化工进展 ›› 2021, Vol. 40 ›› Issue (3): 1238-1247.DOI: 10.16085/j.issn.1000-6613.2020-2008

• 专栏:绿色生物制造 • 上一篇    下一篇

人参皂苷的定向生物转化研究进展

赵婧1,2,3(), 王盼1,2,3, 刘彦楠1,2,3, 傅荣湛1,2,3, 段志广1,2,3, 范代娣1,2,3()   

  1. 1.西北大学化工学院陕西省可降解生物医用材料重点实验室,陕西 西安 710069
    2.西北大学化工学院陕西省 生物材料与发酵工程技术研究中心,陕西 西安 710069
    3.西北大学生物医药研究院,陕西 西安 710069
  • 收稿日期:2020-10-08 出版日期:2021-03-05 发布日期:2021-03-17
  • 通讯作者: 范代娣
  • 作者简介:赵婧(1986—),博士,副教授,研究方向为抗癌药物、生物医用材料。E-mail:zhaojing@nwu.edu.cn
  • 基金资助:
    国家自然科学基金(22078264);西安市科技计划(20191422315KYPT014JC016);陕西省自然科学基金青年项目(2019JQ-259)

Recent advances in biotransformation of ginsenosides

ZHAO Jing1,2,3(), WANG Pan1,2,3, LIU Yannan1,2,3, FU Rongzhan1,2,3, DUAN Zhiguang1,2,3, FAN Daidi1,2,3()   

  1. 1.Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi’an 710069, Shaanxi, China
    2.Shaanxi R&D Center of Biomaterials and Fermentation Engineering, College of Chemical Engineering, Northwest University, Xi’an 710069, Shaanxi, China
    3.Biotech. & Biomed. Reserch Institute, Northwest University, Xi’an 710069, Shaanxi, China
  • Received:2020-10-08 Online:2021-03-05 Published:2021-03-17
  • Contact: FAN Daidi

摘要:

稀有人参皂苷是人参的重要活性成分,但其含量极低或需经过肠道转化才能产生,工业生产中常通过去糖基、脱水等方法将常见人参皂苷转化为稀有人参皂苷。基于此,本文概述了人参皂苷的构效关系及常用转化方法,总结了微生物、酶法定向转化人参皂苷的最新进展,着重介绍了益生菌、食药用真菌转化人参皂苷制备功能食品,以及糖苷酶筛选和组合在提高人参总皂苷转化效率及产率等方面的研究进展;同时探讨了基因工程、溶剂工程、固定化酶等技术对人参皂苷转化效率、产率的影响,展望了蛋白质工程、合成生物学等方法在人参皂苷转化及合成方面的潜在应用价值,为稀有人参皂苷的规模化生产提供了基础。

关键词: 人参皂苷, 生物转化, 微生物催化, 酶催化, 离子液体

Abstract:

Rare ginsenosides are the most important active constituents of ginseng. However, they either contribute to an extremely low proportion of total ginsenosides or do not exist until being transformed in human intestines. Thus, this review summarizes the structure-function relationship and transformation strategies of ginsenosides, focusing on the latest progress of microbial and enzymatic transformation strategies, including transformation of ginsenosides using probiotic and edible-medicinal fungi for the production of functional food, as well as the selection and combination of glycosidases for improving transformation efficiency and productivity of total ginsenosides. It also discusses in depth the effects of genetic engineering, solvent engineering and enzyme immobilization on the transformation efficiency and productivity, and analyzes the potential application value of protein engineering and synthetic biology in improving the catalytic activities and paving the way for large-scale production of rare ginsenosides.

Key words: ginsenoside, biotransformation, microbial transformation, enzymatic transformation, ionic liquid

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn