化工进展 ›› 2022, Vol. 41 ›› Issue (S1): 331-339.DOI: 10.16085/j.issn.1000-6613.2022-1002
收稿日期:
2022-05-30
修回日期:
2022-06-09
出版日期:
2022-10-20
发布日期:
2022-11-10
通讯作者:
段庆华
作者简介:
华渠成(1994—),男,博士研究生,研究方向为润滑油极压抗磨剂。E-mail:hqcxxx@sina.com。
Received:
2022-05-30
Revised:
2022-06-09
Online:
2022-10-20
Published:
2022-11-10
Contact:
DUAN Qinghua
摘要:
极压抗磨剂是一类重要的润滑油添加剂,是齿轮油不可缺少的主剂。相比传统极压抗磨剂,离子液体结构的可设计性、分子中含有的活性元素、优异的化学稳定性及较高的热分解温度,使其在摩擦学领域受到广泛关注。基础油的极性会对离子液体的溶解性能有所影响,基于此,本文归纳了离子液体分子构型对其在不同极性基础油中溶解度影响的研究进展,探讨了离子液体在不同极性基础油中的摩擦学性能及作用机理,总结了离子液体与其他添加剂复配的效果。文中指出,大多离子液体在极性油中有较好的溶解度,在非极性油中阳离子和阴离子结构对其溶解性都有影响;在极性油中与非极性油中,具有优异摩擦学性能的离子液体都含有活性元素;离子液体与其他添加剂的复配会对其性能有所影响。最后,结合目前工作中的不足之处,针对离子液体极压抗磨剂的未来发展方向提供了建议。
中图分类号:
华渠成, 段庆华. 离子液体极压抗磨剂的研究进展[J]. 化工进展, 2022, 41(S1): 331-339.
HUA Qucheng, DUAN Qinghua. Research progress of ionic liquid as extreme pressure and anti-wear agent[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 331-339.
1 | SINGH J, CHATHA S S, BHATIA R. Behaviour and applications of ionic liquids as lubricants in tribology: a review[J]. Materials Today: Proceedings, 2022, 56: 2659-2665. |
2 | GUSAIN Rashi, DHINGRA Sanjana, KHATRI Om. Fatty-acid-constituted halogen-free ionic liquids as renewable, environmentally friendly, and high-performance lubricant additives[J]. Industrial & Engineering Chemistry Research, 2016, 55(4): 856-865. |
3 | 尹新旺, 张继军, 冯世超, 等. 离子液体在低碳烯烃/烷烃分离中的应用研究进展[J]. 化工进展, 2019, 38(9): 3936-3946. |
YIN Xinwang, ZHANG Jijun, FENG Shichao, et al. Application of ionic liquids in olefin/paraffin separation[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 3936-3946. | |
4 | 李欢, 刘依农. 离子液体催化α-烯烃聚合的研究进展[J]. 化工进展, 2020, 39(2): 513-520. |
LI Huan, LIU Yinong. Progress on ionic liquid catalyst for α -olefin polymerization[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 513-520. | |
5 | 马浩, 蔡滔, 黄正宇, 等. 金属基离子液体催化生物质转化研究进展[J]. 化工进展, 2021, 40(2): 800-812. |
MA Hao, CAI Tao, HUANG Zhengyu, et al. Catalytic conversion of biomass by metal-based ionic liquids[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 800-812. | |
6 | YE Chengfeng, LIU Weimin, CHEN Yunxiang, et al. Room-temperature ionic liquids: a novel versatile lubricant[J]. Chemical Communications, 2001(21): 2244-2245. |
7 | SONG Jun. Research progress of ionic liquids as lubricants[J]. ACS Omega, 2021. 6(44): 29345-29349. |
8 | MORDUKHOVICH G, QU J, HOWE J Y, et al. A low-viscosity ionic liquid demonstrating superior lubricating performance from mixed to boundary lubrication[J].Wear, 2013. 301(1/2): 740-746. |
9 | YU Qiangliang, ZHANG Chaoyang, DONG Rui, et al. Physicochemical and tribological properties of gemini-type halogen-free dicationic ionic liquids[J]. Friction, 2020, 9(2): 344-355. |
10 | CAI Meirong, LIANG Yongmin, ZHOU Feng, et al. A novel imidazolium salt with antioxidation and anticorrosion dual functionalities as the additive in poly(ethylene glycol) for steel/steel contacts[J]. Wear, 2013, 306(1/2): 197-208. |
11 | PANDEY P, SOMERS A E, HAIT S K, et al. Short Chain imidazolium ionic liquids: synthesis and oil miscibility in various base oil by use of surfactant as high performance friction and antiwear lubricant additive[J]. Tribology Letters, 2021, 69(95): 1-14. |
12 | QU J, BANSAL D G, YU B, et al. Antiwear performance and mechanism of an oil-miscible ionic liquid as a lubricant additive[J]. ACS Appl. Mater. Interfaces, 2012, 4(2): 997-1002. |
13 | VIESCA J L, MALLADA M T, BLANCO D, et al., Lubrication performance of an ammonium cation-based ionic liquid used as an additive in a polar oil. Tribology International[J]. Tribology International, 2017, 116: 422-430. |
14 | KHEMCHANDANI B, SOMERS A, HOWLETT P, et al. A biocompatible ionic liquid as an antiwear additive for biodegradable lubricants[J]. Tribology International, 2014, 77: 171-177. |
15 | JIANG Dong, HU Litian, FENG Dapeng. Tribological properties of crown-type phosphate ionic liquids as lubricating additives in rapeseed oils[J]. Lubrication Science, 2013, 25(3): 195-207. |
16 | GUSAIN R, SINGH R, SIVAKUMAR K L N, et al. Halogen-free imidazolium/ammonium-bis(salicylato)borate ionic liquids as high performance lubricant additives[J]. RSC Adv., 2014, 4(3): 1293-1301. |
17 | JIMENEZ A E, BERMUDEZ M D. Short alkyl chain imidazolium ionic liquid additives in lubrication of three aluminium alloys with synthetic ester oil[J]. Tribology-Materials, Surfaces & Interfaces, 2012, 6(3): 109-115. |
18 | 易兰, 李文英, 冯杰. 离子液体/低共熔溶剂在煤基液体分离中的应用[J]. 化工进展, 2020, 39(6): 2066-2078. |
YI Lan, LI Wenying, FENG Jie. Application of ionic liquids and deep eutectic solvents in the separation of coal-based liquids[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2066-2078. | |
19 | 倪清, 来锦波, 彭东岳, 等. 离子液体萃取分离烃类化合物的研究进展[J]. 化工进展, 2022, 41(2): 619-627. |
NI Qing, LAI Jinbo, PENG Dongyue, et al. Progress in extraction separation of hydrocarbons by ionic liquids[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 619-627. | |
20 | BARNHILL W C, QU J, LUO H, et al. Phosphonium-organophosphate ionic liquids as lubricant additives: Effects of cation structure on physicochemical and tribological characteristics[J]. ACS Appl. Mater. Interfaces, 2014, 6(24): 22585-22593. |
21 | BARNHILL W C, LUO H, MEYER H M, et al. Tertiary and quaternary ammonium-phosphate ionic liquids as lubricant additives[J]. Tribology Letters, 2016, 63(22): 1-11. |
22 | FAN Mingjin, YANG Desuo, WANG Xiaoling, et al. DOSS–based QAILs: As both neat lubricants and lubricant additives with excellent tribological properties and good detergency[J]. Industrial & Engineering Chemistry Research, 2014, 53(46): 17952-17960. |
23 | YU B, BANSAL D G, QU J, et al. Oil-miscible and non-corrosive phosphonium-based ionic liquids as candidate lubricant additives[J]. Wear, 2012, 289: 58-64. |
24 | ZHOU Y, DYCK J, GRAHAM T W, et al. Ionic liquids composed of phosphonium cations and organophosphate, carboxylate, and sulfonate anions as lubricant antiwear additives[J]. Langmuir, 2014, 30(44): 13301-13311. |
25 | QIAO Dan, WANG Haizhong, FENG Dapeng. Tribological performance and mechanism of phosphate ionic liquids as additives in three base oils for steel-on-aluminum contact[J]. Tribology Letters, 2014, 55(3): 517-531. |
26 | SOMERS A E, KHEMCHANDANI B, HOWLETT P C, et al. Ionic liquids as antiwear additives in base oils: influence of structure on miscibility and antiwear performance for steel on aluminum[J]. ACS Appl. Mater. Interfaces, 2013, 5(22): 11544-11553. |
27 | ZHOU Yan, QU Jun. Ionic liquids as lubricant additives: a review[J]. ACS Appl. Mater. Interfaces, 2017, 9(4): 3209-3222. |
28 | RAHMAN M H, KHAJEH A, PANWAR P, et al. Recent progress on phosphonium-based room temperature ionic liquids: synthesis, properties, tribological performances and applications[J]. Tribology International, 2022, 167: 107331. |
29 | MA Rui, ZHAO Qin, ZHANG Enhui, et al. Synthesis and evaluation of oil-soluble ionic liquids as multifunctional lubricant additives[J]. Tribology International, 2020, 151: 106446. |
30 | YU Qiangliang, WANG Yurong, HUANG Guowei, et al. Task-specific oil-miscible ionic liquids lubricate steel/light metal alloy: a tribochemistry study[J]. Advanced Materials Interfaces, 2018, 5(19): 1800791. |
31 | FU Xisheng, SUN Lingguo, ZHOU Xuguang, et al. Tribological study of oil-miscible quaternary ammonium phosphites ionic liquids as lubricant additives in PAO[J]. Tribology Letters, 2015, 60(2): doi: 10.1007/s11249-015-0596-0. |
32 | CAI Meirong, YU Qiangliang, LIU Weimin, et al. Ionic liquid lubricants: When chemistry meets tribology[J]. Chem. Soc. Rev., 2020, 49(21): 7753-7818. |
33 | ANAND M, HADFIELD M, VIESCA J L, et al. Assessing boundary film forming behavior of phosphonium ionic liquids as engine lubricant additives [J]. Lubricants, 2016, 4(2): 17. |
34 | CAI Z B, MEYER H M, MA C, et al. Comparison of the tribological behavior of steel–steel and Si3N4-steel contacts in lubricants with ZDDP or ionic liquid [J]. Wear, 2014, 319(1/2): 172-183. |
35 | SHARMA V, GABLER C, DOERR N, et al. Mechanism of tribofilm formation with P and S containing ionic liquids [J]. Tribology International, 2015, 92: 353-364. |
36 | LI Z, MANGOLINI F. Recent advances in nanotribology of ionic liquids[J]. Experimental Mechanics, 2021, 61(7): 1093-1107. |
37 | LANDAUER A K, BARNHILL W C, QU J. Correlating mechanical properties and anti-wear performance of tribofilms formed by ionic liquids, ZDDP and their combinations[J]. Wear, 2016, 354/355: 78-82. |
38 | YANG S, ZHANG D, WONG J S, et al. Interactions between ZDDP and an oil-soluble ionic liquid additive[J]. Tribology International, 2021, 158: 106938. |
39 | QU Jun, MEYER H M, CAI Z B, et al. Characterization of ZDDP and ionic liquid tribofilms on non-metallic coatings providing insights of tribofilm formation mechanisms[J]. Wear, 2015, 332/333: 1273-1285. |
40 | NASSER K I, LIñEIRA DEL R J, LÓPEZ E R, et al. Hybrid combinations of graphene nanoplatelets and phosphonium ionic liquids as lubricant additives for a polyalphaolefin[J]. Journal of Molecular Liquids, 2021, 336: doi: 10.1016/j.molliq.2021.116266. |
41 | NASSER K I, LIÑEIRA D R, LÓPEZ E R, et al. Synergistic effects of hexagonal boron nitride nanoparticles and phosphonium ionic liquids as hybrid lubricant additives[J]. Journal of Molecular Liquids, 2020, 311: doi: 10.1016/j.molliq.2020.113343. |
[1] | 向硕, 卢鹏, 石伟年, 杨鑫, 何燕, 朱立业, 孔祥微. 二维WS2纳米片的规模化可控制备及其摩擦学性能[J]. 化工进展, 2023, 42(9): 4783-4790. |
[2] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[3] | 王硕, 张亚新, 朱博韬. 基于灰色预测模型的水煤浆输送管道冲蚀磨损寿命预测[J]. 化工进展, 2023, 42(7): 3431-3442. |
[4] | 吕超, 张习文, 金理健, 杨林军. 新型两相吸收剂-离子液体系统高效捕获CO2[J]. 化工进展, 2023, 42(6): 3226-3232. |
[5] | 杨许召, 李庆, 袁康康, 张盈盈, 韩敬莉, 吴诗德. 含Gemini离子液体低共熔溶剂热力学性质[J]. 化工进展, 2023, 42(6): 3123-3129. |
[6] | 马润梅, 杨海超, 李正大, 李双喜, 赵祥, 章国庆. 表面强化镀层对高速轴承腔密封端面变形及摩擦磨损影响分析[J]. 化工进展, 2023, 42(4): 1688-1697. |
[7] | 乔元, 仇畅, 钱锦远, 干瑞彬, 徐春明, 金志江. 笼式调节阀的冲蚀磨损与空蚀[J]. 化工进展, 2023, 42(10): 5111-5120. |
[8] | 陈钰, 刘冲, 邱于荟, 贲梓欣, 牟天成. 离子液体和低共熔溶剂绿色回收废旧锂离子电池的研究进展[J]. 化工进展, 2022, 41(S1): 485-496. |
[9] | 宋望一, 赵新访, 刘伟, 薛玲. 阀门硬化处理工艺对蒽醌法生产双氧水的影响[J]. 化工进展, 2022, 41(S1): 54-59. |
[10] | 韩明阳, 乔慧, 付佳铭, 马泽雯, 王妍, 欧阳嘉. 非水溶剂预处理木质纤维原料研究进展[J]. 化工进展, 2022, 41(8): 4086-4097. |
[11] | 范军领, 何昊, 张攀, 陈光辉. 局部磨损对α型旋风分离器内流场及分离性能的影响[J]. 化工进展, 2022, 41(8): 4025-4034. |
[12] | 单清雯, 张娟, 王亚娟, 刘文强. 聚合离子液体的合成及其吸附脱硫性能[J]. 化工进展, 2022, 41(8): 4571-4579. |
[13] | 阮佳纬, 叶香珠, 陈立芳, 漆志文. 离子液体和低共熔溶剂催化二氧化碳合成有机碳酸酯的研究进展[J]. 化工进展, 2022, 41(3): 1176-1186. |
[14] | 倪清, 来锦波, 彭东岳, 管翠诗, 龙军. 离子液体萃取分离烃类化合物的研究进展[J]. 化工进展, 2022, 41(2): 619-627. |
[15] | 鲁泽平, 裴新华, 薛誉, 张晓光, 胡燚. 甜菜碱类离子液体化学修饰猪胰脂肪酶提升其酶学性能[J]. 化工进展, 2022, 41(11): 6045-6052. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 852
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |