化工进展 ›› 2021, Vol. 40 ›› Issue (7): 3553-3563.DOI: 10.16085/j.issn.1000-6613.2021-0221
彭冲1(), 刘鹏2, 胡永康1, 肖文德2, 潘云翔2()
收稿日期:
2021-01-31
修回日期:
2021-03-23
出版日期:
2021-07-06
发布日期:
2021-07-19
通讯作者:
潘云翔
作者简介:
彭冲(1984—),男,博士,研究方向为加氢催化剂及工艺。E-mail:基金资助:
PENG Chong1(), LIU Peng2, HU Yongkang1, XIAO Wende2, PAN Yunxiang2()
Received:
2021-01-31
Revised:
2021-03-23
Online:
2021-07-06
Published:
2021-07-19
Contact:
PAN Yunxiang
摘要:
Ni基催化剂价格低廉、资源丰富、活性出色,但其抗积炭能力差、易因严重积炭而失活的问题始终是限制其应用的瓶颈,如何提升Ni基催化剂抗积炭能力是学术界和工业界极为关注的问题。低温等离子体因宏观低温、粒子高能的特点而被广泛用于构筑高抗积炭Ni基催化剂。本文介绍了低温等离子体构筑高效Ni基催化剂领域的最新进展,讨论了低温等离子体较低的宏观温度和丰富的高能粒子对载体性质、Ni-载体作用和Ni颗粒特性的影响,分析了低温等离子体所构筑Ni基催化剂具有优异抗积炭能力的原因,提出增加Ni基催化剂制备量、降低低温等离子体耗电量和将低温等离子体与人工智能等技术结合是未来低温等离子体构筑Ni基催化剂领域的主要研究方向。
中图分类号:
彭冲, 刘鹏, 胡永康, 肖文德, 潘云翔. 低温等离子体构筑高效Ni基催化剂进展[J]. 化工进展, 2021, 40(7): 3553-3563.
PENG Chong, LIU Peng, HU Yongkang, XIAO Wende, PAN Yunxiang. Recent progress in fabricating efficient Ni-based catalysts by cold plasma[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3553-3563.
催化剂 | 低温等离子体 | 制备方法(图1) | 反应 | 结构特征和表面性质 | 文献 |
---|---|---|---|---|---|
Ni/SiO2 | 辉光放电 介质阻挡放电 介质阻挡放电 | 方法2 方法2 方法2 | CH4-CO2重整 CH4-H2O重整 CO甲烷化 | Ni-SiO2作增强,Ni颗粒尺寸小、晶型好 Ni颗粒尺寸5.5nm,小于传统催化剂(15.3nm) Ni颗粒缺陷位少 | [ [ [ |
Ni/Ga2O3/SiO2 | 介质阻挡放电 | 方法2 | CH4-CO2重整 | 具有较强的吸附和活化CO2的能力 | [ |
Ni/CeO2/SiO2 | 介质阻挡放电 | 方法2 | CH4-CO2重整 | Ni-SiO2作用增强、表面具有大量活性氧物种 | [ |
Ni/γ-Al2O3 | 辉光放电 | 方法2 | CH4-CO2重整 | Ni-载体作用强,Ni颗粒尺度小,Ni(111)面多 | [ |
Ni/CeO2 | 介质阻挡放电 | 方法1 | CO2甲烷化 CO甲烷化 | Ni-CeO2作用强,Ni颗粒尺寸小 具有较多Ni-CeO2界面位置 | [ [ |
Ni/ZrO2 | 介质阻挡放电 | 方法1 | CO2甲烷化 CH4-CO2重整 | Ni颗粒尺寸小,Ni(111)面多 ZrO2表面具有丰富氧缺陷位 | [ [ |
Ni/TiO2 | 介质阻挡放电 | 方法1 | CO2甲烷化 | Ni(111)面多 | [ |
Ni/MgO | 介质阻挡放电 | 方法2 | CO分解 | Ni颗粒缺陷位少,具有更多Ni(111)面 | [ |
Ni/MgAl2O4 | 介质阻挡放电 | 方法1 | CH4分解 CO2甲烷化 | Ni颗粒缺陷位少,具有更多Ni(111)面 具有高品质Ni-MgAl2O4界面 | [ [ |
Ni-Co/SiO2 | 介质阻挡放电 | 方法2 | CO甲烷化 | 形成均质Ni-Co颗粒 | [ |
Ni/Y2Ti2O7 | 介质阻挡放电 | 方法2/方法3 | CH4-H2O重整 | Ni-载体作用强,表面具有大量活性 | [ |
Ni-Fe/Al2O3 | 介质阻挡放电 | 方法1 | CO2甲烷化 | Ni-Fe合金颗粒 | [ |
Ni-Ce/SBA-15 | 介质阻挡放电 | 方法1 | CO甲烷化 | Ni颗粒尺寸小 | [ |
Ni/LaFeO3 | 介质阻挡放电 | 方法2 | CH4-H2O重整 | Ni-载体作用强,Ni颗粒分散性好 | [ |
Ni-Co/Al2O3-ZrO2 | 辉光放电 | 方法2 | CH4-CO2重整 | 金属-载体作用强,金属颗粒尺寸小 | [ |
表1 低温等离子体制备的高抗积炭Ni基催化剂
催化剂 | 低温等离子体 | 制备方法(图1) | 反应 | 结构特征和表面性质 | 文献 |
---|---|---|---|---|---|
Ni/SiO2 | 辉光放电 介质阻挡放电 介质阻挡放电 | 方法2 方法2 方法2 | CH4-CO2重整 CH4-H2O重整 CO甲烷化 | Ni-SiO2作增强,Ni颗粒尺寸小、晶型好 Ni颗粒尺寸5.5nm,小于传统催化剂(15.3nm) Ni颗粒缺陷位少 | [ [ [ |
Ni/Ga2O3/SiO2 | 介质阻挡放电 | 方法2 | CH4-CO2重整 | 具有较强的吸附和活化CO2的能力 | [ |
Ni/CeO2/SiO2 | 介质阻挡放电 | 方法2 | CH4-CO2重整 | Ni-SiO2作用增强、表面具有大量活性氧物种 | [ |
Ni/γ-Al2O3 | 辉光放电 | 方法2 | CH4-CO2重整 | Ni-载体作用强,Ni颗粒尺度小,Ni(111)面多 | [ |
Ni/CeO2 | 介质阻挡放电 | 方法1 | CO2甲烷化 CO甲烷化 | Ni-CeO2作用强,Ni颗粒尺寸小 具有较多Ni-CeO2界面位置 | [ [ |
Ni/ZrO2 | 介质阻挡放电 | 方法1 | CO2甲烷化 CH4-CO2重整 | Ni颗粒尺寸小,Ni(111)面多 ZrO2表面具有丰富氧缺陷位 | [ [ |
Ni/TiO2 | 介质阻挡放电 | 方法1 | CO2甲烷化 | Ni(111)面多 | [ |
Ni/MgO | 介质阻挡放电 | 方法2 | CO分解 | Ni颗粒缺陷位少,具有更多Ni(111)面 | [ |
Ni/MgAl2O4 | 介质阻挡放电 | 方法1 | CH4分解 CO2甲烷化 | Ni颗粒缺陷位少,具有更多Ni(111)面 具有高品质Ni-MgAl2O4界面 | [ [ |
Ni-Co/SiO2 | 介质阻挡放电 | 方法2 | CO甲烷化 | 形成均质Ni-Co颗粒 | [ |
Ni/Y2Ti2O7 | 介质阻挡放电 | 方法2/方法3 | CH4-H2O重整 | Ni-载体作用强,表面具有大量活性 | [ |
Ni-Fe/Al2O3 | 介质阻挡放电 | 方法1 | CO2甲烷化 | Ni-Fe合金颗粒 | [ |
Ni-Ce/SBA-15 | 介质阻挡放电 | 方法1 | CO甲烷化 | Ni颗粒尺寸小 | [ |
Ni/LaFeO3 | 介质阻挡放电 | 方法2 | CH4-H2O重整 | Ni-载体作用强,Ni颗粒分散性好 | [ |
Ni-Co/Al2O3-ZrO2 | 辉光放电 | 方法2 | CH4-CO2重整 | 金属-载体作用强,金属颗粒尺寸小 | [ |
1 | OLIVIER-BOURBIGOU H, BREUIL P A R, MAGNA L, et al. Nickel catalyzed olefin oligomerization and dimerization[J]. Chemical Reviews, 2020, 120(15): 7919-7983. |
2 | BEPARI S, KUILA D. Steam reforming of methanol, ethanol and glycerol over nickel-based catalysts—A review[J]. International Journal of Hydrogen Energy, 2020, 45(36): 18090-18113. |
3 | LIU C J, YE J Y, JIANG J J, et al. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane[J]. ChemCatChem, 2011, 3(3): 529-541. |
4 | 王晶, 姚楠. 适用于合成气制甲烷的Ni基催化剂[J]. 化学进展, 2017, 29(12): 1509-1517. |
WANG Jing, YAO Nan. Ni-based catalysts for syngas methanation reaction[J]. Progress in Chemistry, 2017, 29(12): 1509-1517. | |
5 | 王东旭, 肖显斌, 高静, 等. 助剂钾对镍基催化剂性能影响研究进展[J]. 化工进展, 2014, 33(3): 668-672. |
WANG Dongxu, XIAO Xianbin, GAO Jing, et al. A review of potassium promoter effect on nickel-based catalyst performance[J]. Chemical Industry and Engineering Progress, 2014, 33(3): 668-672. | |
6 | WU X, XU L, CHEN M, et al. Recent progresses in the design and fabrication of highly efficient Ni-based catalysts with advanced catalytic activity and enhanced anti-coke performance toward CO2 reforming of methane[J]. Frontiers in Chemistry, 2020, 8: 581923. |
7 | 阮勇哲, 卢遥, 王胜平. 甲烷干重整Ni基催化剂失活及抑制失活研究进展[J]. 化工进展, 2018, 37(10): 3850-3857. |
RUAN Yongzhe, LU Yao, WANG Shengping. Progress in deactivation and anti-deactivation of nickel-based catalysts for methane dry reforming[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3850-3857. | |
8 | KUMAR A, SINGH R, SINHA A S K. Catalyst modification strategies to enhance the catalyst activity and stability during steam reforming of acetic acid for hydrogen production[J]. International Journal of Hydrogen Energy, 2019, 44(26): 12983-13010. |
9 | BIAN Z F, DAS S, WAI M H, et al. A review on bimetallic nickel-based catalysts for CO2 reforming of methane[J]. ChemPhysChem, 2017, 18(22): 3117-3134. |
10 | MIAO B, MA S S K, WANG X, et al. Catalysis mechanisms of CO2 and CO methanation[J]. Catalysis Science & Technology, 2016, 6(12): 4048-4058. |
11 | 赵彬然, 闫晓亮, 刘昌俊. 冷等离子体强化制备镍催化剂及应用[J]. 化学反应工程与工艺, 2013, 29(3): 222-229. |
ZHAO Binran, YAN Xiaoliang, LIU Changjun. Preparation and application of Ni catalyst via plasma intensification[J]. Chemical Reaction Engineering and Technology, 2013, 29(3): 222-229. | |
12 | WANG Z, ZHANG Y, NEYTS E C, et al. Catalyst preparation with plasmas: how does it work?[J]. ACS Catalysis, 2018, 8(3): 2093-2110. |
13 | LIU Y, PAN Y X, WANG Z J, et al. Facile and fast template removal from mesoporous MCM-41 molecular sieve using dielectric-barrier discharge plasma[J]. Catalysis Communications, 2010, 11(6): 551-554. |
14 | LIU Y, PAN Y X, KUAI P Y, et al. Template removal from ZSM-5 zeolite using dielectric-barrier discharge plasma[J]. Catalysis Letters, 2010, 135(3/4): 241-245. |
15 | LIU Y, WANG Z, LIU C J. Mechanism of template removal for the synthesis of molecular sieves using dielectric barrier discharge[J]. Catalysis Today, 2015, 256: 137-141. |
16 | SUN Q D, YU B, LIU C J. Characterization of ZnO nanotube fabricated by the plasma decomposition of Zn(OH)2via dielectric barrier discharge[J]. Plasma Chemistry and Plasma Processing, 2012, 32(2): 201-209. |
17 | ZHOU Y, LIU C J. Amorphization of metal-organic framework MOF-5 by electrical discharge[J]. Plasma Chemistry and Plasma Processing, 2011, 31(3): 499-506. |
18 | GUO Q T, WITH P, LIU Y, et al. Carbon template removal by dielectric-barrier discharge plasma for the preparation of zirconia[J]. Catalysis Today, 2013, 211: 156-161. |
19 | JIA X Y, ZHANG X S, RUI N, et al. Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity[J]. Applied Catalysis B: Environmental, 2019, 244: 159-169. |
20 | ZHANG Y, WANG W, WANG Z Y, et al. Steam reforming of methane over Ni/SiO2 catalyst with enhanced coke resistance at low steam to methane ratio[J]. Catalysis Today, 2015, 256: 130-136. |
21 | YAN X L, LIU C J. Effect of the catalyst structure on the formation of carbon nanotubes over Ni/MgO catalyst[J]. Diamond and Related Materials, 2013, 31: 50-57. |
22 | PAN Y X, LIU C J, SHI P. Preparation and characterization of coke resistant Ni/SiO2 catalyst for carbon dioxide reforming of methane[J]. Journal of Power Sources, 2008, 176(1): 46-53. |
23 | ZHU X L, HUO P P, ZHANG Y P, et al. Structure and reactivity of plasma treated Ni/Al2O3 catalyst for CO2 reforming of methane[J]. Applied Catalysis B: Environmental, 2008, 81(1/2): 132-140. |
24 | PAN Y X, KUAI P Y, LIU Y, et al. Promotion effects of Ga2O3 on CO2 adsorption and conversion over a SiO2-supported Ni catalyst[J]. Energy & Environmental Science, 2010, 3(9): 1322. |
25 | PAN Y X, LIU C J, GE Q F. Effect of surface hydroxyls on selective CO2 hydrogenation over Ni4/γ-Al2O3: a density functional theory study[J]. Journal of Catalysis, 2010, 272(2): 227-234. |
26 | SHI L B, ZHOU Y M, QI S T, et al. Pt catalysts supported on H2 and O2 plasma-treated Al2O3 for hydrogenation and dehydrogenation of the liquid organic hydrogen carrier pair dibenzyltoluene and perhydrodibenzyltoluene[J]. ACS Catalysis, 2020, 10(18): 10661-10671. |
27 | HU X, JIA X Y, ZHANG X S, et al. Improvement in the activity of Ni/ZrO2 by cold plasma decomposition for dry reforming of methane[J]. Catalysis Communications, 2019, 128: 105720. |
28 | HUANG J J, YAN Y, SAQLINE S, et al. High performance Ni catalysts prepared by freeze drying for efficient dry reforming of methane[J]. Applied Catalysis B: Environmental, 2020, 275: 119109. |
29 | ZOU J J, LIU C J, ZHANG Y P. Control of the metal-support interface of NiO-loaded photocatalysts via cold plasma treatment[J]. Langmuir, 2006, 22(5): 2334-2339. |
30 | YAN X L, HU T, LIU P, et al. Highly efficient and stable Ni/CeO2-SiO2 catalyst for dry reforming of methane: effect of interfacial structure of Ni/CeO2 on SiO2[J]. Applied Catalysis B: Environmental, 2019, 246: 221-231. |
31 | ZHAO B R, YAN X L, ZHOU Y, et al. Effect of catalyst structure on growth and reactivity of carbon nanofibers over Ni/MgAl2O4[J]. Industrial & Engineering Chemistry Research, 2013, 52(24): 8182-8188. |
32 | ZHOU R, RUI N, FAN Z G, et al. Effect of the structure of Ni/TiO2 catalyst on CO2 methanation[J]. International Journal of Hydrogen Energy, 2016, 41(47): 22017-22025. |
33 | ZHAN Y Y, SONG K, SHI Z M, et al. Influence of reduction temperature on Ni particle size and catalytic performance of Ni/Mg(Al)O catalyst for CO2 reforming of CH4[J]. International Journal of Hydrogen Energy, 2020, 45(4): 2794-2807. |
34 | KIM J H, SUH D J, PARK T J, et al. Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts[J]. Applied Catalysis A: General, 2000, 197(2): 191-200. |
35 | LI L, ZUO S W, AN P F, et al. Hydrogen production via steam reforming of n-dodecane over NiPt alloy catalysts[J]. Fuel, 2020, 262: 116469. |
36 | HAYE E, BUSBY Y, SILVA PIRES M DA, et al. Low-pressure plasma synthesis of Ni/C nanocatalysts from solid precursors: influence of the plasma chemistry on the morphology and chemical state[J]. ACS Applied Nano Materials, 2018, 1(1): 265-273. |
37 | SILVA PIRES M DA, HAYE E, ZUBIAUR A, et al. Defective Pt-Ni/graphene nanomaterials by simultaneous or sequential treatments of organometallic precursors by low-pressure oxygen plasma[J]. Plasma Processes and Polymers, 2019, 16(5): 1800203. |
38 | ZHAO B R, LIU P, LI S, et al. Bimetallic Ni-Co nanoparticles on SiO2 as robust catalyst for CO methanation: effect of homogeneity of Ni-Co alloy[J]. Applied Catalysis B: Environmental, 2020, 278: 119307. |
39 | YAN X L, LIU Y, ZHAO B R, et al. Methanation over Ni/SiO2: effect of the catalyst preparation methodologies[J]. International Journal of Hydrogen Energy, 2013, 38(5): 2283-2291. |
40 | RUI N, ZHANG X S, ZHANG F, et al. Highly active Ni/CeO2 catalyst for CO2 methanation: preparation and characterization[J]. Applied Catalysis B: Environmental, 2021, 282: 119581. |
41 | ZHANG X S, RUI N, JIA X Y, et al. Effect of decomposition of catalyst precursor on Ni/CeO2 activity for CO methanation[J]. Chinese Journal of Catalysis, 2019, 40(4): 495-503. |
42 | FAN Z G, SUN K H, RUI N, et al. Improved activity of Ni/MgAl2O4 for CO2 methanation by the plasma decomposition[J]. Journal of Energy Chemistry, 2015, 24(5): 655-659. |
43 | XIA L H, FANG X Z, XU X L, et al. The promotional effects of plasma treating on Ni/Y2Ti2O7 for steam reforming of methane (SRM): elucidating the NiO-support interaction and the states of the surface oxygen anions[J]. International Journal of Hydrogen Energy, 2020, 45(7): 4556-4569. |
44 | LI Z H, ZHAO T T, ZHANG L J. Promotion effect of additive Fe on Al2O3 supported Ni catalyst for CO2 methanation[J]. Applied Organometallic Chemistry, 2018, 32(5): e4328. |
45 | BIAN L, ZHANG L J, ZHU Z T, et al. Methanation of carbon oxides on Ni/Ce/SBA-15 pretreated with dielectric barrier discharge plasma[J]. Molecular Catalysis, 2018, 446: 131-139. |
46 | LIAN J, FANG X Z, LIU W M, et al. Ni supported on LaFeO3 perovskites for methane steam reforming: on the promotional effects of plasma treatment in H2-Ar atmosphere[J]. Topics in Catalysis, 2017, 60(12/13/14): 831-842. |
47 | RAHEMI N, HAGHIGHI M, BABALUO A A, et al. Plasma-assisted dispersion of bimetallic Ni-Co over Al2O3-ZrO2 for CO2 reforming of methane: influence of voltage on catalytic properties[J]. Topics in Catalysis, 2017, 60(12/13/14): 843-854. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[6] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[7] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[8] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[9] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[10] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[11] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[12] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[13] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[14] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[15] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |