contact:
JI Hongbing
摘要:
二氧化碳(CO2)捕集、利用和储存(CCUS)在全球能源结构转型中是一种极具潜力的策略,能够实现能源供给、基础原料产出以及限制气候变化。多孔有机聚合物(POPs)具有高CO2吸附容量和吸附选择性、突出的结构特性以及优异的化学可调控性,其作为极具潜力的材料广泛应用于催化CO2参与的有机反应中。其中,CO2与环氧化物环加成生成环状碳酸酯的反应具有100%的原子经济性,且其产物也极具工业价值。本文基于CO2环加成反应催化机制,从催化剂的合成方法、结构性质与组成特性角度出发,综述了POPs在CO2/环氧化物环加成反应的研究进展,包括金属配合物类、氢键供体类、离子液体类、金属配合物/离子液体和氢键供体/离子液体等有机多孔聚合物体系。通过阐述POPs在催化CO2制备高附加值环状碳酸酯反应中的研究现状和发展趋势,为POPs的开发与应用以及CO2综合利用的工业化探索提供具有建设性的指导意见。
中图分类号:
陈亚举, 任清刚, 周贤太, 纪红兵. 多孔有机聚合物催化二氧化碳合成环状碳酸酯研究进展[J]. 化工进展, 2021, 40(7): 3564-3583.
CHEN Yaju, REN Qinggang, ZHOU Xiantai, JI Hongbing. Recent advances in porous organic polymers for the synthesis of cyclic carbonates from carbon dioxide[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3564-3583.
1 | Agency International Energy. Global energy and CO2 status report 2018[R]. Paris, 2019. |
2 | SAKAKURA Toshiyasu, CHOI Jun Chul, YASUDA Hiroyuki. Transformation of carbon dioxide[J]. Chemical Reviews, 2007, 107(6): 2365-2387. |
3 | LIU Qiang, WU Lipeng, JACKSTELL Ralf, et al. Using carbon dioxide as a building block in organic synthesis[J]. Nature Communications, 2015, 6: 5933-5947. |
4 | ARESTA Michele, DIBENEDETTO Angela, ANGELINI Antonella. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. technological use of CO2[J]. Chemical Reviews, 2014, 114(3): 1709-1742. |
5 | NEVES GOMES Christophe DAS, JACQUET Olivier, VILLIERS Claude, et al. A diagonal approach to chemical recycling of carbon dioxide: organocatalytic transformation for the reductive functionalization of CO2[J]. Angewandte Chemie International Edition, 2012, 51(1): 187-190. |
6 | Jürgen KLANKERMAYER, WESSELBAUM Sebastian, BEYDOUN Kassem, et al. Selective catalytic synthesis using the combination of carbon dioxide and hydrogen: catalytic chess at the interface of energy and chemistry[J]. Angewandte Chemie International Edition, 2016, 55(26): 7296-7343. |
7 | 张文珍, 张宁, 郭春晓, 等. 二氧化碳参与的环化反应最新研究进展[J]. 有机化学, 2017, 37(6): 1309-1321. |
ZHANG Wenzhen, ZHANG Ning, GUO Chunxiao, et al. Recent progress in the cyclization reactions using carbon dioxide[J]. Chinese Journal of Organic Chemistry, 2017, 37(6): 1309-1321. | |
8 | 罗荣昌, 周贤太, 杨智, 等. 均相体系中酸碱协同催化二氧化碳与环氧化物的环加成反应[J].化工学报, 2016, 67(1): 258-276. |
LUO Rongchang, ZHOU Xiantai, YANG Zhi, et al. Acid-base synergistic effect promoted cycloaddition reaction from CO2 with epoxide in homogenous catalysis systems[J]. CIESC Journal, 2016, 67(1): 258-276. | |
9 | BOOT-HANDFORD M E, ABANADES J C, ANTHONY E J, et al. Carbon capture and storage update[J]. Energy & Environmental Science, 2014, 7(1): 130-189. |
10 | Benjamin SCHÄFFNER, Friederike SCHÄFFNER, VEREVKIN Sergey P, et al. Organic carbonates as solvents in synthesis and catalysis[J]. Chemical Reviews, 2010, 110(8): 4554–4581. |
11 | SHAIKH Rafik Rajjak, PORNPRAPROM Suriyaporn, Valerio D'ELIA. Catalytic strategies for the cycloaddition of pure, diluted and waste CO2 to epoxides under ambient conditions[J]. ACS Catalysis, 2018, 8(1): 419-450. |
12 | BARTHEL Alexander, SAIH Youssef, GIMENEZ Michel, et al. Highly integrated CO2 capture and conversion: direct synthesis of cyclic carbonates from industrial flue gas[J]. Green Chemistry, 2016, 18(10): 3116-3123. |
13 | ROY Susmita, BANERJEE Biplab, BHAUMIL Asim, et al. CO2 fixation at atmospheric pressure: porous ZnSnO3 nanocrystals as a highly efficient catalyst for the synthesis of cyclic carbonates[J]. RSC Advances, 2016, 6(37): 31153-31160. |
14 | SUN Jian, HAN Lijun, CHENG Weiguo, et al. Efficient acid-base bifunctional catalysts for the fxation of CO2 with epoxides under metal- and solvent-free conditions[J]. ChemSuschem, 2011, 4(4): 502-507. |
15 | 杨美, 钟向宏, 陈群. 离子液体催化二氧化碳合成环状碳酸酯的研究进展[J]. 化工进展, 2017, 36(9): 3300-3308. |
YANG Mei, ZHONG Xianghong, CHEN Qun. Recent progress of the synthesis of cyclic carbonates from CO2 and epoxides catalyzed by ionic liquids[J]. Chemical Industry and Engineering Progress, 2017, 36(9): 3300-3308. | |
16 | FIORANI Giulia, GUO Wusheng, KLEIJ Arjan W. Sustainable conversion of carbon dioxide: the advent of organocatalysis[J]. Green Chemistry, 2015, 17(3): 1375-1389. |
17 | REN Weimin, LIU Ye, LU Xiaobing. Bifunctional aluminum catalyst for CO2 fixation: regioselective ring opening of three-membered heterocyclic compounds[J]. The Journal of Organic Chemistry, 2014, 79(20): 9771-9777. |
18 | QIN Yusheng, GUO Hongchen, SHENG Xingheng, et al. An aluminum porphyrin complex with high activity and selectivity for cyclic carbonate synthesis[J]. Green Chemistry, 2015, 17(5): 2853-2858. |
19 | LUO Rongchang, ZHOU Xiantai, ZHANG Wuying, et al. New bi-functional zinc catalysts based on robust and easy-to-handle N-chelating ligands for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions[J]. Green Chemistry, 2014, 16(9): 4179-4189. |
20 | CHEN Yaju, LUO Rongchang, YANG Zhi, et al. Imidazolium-based ionic liquid decorated zinc porphyrin catalyst for converting CO2 into five-membered heterocyclic molecules[J]. Sustainable Energy & Fuels, 2018, 2(1): 125-132. |
21 | JIANG Xu, GOU Faliang, CHEN Fengjuan, et al. Cycloaddition of epoxides and CO2 catalyzed by bisimidazole-functionalized porphyrin cobalt(Ⅲ) complexes[J]. Green Chemistry, 2016, 18(12): 3567-3576. |
22 | Tadashi EMA, MIYAZAKI Yuki, SHIMONISHI Junta, et al. Bifunctional porphyrin catalysts for the synthesis of cyclic carbonates from epoxides and CO2: structural optimization and mechanistic study[J]. Journal of the American Chemical Society, 2014, 136(43): 15270-15279. |
23 | CHEN Aibing, ZHANG Yunzhao, CHEN Jinzhu, et al. Metalloporphyrin-based organic polymers for carbon dioxide fixation to cyclic carbonate[J]. Journal of Materials Chemistry A, 2015, 3(18): 9807-9816. |
24 | GAO Wenyang, CHEN Yao, NIU Youhong, et al. Crystal engineering of an nbo topology metal-organic framework for chemical fixation of CO2 under ambient conditions[J]. Angewandte Chemie International Edition, 2014, 53(10): 2615-2619. |
25 | WANG Jinquan, ZHANG Yugen. Facile synthesis of N-rich porous azo-linked frameworks for selective CO2 capture and conversion[J]. Green Chemistry, 2016, 18(19): 5248-5253. |
26 | CHEN Jian, LI He, ZHONG Mingmei, et al. Hierarchical mesoporous organic polymer with intercalated metal complex for efficient synthesis of cyclic carbonates from flue gas[J]. Green Chemistry, 2016, 18(24): 6493-6500. |
27 | HUANG Kuan, ZHANG Jiayin, LIU Fujian, et al. Synthesis of porous polymeric catalysts for the conversion of carbon dioxide[J]. ACS Catalysis, 2018, 8(10): 9079-9102. |
28 | LIANG Jun, HUANG Yuanbiao, CAO Rong. Metal-organic frameworks and porous organic polymers for sustainable fixation of carbon dioxide into cyclic carbonates[J]. Coordination Chemistry Reviews, 2019, 378: 32-65. |
29 | WANG Wenjing, ZHOU Mi, YUAN Daqiang. Carbon dioxide capture in amorphous porous organic polymers[J]. Journal of Materials Chemistry A, 2017, 5(4): 1334-1347. |
30 | SHENG Xingfeng, GUO Hongchen, QIN Yusheng, et al. A novel metalloporphyrin-based conjugated microporous polymer for capture and conversion of CO2[J]. RSC Advances, 2015, 5(40): 31664-31669. |
31 | CHEN Aibing, JU Pengpeng, ZHANG Yunzhao, et al. Highly recyclable and magnetic catalyst of a metalloporphyrin-based polymeric composite for cycloaddition of CO2 to epoxide[J]. RSC Advances, 2016, 6(99): 96455-96466. |
32 | DAI Zhifeng, SUN Qi, LIU Xiaolong, et al. Metalated porous porphyrin polymers as efficient heterogeneous catalysts for cycloaddition of epoxides with CO2 under ambient conditions[J]. Journal of Catalysis, 2016, 338: 202-209. |
33 | WANG Wenlong, LI Cunyao, JIN Jutao, et al. Mg-porphyrin complex doped divinylbenzene based porous organic polymers (POPs) as highly efficient heterogeneous catalysts for the conversion of CO2 to cyclic carbonates[J]. Dalton Transactions, 2018, 47(37): 13135-13141. |
34 | WANG Shaolei, SONG Kun peng, ZHANG Chengxin, et al. A novel metalporphyrin-based microporous organic polymer with high CO2 uptake and efficient chemical conversion of CO2 under ambient conditions[J]. Journal of Materials Chemistry A, 2017, 5(4): 1509-1515. |
35 | CHEN Yaju, LUO Rongchang, XU Qihang, et al. State-of-the-art aluminum porphyrin-based heterogeneous catalyst for the chemical fixation of CO2 into cyclic carbonates at ambient conditions[J]. ChemCatChem, 2017, 9(5): 767-773. |
36 | KIM Myung Hyun, SONG Taemoon, Ue Ryung SEO, et al. Hollow and microporous catalysts bearing Cr(Ⅲ)-F porphyrins for room temperature CO2 fixation to cyclic carbonates[J]. Journal of Materials Chemistry A, 2017, 5(45): 23612-23619. |
37 | XIE Yong, WANG Tingting, LIU Xiaohuan, et al. Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer[J]. Nature Communications, 2013, 4: 1960-1966. |
38 | XIE Yong, YANG Ruixia, HUANG Nianyu, et al. Efficient fixation of CO2 at mild conditions by a Cr-conjugated microporous polymer[J]. Journal of Energy Chemistry, 2014, 23(1): 22-28. |
39 | XIE Yong, WANG Tingting, YANG Ruixia, et al. Efficient fixation of CO2 by a zinc-coordinated conjugated microporous polymer[J]. ChemSusChem, 2014, 7(8): 2110-2114. |
40 | CHUN Jiseul, KANG Sungah, KANG Narae, et al. Microporous organic networks bearing metal-salen species for mild CO2 fixation to cyclic carbonates[J]. Journal of Materials Chemistry A, 2013, 1(18): 5517-5523. |
41 | ALKORDI Mohamed H, WESELINSKI Łukasz J, Valerio D'ELIA, et al. CO2 conversion: the potential of porous-organic polymers (POPs) for catalytic CO2-epoxide insertion[J]. Journal of Materials Chemistry A, 2016, 4(19): 7453-7460. |
42 | BHUNIA Subhajit, MOLLA Rostam Ali, KUMARI Vandana, et al. Zn(Ⅱ) assisted synthesis of porous salen as an efficient heterogeneous scaffold for capture and conversion of CO2[J]. Chemical Communications, 2015, 51(86): 15732-15735. |
43 | LI He, LI Chun Zhi, CHEN Jian, et al. Synthesis of pyridine-zinc-based porous organic polymer for cocatalyst-free cycloaddition of epoxides[J]. Chemistry: an Asian Journal, 2017, 12(10): 1095-1103. |
44 | DAI Zhifeng, SUN Qi, LIU Xiaolong, et al. A hierarchical bipyridine-constructed framework for highly efficient CO2 capture and catalytic conversion[J]. ChemSusChem, 2017, 10(6): 1186–1192. |
45 | Hyun Chul CHO, LEE Han Sol, CHUN Jiseul, et al. Tubular microporous organic networks bearing imidazolium salts and their catalytic CO2 conversion to cyclic carbonates[J]. Chemical Communications, 2011, 47(3): 917-919. |
46 | WANG Jinquan, Waihong SNG, YI Guangshun, et al. Imidazolium salt-modified porous hypercrosslinked polymers for synergistic CO2 capture and conversion[J]. Chemical Communications, 2015, 51(60): 12076-12079. |
47 | LI Jing, JIA Degong, GUO Zengjing, et al. Imidazolinium based porous hypercrosslinked ionic polymers for efficient CO2 capture and fixation with epoxides[J]. Green Chemistry, 2017, 19(11): 2675-2686. |
48 | SANG Yafei, HUANG Jianhan. Benzimidazole-based hyper-cross-linked poly(ionic liquid)s for efficient CO2 capture and conversion[J]. Chemical Engineering Journal, 2020, 385: 123973. |
49 | DANI Alessandro, GROPPO Elena, BAROLO Claudia, et al. Design of high surface area poly(ionic liquid)s to convert carbon dioxide into ethylene carbonate[J]. Journal of Materials Chemistry A, 2015, 3(16): 8508-8518. |
50 | WANG Xiaochen, ZHOU Yu, GUO Zengjing, et al. Heterogeneous conversion of CO2 into cyclic carbonates at ambient pressure catalyzed by ionothermal-derived meso-macroporous hierarchical poly(ionic liquid)s[J]. Chemical Science, 2015, 6(12): 6916-6924. |
51 | CUI Caiyan, Rongjian SA, HONG Zixiao, et al. Ionic-liquid-modified click-based porous organic polymers for controlling capture and catalytic conversion of CO2[J]. ChemSusChem, 2020, 13(1): 180-187. |
52 | SONG Hongbing, WANG Yongjie, XIAO Meng, et al. Design of novel poly(ionic liquids) for the conversion of CO2 to cyclic carbonates under mild conditions without solvent[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9489-9497. |
53 | ZHANG Qiang, ZHANG Suobo, LI Shenghai. Novel functional organic network containing quaternary phosphonium and tertiary phosphorus[J]. Macromolecules, 2012, 45(7): 2981-2988. |
54 | WANG Jinquan, YANG Jason Gan Wei, YI Guangshun, et al. Phosphonium salt incorporated hypercrosslinked porous polymer for CO2 capture and conversion[J]. Chemical Communications, 2015, 51(86): 15708-15711. |
55 | SUN Qi, JIN Yingyin, AGUILA Briana, et al. Porous ionic polymers as a robust and efficient platform for capture and chemical fixation of atmospheric CO2[J]. ChemSusChem, 2016, 10(6): 1160-1165. |
56 | CAI Sheng, ZHU Dongliang, ZOU Yan, et al. Porous polymers bearing functional quaternary ammonium salts as efficient solid catalysts for the fixation of CO2 into cyclic carbonates[J]. Nanoscale Research Letters, 2016, 11(1): 1-9. |
57 | XIE Yaqiang, SUN Qing, FU Yawen, et al. Sponge-like quaternary ammonium-based poly(ionic liquid)s for high CO2 capture and efficient cycloaddition under mild conditions[J]. Journal of Materials Chemistry A, 2017, 5(48): 25594-25600. |
58 | BUYUKCAKIR Onur, Sang Hyun JE, CHOI Dong Shin, et al. Porous cationic polymers: the impact of counteranions and charges on CO2 capture and conversion[J]. Chemical Communications, 2016, 52(5): 934-937. |
59 | LENG Yan, LU Dan, JIANG Pingping, et al. Highly cross-linked cationic polymer microspheres as an efficient catalyst for facile CO2 fixation[J]. Catalysis Communications, 2016, 74: 99-103. |
60 | BUYUKCAKIR Onur, Sang Hyun JE, TALAPANENI Siddulu Naidu, et al. Charged covalent triazine frameworks for CO2 capture and conversion[J]. ACS Applied Materials & Interfaces, 2017, 9(8): 7209-7216. |
61 | ROESER Jérôme, KAILASAM Kamalakannan, THOMAS Arne. Covalent triazine frameworks as heterogeneous catalysts for the synthesis of cyclic and linear carbonates from carbon dioxide and epoxides[J]. ChemSusChem, 2012, 5(9): 1793-1799. |
62 | TALAPANENI Siddulu Naidu, BUYUKCAKIR Onur, Sang Hyun JE, et al. Nanoporous polymers incorporating sterically confined N-heterocyclic carbenes for simultaneous CO2 capture and xconversion at ambient pressure[J]. Chemistry of Materials, 2015, 27(19): 6818-6826. |
63 | ZHANG Xiao, Yanzong LYU, LIU Xiaoliang, et al. A hydroxyl-functionalized microporous organic polymer for capture and catalytic conversion of CO2[J]. RSC Advances, 2016, 6(80): 76957-76963. |
64 | DING Meili, JIANG Hailong. One-step assembly of a hierarchically porous phenolic resin-type polymer with high stability for CO2 capture and conversion[J]. Chemical Communications, 2016, 52(83): 12294-12297. |
65 | ZHANG Nan, ZOU Bo, YANG Guoping, et al. Melamine-based mesoporous organic polymers as metal-free heterogeneous catalyst: effect of hydroxyl on CO2 capture and conversion[J]. Journal of CO2 Utilization, 2017, 22: 9-14. |
66 | MENG Xianyu, LIU Yuchuan, WANG Shun, et al. Silsesquioxane-carbazole-corbelled hybrid porous polymers with flexible nanopores for efficient CO2 conversion and luminescence sensing[J]. ACS Applied Polymer Materials, 2020, 2(2): 189-197. |
67 | HUI Wei, HE Xuemei, XU Xinyi, et al. Highly efficient cycloaddition of diluted and waste CO2 into cyclic carbonates catalyzed by porous ionic copolymers[J]. Journal of CO2 Utilization, 2020, 36: 169-176. |
68 | CHEN Yaju, LUO Rongchang, XU Qihang, et al. Charged metalloporphyrin polymers for cooperative synthesis of cyclic carbonates from CO2 under ambient conditions[J]. ChemSusChem, 2017, 10(11): 2534-2541. |
69 | CHEN Yaju, LUO Rongchang, XU Qihang, et al. Metalloporphyrin polymers with intercalated ionic liquids for synergistic CO2 fixation via cyclic carbonate production[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 1074-1082. |
70 | WANG Wenlong, WANG Yuqing, LI Cunyao, et al. State-of-the-art multifunctional heterogeneous POP catalyst for cooperative transformation of CO2 to cyclic carbonates[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 4523-4528. |
71 | JAYAKUMAR Sanjeevi, LI He, CHEN Jian, et al. Cationic Zn-porphyrin polymer coated onto CNTs as a cooperative catalyst for the synthesis of cyclic carbonates[J]. ACS Applied Materials & Interfaces, 2018, 10(3): 2546-2555. |
72 | LENG Yan, LU Dan, ZHANG Chenjun, et al. Ionic polymer microspheres bearing a CoⅢ-salen moiety as a bifunctional heterogeneous catalyst for the efficient cycloaddition of CO2 and epoxides[J]. Chemistry: a European Journal, 2016, 22(24): 8368-8375. |
73 | LIU Taotao, LIANG Jun, HUANG Yuanbiao, et al. A bifunctional cationic porous organic polymer based on a Salen-(Al) metalloligand for the cycloaddition of carbon dioxide to produce cyclic carbonates[J]. Chemical Communications, 2016, 52(90): 13288-13291. |
74 | LUO Rongchang, CHEN Yaju, HE Qian, et al. Metallosalen-based ionic porous polymers as bifunctional catalysts for the conversion of CO2 into valuable chemicals[J]. ChemSusChem, 2017, 10(7): 1526-1533. |
75 | LI Jing, HAN Yulan, JI Tuo, et al. Porous metallosalen hypercrosslinked ionic polymers for cooperative CO2 cycloaddition conversion[J]. Industrial & Engineering Chemistry Research, 2019, 59(2): 676-684. |
76 | WANG Wenlong, LI Cunyao, YAN Li, et al. Ionic liquid/Zn-PPh3 integrated porous organic polymers featuring multifunctional sites: highly active heterogeneous catalyst for cooperative conversion of CO2 to cyclic carbonates[J]. ACS Catalysis, 2016, 6(9): 6091-6100. |
77 | LI Cunyao, WANG Wenlong, YAN Li, et al. Phosphonium salt and ZnX2-PPh3 integrated hierarchical POPs: tailorable synthesis and highly efficient cooperative catalysis in CO2 utilization[J]. Journal of Materials Chemistry A, 2016, 4(41): 16017-16027. |
78 | BOBBINK Felix D, VAN MUYDEN Antoine P, Aswin Gopakumar, et al. Synthesis of cross-linked Iionic poly(styrenes) and their application as catalysts for the synthesis of carbonates from CO2 and epoxides[J]. ChemPlusChem, 2017, 82(1): 144-151. |
79 | JAYAKUMAR Sanjeevi, LI He, ZHAO Yaopeng, et al. Cocatalyst-free hybrid ionic liquid (IL)-based porous materials for efficient synthesis of cyclic carbonates through a cooperative activation pathway[J]. Chemistry: an Asian Journal, 2017, 12(5): 577-585. |
80 | LIU Ying, CHENG Weiguo, ZHANG Yanqiang, et al. Controllable preparation of phosphonium-based polymeric ionic liquids as highly selective nanocatalysts for the chemical conversion of CO2 with epoxides[J]. Green Chemistry, 2017, 19(9): 2184-2193. |
81 | GUO Zengjing, JIANG Qiuwei, SHI Yuming, et al. Tethering dual hydroxyls into mesoporous poly(ionic liquid)s for chemical fixation of CO2 at ambient conditions: a combined experimental and theoretical study[J]. ACS Catalysis, 2017, 7(10): 6770-6780. |
82 | CHEN Yaju, LUO Rongchang, BAO Junhui, et al. Function-oriented ionic polymers having high-density active sites for sustainable carbon dioxide conversion[J]. Journal of Materials Chemistry A, 2018, 6(19): 9172-9182. |
83 | DONG Bin, WANG Liangying, ZHAO Shang, et al. Immobilization of ionic liquids to covalent organic frameworks for catalyzing the formylation of amines with CO2 and phenylsilane[J]. Chemical Communications, 2016, 52(44): 7082-7085. |
84 | XIE Chao, SONG Jinliang, WU Haoran, et al. Natural product glycine betaine as an efficient catalyst for transformation of CO2 with amines to synthesize N-substituted compounds[J]. ACS Sustainable Chemistry & Engneering, 2017, 5(8): 7086-7092. |
85 | LIU Xiaofang, LI Xiaoya, QIAO Chang, et al. Betaine catalysis for hierarchical reduction of CO2 with amines and hydrosilane to form formamides, aminals, and methylamines[J]. Angewandte Chemie International Edition, 2017, 56(26): 7425-7429. |
86 | HU Kewei, TANG Yongquan, CUI Jia, et al. Location matters: cooperativity of catalytic partners in porous organic polymers for enhanced CO2 transformation[J]. Chemical Communications, 2019, 55(62): 9180-9183. |
87 | GUO Zengjing, CAI Xiaochun, XIE Jingyan, et al. Hydroxyl-exchanged nanoporous ionic copolymer toward low-temperature cycloaddition of atmospheric carbon dioxide into carbonates[J]. ACS Applied Materials & Interfaces, 2016, 8(20): 12812-12821. |
88 | JI Guipeng, YANG Zhenzhen, ZHANG Hongye, et al. Hierarchically mesoporous o-hydroxyazobenzene polymers: synthesis and their applications in CO2 capture and conversion[J]. Angewandte Chemie International Edition, 2016, 55(33): 9685-9689. |
89 | LIU Fujian, HUANG Kuan, WU Qin, et al. Solvent-free self-assembly to the synthesis of nitrogen-doped ordered mesoporous polymers for highly selective capture and conversion of CO2[J]. Advanced Materials, 2017, 29(27): 1700445. |
90 | CHEN Jian, ZHONG Mingmei, TAO Lin, et al. The cooperation of porphyrin-based porous polymer and thermal-responsive ionic liquid for efficient CO2 cycloaddition reaction[J]. Green Chemistry, 2018, 20(4): 903-911. |
91 | ZHANG Wei, MEI Yu, WU Peng, et al. Highly tunable periodic imidazole-based mesoporous polymers as cooperative catalysts for efficient carbon dioxide fixation[J]. Catalysis Science & Technology, 2019, 9(4): 1030-1038. |
92 | PUTHIARAJ Pillaiyar, RAVI Seenu, YU Kwangsun, et al. CO2 adsorption and conversion into cyclic carbonates over a porous ZnBr2-grafted N-heterocyclic carbene-based aromatic polymer[J]. Applied Catalysis B: Environmental, 2019, 251: 195-205. |
[1] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[2] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[3] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[4] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[5] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[6] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[7] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[8] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[9] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[10] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[11] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[12] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
[13] | 顾诗亚, 董亚超, 刘琳琳, 张磊, 庄钰, 都健. 考虑中间节点的碳捕集管路系统设计与优化[J]. 化工进展, 2023, 42(6): 2799-2808. |
[14] | 杨许召, 李庆, 袁康康, 张盈盈, 韩敬莉, 吴诗德. 含Gemini离子液体低共熔溶剂热力学性质[J]. 化工进展, 2023, 42(6): 3123-3129. |
[15] | 吕超, 张习文, 金理健, 杨林军. 新型两相吸收剂-离子液体系统高效捕获CO2[J]. 化工进展, 2023, 42(6): 3226-3232. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |