化工进展 ›› 2021, Vol. 40 ›› Issue (1): 415-426.DOI: 10.16085/j.issn.1000-6613.2020-0387
李孟1(), 李炜1, 张帅1, 李雨薇1, 刘芳1,2(), 赵朝成1,2, 王永强1,2
收稿日期:
2020-03-16
出版日期:
2021-01-05
发布日期:
2021-01-12
通讯作者:
刘芳
作者简介:
李孟(1993—),男,硕士研究生,研究方向环境污染控制技术。E-mail:基金资助:
Meng LI1(), Wei LI1, Shuai ZHANG1, Yuwei LI1, Fang LIU1,2(), Chaocheng ZHAO1,2, Yongqiang WANG1,2
Received:
2020-03-16
Online:
2021-01-05
Published:
2021-01-12
Contact:
Fang LIU
摘要:
金属有机骨架材料(MOF)是一种高比表面积、活性位点丰富、易化学修饰的新型多孔材料,但较差的水稳定性限制其在吸附挥发性有机化合物(VOCs)领域的应用,因此如何提高和巩固MOF的吸附性能已成为研究的热点。本文从单体MOF的合成、MOF复合材料的制备、吸附机理和吸附影响因素等方面综述了MOF及其复合材料吸附去除VOCs的研究进展。针对目前MOF材料在吸附VOCs方面的不足提出研究建议,展望其在VOCs吸附领域的发展方向为制备富含微-介孔结构和活性位点、水热稳定性强、抗水蒸气竞争吸附好和循环利用率高的新型高稳定性材料,以及开发新型MOF材料合成方法。
中图分类号:
李孟, 李炜, 张帅, 李雨薇, 刘芳, 赵朝成, 王永强. MOF及其复合材料吸附去除VOCs应用研究进展[J]. 化工进展, 2021, 40(1): 415-426.
Meng LI, Wei LI, Shuai ZHANG, Yuwei LI, Fang LIU, Chaocheng ZHAO, Yongqiang WANG. Research progress on adsorption of VOCs by MOF and its composite[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 415-426.
制备方法 | 优点 | 缺点 |
---|---|---|
水热法 | 工艺成熟、反应条件温和 | 耗时长、合成量少、二次污染 |
溶剂热法 | 材料结晶度高、反应条件温和 | 耗时长、需大量溶剂、成本高、二次污染 |
机械化学法 | 简单快捷、无溶剂、产量高、无污染 | 需高机械能、成本高 |
微波法 | 合成快、加热均匀、材料粒径小、产量高 | 需大量溶剂、成本高、不稳定 |
电化学合成法 | 合成时间短、易于控制、产量高 | 能耗大 |
溶胶-凝胶法 | 易操作控制、均匀性好 | 成本较高、耗时长 |
表1 MOF材料制备方法对比
制备方法 | 优点 | 缺点 |
---|---|---|
水热法 | 工艺成熟、反应条件温和 | 耗时长、合成量少、二次污染 |
溶剂热法 | 材料结晶度高、反应条件温和 | 耗时长、需大量溶剂、成本高、二次污染 |
机械化学法 | 简单快捷、无溶剂、产量高、无污染 | 需高机械能、成本高 |
微波法 | 合成快、加热均匀、材料粒径小、产量高 | 需大量溶剂、成本高、不稳定 |
电化学合成法 | 合成时间短、易于控制、产量高 | 能耗大 |
溶胶-凝胶法 | 易操作控制、均匀性好 | 成本较高、耗时长 |
典型 VOCs | 吸附剂 | 比表面积 /m3?g-1 | 孔径分布 /nm | 孔容 /cm3?g-1 | 吸附 位点 | 亲、 疏水性 | 吸附条件 | 吸附量 /m3?g-1 | 吸附机理 |
---|---|---|---|---|---|---|---|---|---|
甲苯 | Cu-BTC[ | 793.49 | 3.49 | 0.31 | 微、介孔 | 亲水性 | T=298K,c0=1300mg·m-3, m=0.3g | 62.7 | 孔道填充吸附 |
Cu-BTC@GO-20%[ | 512.6 | 3.86 | 0.35 | 183.6 | |||||
Uio-66[ | 1335 | 0.45~0.7 | 0.83 | 微孔 | 疏水性 | T=298K | 151 | 孔道填充吸附 | |
ZG-4[ | 1112 | — | — | 微孔 | 亲水性 | T=298K,55% RH | 116 | 孔道填充吸附、π-π键作用 | |
Uio-66-NH2[ | 1250 | 1.98 | 0.62 | 微孔 | 疏水性 | T=298K | 147 | 孔道填充吸附、疏水性作用、氢键作用 | |
CZ-5%[ | 1484.46 | 3.27 | 0.60 | 微、介孔 | 疏水性 | T=298K,c0=1300mg·m-3, m=0.3g,30% RH | 158.6 | 孔道填充吸附、π-π键作用、阳离子-π键作用、疏水性作用 | |
HK@CMC [ | 545 | 0.371 | 微、介孔 | 疏水性 | T=298K,P=0.0379bar | 285.6 | 孔道填充吸附 | ||
苯 | Mg-MOF-74[ | — | 1.6 | 0.88 | 微、介孔 | — | T=300K、P=20Pa | 640.5 | 范德华力、库仑作用、孔道填充吸附 |
MC-500-6[ | 2320 | — | 1.05 | 微、介孔 | 疏水性 | T=298K | 999.8 | 孔道填充吸附、π-π键作用 | |
甲苯、 二甲苯 | H-MOZs[ | 1570 | — | 0.90 | 微孔、介孔、大孔 | — | T=298K | 296.7(甲苯)、 148.2(二甲苯) | 孔道填充吸附(介孔和大孔的存在促进吸附) |
Uio-66[ | — | — | — | 微、介孔 | — | T=298K,m=5mg,V=10mL,C=100μL·L-1 | 22.94(甲苯) 38.31(二甲苯) | 孔道填充吸附 | |
Uio-66-F4[ | — | — | — | 微、介孔 | 疏水性 | 30.49(甲苯) 38.31(二甲苯) | 孔道填充吸附、疏水性作用 | ||
二氯甲烷 | ZG-15[ | 559.3 | 2.2 | 0.32 | 微、介孔 | 亲水性 | 气流速率=20mL·min-1,床层高度=10cm | 240 | 孔道填充吸附、氢键作用、π-π键作用 |
苯酚 | CNT@MOF-68(Al)[ | 1290 | 1.6 | — | 微、介孔 | 疏水性 | c0=2000/μL·L-1、CNT含量=0.75% | 341.1 | 孔道填充吸附、氢键作用和π-π键作用 |
甲醛 | ED-MIL-101-3[ | 382 | 2.3 | — | 微、介孔 | 疏水性 | T=298K、潮湿环境 | 164.86 | 疏水性作用、孔道填充吸附(微孔为主) |
甲醇、 乙醇、 正己烷 | RGO(2%wt)/ Cu-BTC[ | 1549 | 1.54 | — | 微、介孔 | 亲水性 | T=298K、潮湿环境 | 421(甲醇) 474.52(乙9醇) 406(正己烷) | 静电排斥、亲水性作用、孔道填充吸附、π-π键作用 |
不同 硝基酚 | Uio-66-NH2[ | 1023 | — | 0.45 | 微、介孔 | 疏水性 | pH=4,m=20mg,c0=80mg·L-1,T=288K,V=50mL | 6.05(苯酚) 44.96(4-NP) 144.10(DNP) 141.09(TNP) | 氢键作用、π-π键作用、静电相互作用、孔道填充吸附、配位反应 |
表2 不同MOF材料吸附VOCs的性能对比
典型 VOCs | 吸附剂 | 比表面积 /m3?g-1 | 孔径分布 /nm | 孔容 /cm3?g-1 | 吸附 位点 | 亲、 疏水性 | 吸附条件 | 吸附量 /m3?g-1 | 吸附机理 |
---|---|---|---|---|---|---|---|---|---|
甲苯 | Cu-BTC[ | 793.49 | 3.49 | 0.31 | 微、介孔 | 亲水性 | T=298K,c0=1300mg·m-3, m=0.3g | 62.7 | 孔道填充吸附 |
Cu-BTC@GO-20%[ | 512.6 | 3.86 | 0.35 | 183.6 | |||||
Uio-66[ | 1335 | 0.45~0.7 | 0.83 | 微孔 | 疏水性 | T=298K | 151 | 孔道填充吸附 | |
ZG-4[ | 1112 | — | — | 微孔 | 亲水性 | T=298K,55% RH | 116 | 孔道填充吸附、π-π键作用 | |
Uio-66-NH2[ | 1250 | 1.98 | 0.62 | 微孔 | 疏水性 | T=298K | 147 | 孔道填充吸附、疏水性作用、氢键作用 | |
CZ-5%[ | 1484.46 | 3.27 | 0.60 | 微、介孔 | 疏水性 | T=298K,c0=1300mg·m-3, m=0.3g,30% RH | 158.6 | 孔道填充吸附、π-π键作用、阳离子-π键作用、疏水性作用 | |
HK@CMC [ | 545 | 0.371 | 微、介孔 | 疏水性 | T=298K,P=0.0379bar | 285.6 | 孔道填充吸附 | ||
苯 | Mg-MOF-74[ | — | 1.6 | 0.88 | 微、介孔 | — | T=300K、P=20Pa | 640.5 | 范德华力、库仑作用、孔道填充吸附 |
MC-500-6[ | 2320 | — | 1.05 | 微、介孔 | 疏水性 | T=298K | 999.8 | 孔道填充吸附、π-π键作用 | |
甲苯、 二甲苯 | H-MOZs[ | 1570 | — | 0.90 | 微孔、介孔、大孔 | — | T=298K | 296.7(甲苯)、 148.2(二甲苯) | 孔道填充吸附(介孔和大孔的存在促进吸附) |
Uio-66[ | — | — | — | 微、介孔 | — | T=298K,m=5mg,V=10mL,C=100μL·L-1 | 22.94(甲苯) 38.31(二甲苯) | 孔道填充吸附 | |
Uio-66-F4[ | — | — | — | 微、介孔 | 疏水性 | 30.49(甲苯) 38.31(二甲苯) | 孔道填充吸附、疏水性作用 | ||
二氯甲烷 | ZG-15[ | 559.3 | 2.2 | 0.32 | 微、介孔 | 亲水性 | 气流速率=20mL·min-1,床层高度=10cm | 240 | 孔道填充吸附、氢键作用、π-π键作用 |
苯酚 | CNT@MOF-68(Al)[ | 1290 | 1.6 | — | 微、介孔 | 疏水性 | c0=2000/μL·L-1、CNT含量=0.75% | 341.1 | 孔道填充吸附、氢键作用和π-π键作用 |
甲醛 | ED-MIL-101-3[ | 382 | 2.3 | — | 微、介孔 | 疏水性 | T=298K、潮湿环境 | 164.86 | 疏水性作用、孔道填充吸附(微孔为主) |
甲醇、 乙醇、 正己烷 | RGO(2%wt)/ Cu-BTC[ | 1549 | 1.54 | — | 微、介孔 | 亲水性 | T=298K、潮湿环境 | 421(甲醇) 474.52(乙9醇) 406(正己烷) | 静电排斥、亲水性作用、孔道填充吸附、π-π键作用 |
不同 硝基酚 | Uio-66-NH2[ | 1023 | — | 0.45 | 微、介孔 | 疏水性 | pH=4,m=20mg,c0=80mg·L-1,T=288K,V=50mL | 6.05(苯酚) 44.96(4-NP) 144.10(DNP) 141.09(TNP) | 氢键作用、π-π键作用、静电相互作用、孔道填充吸附、配位反应 |
1 | 赵朝成, 吴光锐. MOFs复合材料催化降解水中有机污染物的应用研究进展[J]. 化工进展, 2019, 38(4): 1775-1784. |
ZHAO Chaocheng, WU Guangrui. Research progress on the mechanism and applications of MOFs composite materials for catalytic degradation of organic pollutants in the solution[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1775-1784. | |
2 | 周玲玲, 汤立红, 宁平, 等.金属有机骨架材料在气体吸附与分离中的应用研究进展[J]. 材料导报, 2017, 31(19): 112-121. |
ZHOU Lingling, TANG Lihong, NING Ping, et al. Progress in gas adsorption and separation application of metal-organic framework materials[J]. Materials Reports, 2017, 31(19): 112-121. | |
3 | YANG Q, WANG Y, WANG J, et al. High effective adsorption/removal of illegal food dyes from contaminated aqueous solution by Zr-MOF (UiO-67)[J]. Food Chemistry, 2018, 254: 241-248. |
4 | 于吉行, 俞俊, 薛晓雅, 等.金属有机骨架UiO-66在催化领域的应用[J]. 化工进展, 2019, 38(S1): 144-151. |
YU Jixing, YU Jun, XUE Xiaoya, et al. Applications in the field of catalysis of metal organic framework UiO-66[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 144-151. | |
5 | FAIG R W, POPP T M O, FRACAROLI A M, et al. The chemistry of CO2 capture in an amine-functionalized metal-organic framework under dry and humid conditions[J]. Journal of the American Chemical Society, 2017, 139(35): 12125-12128. |
6 | 李小娟, 何长发, 黄斌, 等.金属有机骨架材料吸附去除环境污染物的进展[J]. 化工进展, 2016, 35(2): 586-594. |
LI Xiaojuan, HE Changfa, HUANG Bin, et al. Progress in the applications of metal-organic frameworks in adsorption removal of hazardous materials [J]. Chemical Industry and Engineering Progress, 2016, 35(2): 586-594. | |
7 | SHEBERLA D, BACHMAN J C, ELIAS J S, et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance[J]. Nature Materials, 2017, 16(2): 220-224. |
8 | JOYARAMULU K, GEYER F, SCHNEEMANN A, et al. Hydrophobic metal-organic frameworks[J]. Advanced Materials, 2019, 31(32): 1900820. |
9 | ZHANG X, LV X, SHI X, et al. Enhanced hydrophobic UiO-66 (university of oslo 66) metal-organic framework with high capacity and selectivity for toluene capture from high humid air[J]. Journal of Colloid and Interface Science, 2019, 539: 152-160. |
10 | ZHANG Z, NGUYEN H T H, MILLER S A, et al. Polymer-metal-organic frameworks (polyMOF) water tolerant materials for selective carbon dioxide separations[J]. Journal of the American Chemical Society, 2016, 138(3): 920-925. |
11 | LI Y, MIAO J, SUN X, et al. Mechanochemical synthesis of Cu-BTC@GO with enhanced water stability and toluene adsorption capacity[J]. Chemical Engineering Journal, 2016, 298: 191-197. |
12 | JABBARI V, VELETA J M, ZAREI-CHALESHTORI M, et al. Green synthesis of magnetic MOF@GO and MOF@CNT hybrid nanocomposites with high adsorption capacity towards organic pollutants[J]. Chemical Engineering Journal, 2016, 304: 774-783. |
13 | ZHU J, USOV P M, XU W, et al. A new class of metal-cyclam based zirconium metal-organic frameworks for CO2 adsorption and chemical fixation[J]. Journal of the American Chemical Society, 2017, 140(3): 993-1003. |
14 | WANG D F, WU G P, ZHAO Y F, et al. Study on the copper(Ⅱ)-doped MIL-101(Cr) and its performance in VOCs adsorption[J]. Environmental Science and Pollution Research, 2018, 25(28): 28109-28119. |
15 | WANG Z, WANG W, JIANG D, et al. Diamine-appended metal-organic frameworks: enhanced formaldehyde-vapor adsorption capacity, superior recyclability and water resistibility [J]. Dalton Transactions, 2016, 45(28): 11306-11311. |
16 | BIBI R, WEI L, SHEN Q, et al. Effect of amino functionality on the uptake of cationic dye by titanium-based metal organic frameworks[J]. Journal of Chemical & Engineering Data, 2017, 62(5): 1615-1622. |
17 | FAN Y, ZHANG S, QIN S, et al. An enhanced adsorption of organic dyes onto NH2 functionalization titanium-based metal-organic frameworks and the mechanism investigation[J]. Microporous and Mesoporous Materials, 2018, 263: 120-127. |
18 | SEO Y S, KHAN N A, JHUNG S H. Adsorptive removal of methylchlorophenoxypropionic acid from water with a metal-organic framework[J]. Chemical Engineering Journal, 2015, 270: 22-27. |
19 | QIU J, FENG Y, ZHANG X, et al. Acid-promoted synthesis of UiO-66 for highly selective adsorption of anionic dyes: adsorption performance and mechanisms[J]. Journal of Colloid and Interface Science, 2017, 499: 151-158. |
20 | KHAN N A, JUN J W, JEONG J H, et al. Remarkable adsorptive performance of a metal-organic framework, vanadium-benzenedicarboxylate (MIL-47), for benzothiophene[J]. Chemical Communications, 2011, 47(4): 1306-1308. |
21 | AHMED I, HASAN Z, KHAN N A, et al. Adsorptive denitrogenation of model fuels with porous metal-organic frameworks (MOF): effect of acidity and basicity of MOF[J]. Applied Catalysis B: Environmental, 2013, 129(2): 123-129. |
22 | HASAN Z, CHOI E J, JHUNG S H. Adsorption of naproxen and clofibric acid over a metal-organic framework MIL-101 functionalized with acidic and basic groups[J]. Chemical Engineering Journal, 2013, 219: 537-544. |
23 | KHAN N A, JUNG B K, HASAN Z, et al. Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal-organic frameworks[J]. Journal of Hazardous Materials, 2015, 282: 194-200. |
24 | LIU B J, YANG F, ZOU Y X, et al. Adsorption of phenol and p-nitrophenol from aqueous solutions on metal-organic frameworks: effect of hydrogen bonding[J]. Journal of Chemical and Engineering Data, 2014, 59(5): 1476-1482. |
25 | HASAN Z, TONG M, JUNG B K, et al. Adsorption of pyridine over amino-functionalized metal-organic frameworks: attraction via hydrogen bonding versus base-base repulsion[J]. The Journal of Physical Chemistry C, 2014, 118(36): 21049-21056. |
26 | AHMED I, JHUNG S H. Adsorptive desulfurization and denitrogenation using metal-organic frameworks[J]. Journal of Hazardous Materials, 2016, 301: 259-276. |
27 | WU Y, CHEN H, LIU D, et al. Effective ligand functionalization of zirconium-based metal-organic frameworks for the adsorption and separation of benzene and toluene: a multiscale computational study[J]. ACS Applied Materials and Interfaces, 2015, 7(10): 5775-5787. |
28 | LAHOZ-MARTIN F D, MARTÍN-CALVO A, CALERO S. Selective separation of BTEX mixtures using metal-organic frameworks[J]. Journal of Physical Chemistry C, 2014, 118(24): 13126-13136. |
29 | BOZBIYIK B, LANNOEYE J, DE-VOS D E, et al. Shape selective properties of the Al-fumarate metal-organic framework in the adsorption and separation of n-alkanes, iso-alkanes, cyclo-alkanes and aromatic hydrocarbons[J]. Physical Chemistry Chemical Physics, 2016, 18(4): 3294-3301. |
30 | LI M, LI Y W, LI W, et al. Synthesis and application of Cu-BTC@ZSM-5 composites as effective adsorbents for removal of toluene gas under moist ambience: kinetics, thermodynamics and mechanism studies[J]. Environmental Science and Pollution Research, 2020, 27(6): 6052-6065. |
31 | LI Y, YANG Z, WANG Y, et al. A mesoporous cationic thorium-organic framework that rapidly traps anionic persistent organic pollutants[J]. Nature Communications, 2017, 8(1): 1354. |
32 | PI Y, LI X, XIA Q, et al. Adsorptive and photocatalytic removal of persistent organic pollutants (POPs) in water by metal-organic frameworks (MOF)[J]. Chemical Engineering Journal, 2018, 337: 351-371. |
33 | DAI Y X, LI M, LIU F, et al. Graphene oxide wrapped copper-benzene-1,3,5-tricarbxylate metal organic framework as efficient absorbent for gaseous toluene under ambient conditions[J]. Environmental Science and Pollution Research, 2019, 26(3): 2477-2491. |
34 | SUN X J, XIA Q B, ZHAO Z X, et al. Synthesis and adsorption performance of MIL-101(Cr)/graphite oxide composites with high capacities of n-hexane[J]. Chemical Engineering Journal, 2014, 239: 226-232. |
35 | YANG Q, REN S, ZHAO Q, et al. Selective separation of methyl orange from water using magnetic ZIF-67 composites[J]. Chemical Engineering Journal, 2018, 333: 49-57. |
36 | HUANG C Y, SONG M, GU Z Y, et al. Probing the adsorption characteristic of metal-organic framework MIL-101 for volatile organic compounds by quartz crystal microbalance[J]. Environmental Science & Technology, 2011, 45(10): 4490-4496. |
37 | DUAN C, YANG M, LI F, et al. Soft-templating synthesis of mesoporous metal-organic frameworks with enhanced toluene adsorption capacity[J]. Chemistryselect, 2018, 3(45): 12888-12893. |
38 | YANG J, ZHANG Y, LIU Q, et al. Principles of designing extra-large pore openings and cages in zeolitic imidazolate frameworks[J]. Journal of the American Chemical Society, 2017, 139(18): 6448-645. |
39 | AL-JANABI N, HILL P, TORRENTE-MURCIANO L, et al. Mapping the Cu-BTC metal-organic framework (HKUST-1) stability envelope in the presence of water vapour for CO2 adsorption from flue gases[J]. Chemical Engineering Journal, 2015, 281: 669-677. |
40 | ZHAO Z, WANG S, YANG Y, et al. Competitive adsorption and selectivity of benzene and water vapor on the microporous metal organic frameworks (HKUST-1)[J]. Chemical Engineering Journal, 2015, 259: 79-89. |
41 | VELLINGIRI K, KUMAR P, DEEP A, et al. Metal-organic frameworks for the adsorption of gaseous toluene under ambient temperature and pressure[J]. Chemical Engineering Journal, 2017, 307: 1116-1126. |
42 | ZHU M, HU P, TONG Z, et al. Enhanced hydrophobic MIL(Cr) metal-organic framework with high capacity and selectivity for benzene VOCs capture from high humid air[J]. Chemical Engineering Journal, 2017, 313: 1122-1131. |
43 | PETIT C, BANDOSZ T J. MOF-graphite oxide composites: combining the uniqueness of graphene layers and metal-organic frameworks[J]. Advanced Materials, 2009, 21(46): 4753-4757. |
44 | ZHENG Y, CHU F, ZHANG B, et al. Ultrahigh adsorption capacities of carbon tetrachloride on MIL-101 and MIL-101/graphene oxide composites[J]. Microporous and Mesoporous Materials, 2018, 263: 71-76. |
45 | ZHOU Y, ZHOU L, ZHANG X, et al. Preparation of zeolitic imidazolate framework-8/graphene oxide composites with enhanced VOCs adsorption capacity[J]. Microporous and Mesoporous Materials, 2016, 225: 488-493. |
46 | HU P, LIANG X, YASEEN M, et al. Preparation of highly-hydrophobic novel N-coordinated UiO-66(Zr) with dopamine via fast mechano-chemical method for (CHO-/Cl-)-VOCs competitive adsorption in humid environment[J]. Chemical Engineering Journal, 2018, 322: 608-618. |
47 | KIM B, LEE Y R, KIM H Y, et al. Adsorption of volatile organic compounds over MIL-125-NH2[J]. Polyhedron, 2018, 154: 343-349. |
48 | LYU G, LIU J, XIONG Z, et al. Selectivity Adsorptive mechanism of different nitrophenols on UIO-66 and UIO-66-NH2 in aqueous solution[J]. Journal of Chemical and Engineering Data, 2016, 61(11): 3868-3876. |
49 | HAN T T, XIAO Y L, TONG M M, et al. Synthesis of CNT@MIL-68(Al) composites with improved adsorption capacity for phenol in aqueous solution[J]. Chemical Engineering Journal, 2015, 275: 134-141. |
50 | PLANCHAIS A, DEVAUTOUR-VINOT S, GIRET S, et al. Adsorption of benzene in the cation-containing MOFs MIL-141[J]. Journal of Physical Chemistry C, 2015, 117(38): 19393-19401. |
51 | SAINI V K, JOÃO P. Development of metal organic fromwork-199 immobilized zeolite foam for adsorption of common indoor VOCs[J]. Journal of Environmental Sciences, 2016, 55(5): 321-330. |
52 | DUAN C X, LI F E, YANG M H, et al. Rapid synthesis of hierarchically structured multifunctional metal-organic zeolites with enhanced volatile organic compounds adsorption capacity[J]. Industrial & Engineering Chemistry Research, 2018, 57(45): 15385-15394. |
53 | ZHANG X, YANG Y, LYU X, et al. Adsorption/desorption kinetics and breakthrough of gaseous toluene for modified microporous-mesoporous UiO-66 metal organic framework[J]. Journal of Hazardous Materials, 2019, 366: 140-150. |
54 | CHU F, ZHENG Y, WEN B, et al. Adsorption of toluene with water on zeolitic imidazolate framework-8/graphene oxide hybrid nanocomposites in a humid atmosphere[J]. RSC Advances, 2018, 8(5): 2426-2432. |
55 | CUI X F, SUN X D, LIU L, et al. In-situ fabrication of cellulose foam HKUST-1 and surface modification with polysaccharides for enhanced selective adsorption of toluene and acidic dipeptides[J]. Chemical Engineering Journal2019, 359: 898-907. |
56 | LIU A, PENG X, JIN Q, et al. Adsorption and diffusion of benzene in Mg-MOF-74 with open metal sites[J]. ACS Applied Materials & Interfaces, 2019, 11(4): 4686-4700. |
57 | WANG C P, YIN H, TIAN P J, et al. Remarkable adsorption performance of MOF-199 derived porous carbons for benzene vapor[J]. Environmental Research, 2020,184: 109323. |
58 | NAVARRO A R, CIRRE L, CARBONI M, et al. BTEX removal from aqueous solution with hydrophobic Zr metal organic frameworks[J]. Journal of Environmental Management, 2018, 214: 17-22. |
59 | SUN Y F, MA M, TANG B, et al. Graphene modified Cu-BTC with high stability in water and controllable selective adsorption of various gases[J]. Journal of Alloys and Compounds, 2019, 808: 151721. |
60 | GU C, HOSONO N, ZHENG J, et al. Design and control of gas diffusion process in a nanoporous soft crystal[J]. Science, 2019, 363(6425): 387-391. |
61 | LIU Q, SONG Y Y, MA Y H, et al. Mesoporous cages in chemically robust MOFs created by a large number of vertices with reduced connectivity[J]. Journal of the American Chemical Society, 2019, 141(1): 488-496. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[3] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[4] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[5] | 许中硕, 周盼盼, 王宇晖, 黄威, 宋新山. 硫铁矿介导的自养反硝化研究进展[J]. 化工进展, 2023, 42(9): 4863-4871. |
[6] | 陈翔宇, 卞春林, 肖本益. 温度分级厌氧消化工艺的研究进展[J]. 化工进展, 2023, 42(9): 4872-4881. |
[7] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[8] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[9] | 杨子育, 朱玲, 王文龙, 于超凡, 桑义敏. 阴燃法处理含油污泥的研究及应用进展[J]. 化工进展, 2023, 42(7): 3760-3769. |
[10] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[11] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[12] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[13] | 张宁, 吴海滨, 李钰, 李剑锋, 程芳琴. 漂浮型光催化材料的制备及其在水处理领域的应用研究进展[J]. 化工进展, 2023, 42(5): 2475-2485. |
[14] | 陈飞, 刘成宝, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576. |
[15] | 刘念, 陈葵, 武斌, 纪利俊, 吴艳阳, 韩金玲. 蛋黄-壳介孔磁性炭微球的制备及其对红霉素的高效吸附[J]. 化工进展, 2023, 42(5): 2724-2732. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |