1 | BP. BP statistical review of world energy[R]. London: BP, 2018: 8. | 2 | UNEP. Emissions gap report 2018: trends and progress towards the Cancun pledges, NDC targets and peaking of emissions[R]. Nairobi: UNEP, 2018: 13. | 3 | WBCSD. New energy solutions for 1.5℃: pathways and technologies to achieve the Paris agreement[R]. Geneva: WBCSD, 2018: 4. | 4 | SCHMIDT T J, BAURMEISTER J. Development status of high temperature PBI based membrane electrode assemblies[J]. ECS Transactions, 2008, 16(2): 263-270. | 5 | ENGL T. Electrode degradation in high-temperature polymer electrolyte[D]. Zürich: ETH-Zürich, 2015: 34. | 6 | OONO Y, SOUNAI A, HORI M. Long-term cell degradation mechanism in high-temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2012, 210: 366-373. | 7 | KANNAN A, KABZA A, SCHOLTA J. Long term testing of start–stop cycles on high temperature PEM fuel cell stack[J]. Journal of Power Sources, 2015, 277: 312-316. | 8 | DOE. Fuel cell technologies office multi-year research, development, and demonstration plan[R]. DOE, 2016: 17-30. | 9 | ARAYA S S, ZHOU F, LISO V, et al. A comprehensive review of PBI-based high temperature PEM fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(46): 21310-21344. | 10 | WAINRIGHT J S, WANG J T, WENG D, et al. Acid-doped polybenzimidazoles-a new polymer electrolyte[J]. Journal of the Electrochemical Society, 1995, 142(7): L121-L123. | 11 | LI Q, JENSEN J O, SAVINELL R F, et al. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells[J]. Progress in Polymer Science, 2009, 34(5): 449-477. | 12 | QUARTARONE E, ANGIONI S, MUSTARELLI P. Polymer and composite membranes for proton-conducting, high-temperature fuel cells: a critical review[J]. Materials, 2017, 10(7): 687-703. | 13 | WU J, YUAN X Z, MARTIN J J, et al. A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies[J]. Journal of Power Sources, 2008, 184(1): 104-119. | 14 | ARLT T, MAIER W, T?TZKE C, et al. Synchrotron X-ray radioscopic in situ study of high-temperature polymer electrolyte fuel cells-effect of operation conditions on structure of membrane[J]. Journal of Power Sources, 2014, 246: 290-298. | 15 | MAIER W, ARLT T, WANNEK C, et al. In-situ synchrotron X-ray radiography on high temperature polymer electrolyte fuel cells[J]. Electrochemistry Communications, 2010, 12(10): 1436-1438. | 16 | MAIER G, MEIER-HAACK J. Sulfonated aromatic polymers for fuel cell membranes[J]. Advances in Polymer Science, 2008, 216: 1-62. | 17 | SAMMS S R, WASMUS S, SAVINELL R F. Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments[J]. Journal of the Electrochemical Society, 1996, 143(4): 1225-1232. | 18 | ORFANIDI A, DALETOU M K, SYGELLOU L, et al. The role of phosphoric acid in the anodic electrocatalytic layer in high temperature PEM fuel cells[J]. Journal of Applied Electrochemistry, 2013, 43(11): 1101-1116. | 19 | TANG H, PEIKANG S, JIANG S P, et al. A degradation study of Nafion proton exchange membrane of PEM fuel cells[J]. Journal of Power Sources, 2007, 170(1): 85-92. | 20 | TIMPERMAN L, LUO Y, ALONSO-VANTE N. On the availability of active sites for the hydrogen peroxide and oxygen reduction reactions on highly dispersed platinum nanoparticles[J]. ChemElectroChem, 2016, 3(10): 1705-1712. | 21 | BORUP R, MEYERS J, PIVOVAR B, et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation[J]. Chemical Reviews, 2007, 107(10): 3904-3951. | 22 | ZHAO D, YI B L, ZHANG H M, et al. The effect of platinum in a Nafion membrane on the durability of the membrane under fuel cell conditions[J]. Journal of Power Sources, 2010, 195(15): 4606-4612. | 23 | CHANG Z, PU H, WAN D, et al. Chemical oxidative degradation of polybenzimidazole in simulated environment of fuel cells[J]. Polymer Degradation and Stability, 2009, 94(8): 1206-1212. | 24 | LIAO J H, LI Q F, RUDBECK H C, et al. Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells[J]. Fuel Cells, 2011, 11(6): 745-755. | 25 | LIAO J, YANG J, LI Q, et al. Oxidative degradation of acid doped polybenzimidazole membranes and fuel cell durability in the presence of ferrous ions[J]. Journal of Power Sources, 2013, 238: 516-522. | 26 | CHANG Z, PU H, WAN D, et al. Effects of adjacent groups of benzimidazole on antioxidation of polybenzimidazoles[J]. Polymer Degradation and Stability, 2010, 95(12): 2648-2653. | 27 | OSSIANDER T, PERCHTHALER M, HEINZL C, et al. Influence of membrane type and molecular weight distribution on the degradation of PBI-based htpem fuel cells[J]. Journal of Membrane Science, 2016, 509: 27-35. | 28 | YU S, XIAO L, BENICEWICZ B C. Durability studies of PBI-based high temperature PEMFCs[J]. Fuel Cells, 2008, 8(3/4): 165-174. | 29 | LI Q, HE R, BERG R W, et al. Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells[J]. Solid State Ionics, 2004, 168(1/2): 177-185. | 30 | MORI T, HONJI A, KAHARA T, et al. Acid absorbancy of an electrode and its cell performance history[J]. Journal of the Electrochemical Society, 1988, 135(5): 1104-1109. | 31 | EBERHARDT S H, LOCHNER T, BüCHI F N, et al. Correlating electrolyte inventory and lifetime of HT-PEFC by accelerated stress testing[J]. Journal of The Electrochemical Society, 2015, 162(12): F1367-F1372. | 32 | BOAVENTURA M, MENDES A. Activation procedures characterization of MEA based on phosphoric acid doped PBI membranes[J]. International Journal of Hydrogen Energy, 2010, 35(20): 11649-11660. | 33 | S?NDERGAARD T, CLEEMANN L N, BECKER H, et al. Long-term durability of PBI-based HT-PEM fuel cells: effect of operating parameters[J]. Journal of the Electrochemical Society, 2018, 165(6): F3053-F3062. | 34 | LI Q. High temperature polymer electrolyte membrane fuel cells: approaches, status, and perspectives[M]. Switzerland: Springer, 2016: 5-487. | 35 | HARTNIG C, SCHMIDT T J. On a new degradation mode for high-temperature polymer electrolyte fuel cells: how bipolar plate degradation affects cell performance[J]. Electrochimica Acta, 2011, 56(11): 4237-4242. | 36 | MATAR S, HIGIER A, LIU H. The effects of excess phosphoric acid in a polybenzimidazole-based high temperature proton exchange membrane fuel cell[J]. Journal of Power Sources, 2010, 195(1): 181-184. | 37 | PILINSKI N, RASTEDT M, WAGNER P. Investigation of phosphoric acid distribution in PBI based HT-PEM fuel cells[J]. ECS Transactions, 2015, 69(17): 323-335. | 38 | BECKER H, REIMER U, AILI D, et al. Determination of anion transference number and phosphoric acid diffusion coefficient in high temperature polymer electrolyte membranes[J]. Journal of The Electrochemical Society, 2018, 165(10): F863-F869. | 39 | OONO Y, SOUNAI A, HORI M. Prolongation of lifetime of high temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2013, 241: 87-93. | 40 | LIN Y, ARLT T, KARDJILOV N, et al. In operando neutron radiography analysis of a high-temperature polymer electrolyte fuel cell based on a phosphoric acid-doped polybenzimidazole membrane using the hydrogen-deuterium contrast method[J]. Energies, 2018, 11(9): 2214-2227. | 41 | EBERHARDT S H, TOULEC M, MARONE F, et al. Dynamic operation of HT-PEFC: in-operando imaging of phosphoric acid profiles and (re)distribution[J]. Journal of the Electrochemical Society, 2015, 162(3): F310-F316. | 42 | HALTER J, MARONE F, SCHMIDT T J, et al. Breaking through the cracks: on the mechanism of phosphoric acid migration in high temperature polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 2018, 165(14): F1176-F1183. | 43 | NIEMOLLER A, JAKES P, KAYSER S, et al. 3D printed sample holder for in-operando EPR spectroscopy on high temperature polymer electrolyte fuel cells[J]. Journal of Magnetic Resonance, 2016, 269: 157-161. | 44 | HALTER J, THOMAS S, K?R S K, et al. The influence of phosphoric acid migration on the performance of high temperature polymer electrolyte fuel cells[J]. Journal of Power Sources, 2018, 399: 151-156. | 45 | MELCHIOR J P, KREUER K D, MAIER J. Proton conduction mechanisms in the phosphoric acid-water system (H4P2O7-H3PO4·2H2O): A (1)H, (31)P and (17)O PFG-nmr and conductivity study[J]. Physical Chemistry Chemical Physics, 2016, 19(1): 587-600. | 46 | YANG J S, CLEEMANN L N, STEENBERG T, et al. High molecular weight polybenzimidazole membranes for high temperature PEMFC[J]. Fuel Cells, 2014, 14(1): 7-15. | 47 | S?NDERGAARD T, CLEEMANN L N, BECKER H, et al. Long-term durability of HT-PEM fuel cells based on thermally cross-linked polybenzimidazole[J]. Journal of Power Sources, 2017, 342: 570-578. | 48 | XIAO L, ZHANG H, JANA T, et al. Synthesis and characterization of pyridine-based polybenzimidazoles for high temperature polymer electrolyte membrane fuel cell applications[J]. Fuel Cells, 2005, 5(2): 287-295. | 49 | HE C, HAN K F, YU J H, et al. Novel anti-oxidative membranes based on sulfide-containing polybenzimidazole for high temperature proton exchange membrane fuel cells[J]. European Polymer Journal, 2016, 74: 168-179. | 50 | HSU S L C, LIN Y C, TASI T Y, et al. Synthesis and properties of fluorine- and siloxane-containing polybenzimidazoles for high temperature proton exchange membrane fuel cells[J]. Journal of Applied Polymer Science, 2013, 130(6): 4107-4112. | 51 | KUMBHARKAR S C, KARADKAR P B, KHARUL U K. Enhancement of gas permeation properties of polybenzimidazoles by systematic structure architecture[J]. Journal of Membrane Science, 2006, 286(1/2): 161-169. | 52 | PARVOLE J, JANNASCH P. Polysulfones grafted with poly(vinylphosphonic acid) for highly proton conducting fuel cell membranes in the hydrated and nominally dry state[J]. Macromolecules, 2008, 41(11): 3893-3903. | 53 | NI J, HU M, LIU D, et al. Synthesis and properties of highly branched polybenzimidazoles as proton exchange membranes for high-temperature fuel cells[J]. Journal of Materials Chemistry C, 2016, 4(21): 4814-4821. | 54 | HU M, NI J, ZHANG B, et al. Crosslinked polybenzimidazoles containing branching structure as membrane materials with excellent cell performance and durability for fuel cell applications[J]. Journal of Power Sources, 2018, 389: 222-229. | 55 | XU H, CHEN K, GUO X, et al. Synthesis and properties of hyperbranched polybenzimidazoles via A2+B3 approach[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2007, 45(6): 1150-1158. | 56 | SUN P, LI Z, DONG F, et al. High temperature proton exchange membranes based on cerium sulfophenyl phosphate doped polybenzimidazole by end-group protection and hot-pressing method[J]. International Journal of Hydrogen Energy, 2017, 42(1): 486-495. | 57 | KERRES J, ULLRICH A, MEIER F, et al. Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells[J]. Solid State Ionics, 1999, 125(1): 243-249. | 58 | HASIOTIS C, QINGFENG L, DEIMEDE V, et al. Development and characterization of acid-doped polybenzimidazole/sulfonated polysulfone blend polymer electrolytes for fuel cells[J]. Journal of The Electrochemical Society, 2001, 148(5): A513-A519. | 59 | MACK F, ANIOL K, ELLWEIN C, et al. Novel phosphoric acid-doped PBI-blends as membranes for high-temperature PEM fuel cells[J]. Journal of Materials Chemistry A, 2015, 3(20): 10864-10874. | 60 | KERRES J A, KATZFU? A, CHROMIK A, et al. Sulfonated poly(styrene)s-PBIOO? blend membranes: thermo-oxidative stability and conductivity[J]. Journal of Applied Polymer Science, 2014, 131(4): 39889-39898. | 61 | HAQUE M A. Physiochemical characteristics of solid electrolyte membranes for high-temperature PEM fuel cell[J]. International Journal of Electrochemical Science, 2019, 14: 371-386. | 62 | GALBIATI S, BARICCI A, CASALEGNO A, et al. Degradation in phosphoric acid doped polymer fuel cells: a 6000h parametric investigation[J]. International Journal of Hydrogen Energy, 2013, 38(15): 6469-6480. | 63 | LI Q F, RUDBECK H C, CHROMIK A, et al. Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes[J]. Journal of Membrane Science, 2010, 347(1/2): 260-270. | 64 | YANG J, JIANG H, GAO L, et al. Fabrication of crosslinked polybenzimidazole membranes by trifunctional crosslinkers for high temperature proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2018, 43(6): 3299-3307. | 65 | AILI D, LI Q, CHRISTENSEN E, et al. Crosslinking of polybenzimidazole membranes by divinylsulfone post-treatment for high-temperature proton exchange membrane fuel cell applications[J]. Polymer International, 2011, 60(8): 1201-1207. | 66 | WANG S, ZHAO C, MA W, et al. Preparation and properties of epoxy-cross-linked porous polybenzimidazole for high temperature proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2012, 411/412: 54-63. | 67 | KIM S K, KO T, CHOI S W, et al. Durable cross-linked copolymer membranes based on poly(benzoxazine) and poly(2,5-benzimidazole) for use in fuel cells at elevated temperatures[J]. Journal of Materials Chemistry, 2012, 22(15): 7194-7205. | 68 | XU H, CHEN K, GUO X, et al. Synthesis of hyperbranched polybenzimidazoles and their membrane formation[J]. Journal of Membrane Science, 2007, 288(1/2): 255-260. | 69 | YANG J S, LI Q F, CLEEMANN L N, et al. Crosslinked hexafluoropropylidene polybenzimidazole membranes with chloromethyl polysulfone for fuel cell applications[J]. Advanced Energy Materials, 2013, 3(5): 622-630. | 70 | MAITY S, JANA T. Polybenzimidazole block copolymers for fuel cell: synthesis and studies of block length effects on nanophase separation, mechanical properties, and proton conductivity of PEM[J]. ACS Applied Materials & Interfaces, 2014, 6(9): 6851-6864. | 71 | H-S LEE, ROY A, LANE O, et al. Synthesis and characterization of poly(arylene ether sulfone)-b-polybenzimidazole copolymers for high temperature low humidity proton exchange membrane fuel cells[J]. Polymer, 2008, 49(25): 5387-5396. | 72 | MADER J A, BENICEWICZ B C. Synthesis and properties of segmented block copolymers of functionalised polybenzimidazoles for high-temperature PEM fuel cells[J]. Fuel Cells, 2011, 11(2): 222-237. | 73 | NAMAZI H, AHMADI H. Improving the proton conductivity and water uptake of polybenzimidazole-based proton exchange nanocomposite membranes with TiO2 and SiO2 nanoparticles chemically modified surfaces[J]. Journal of Power Sources, 2011, 196(5): 2573-2583. | 74 | PINAR F J, CA?IZARES P, RODRIGO M A, et al. Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount[J]. RSC Advances, 2012, 2(4): 1547-1556. | 75 | HOOSHYARI K, JAVANBAKHT M, SHABANIKIA A, et al. Fabrication BaZrO3/PBI-based nanocomposite as a new proton conducting membrane for high temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2015, 276: 62-72. | 76 | SURYANI, CHANG C M, LIU Y L, et al. Polybenzimidazole membranes modified with polyelectrolyte-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells[J]. Journal of Materials Chemistry, 2011, 21(20): 7480-7486. | 77 | KANNAN R, AHER P P, PALANISELVAM T, et al. Artificially designed membranes using phosphonated multiwall carbon nanotube-polybenzimidazole composites for polymer electrolyte fuel cells[J]. The Journal of Physical Chemistry Letters, 2010, 1(14): 2109-2113. | 78 | ABOUZARI-LOTF E, ZAKERI M, NASEF M M, et al. Highly durable polybenzimidazole composite membranes with phosphonated graphene oxide for high temperature polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2019, 412: 238-245. | 79 | XU C, CAO Y, KUMAR R, et al. A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells[J]. Journal of Materials Chemistry, 2011, 21(30): 111359-111364. | 80 | HE R, LI Q, XIAO G, et al. Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors[J]. Journal of Membrane Science, 2003, 226(1/2): 169-184. | 81 | GóMEZ-ROMERO P, ASENSIO J A, BORRóS S. Hybrid proton-conducting membranes for polymer electrolyte fuel cells[J]. Electrochimica Acta, 2005, 50(24): 4715-4720. | 82 | DI S, YAN L, HAN S, et al. Enhancing the high-temperature proton conductivity of phosphoric acid doped poly(2,5-benzimidazole) by preblending boron phosphate nanoparticles to the raw materials[J]. Journal of Power Sources, 2012, 211: 161-168. | 83 | WU X, MAMLOUK M, SCOTT K. A PBI-Sb0.2Sn0.8P2O7-H3PO4 composite membrane for intermediate temperature fuel cells[J]. Fuel Cells, 2011, 11(5): 620-625. | 84 | LI M, SCOTT K. A polymer electrolyte membrane for high temperature fuel cells to fit vehicle applications[J]. Electrochimica Acta, 2010, 55(6): 2123-2128. | 85 | LIN H L, HUANG J R, CHEN Y T, et al. Polybenzimidazole/poly(tetrafluoro ethylene) composite membranes for high temperature proton exchange membrane fuel cells[J]. Journal of Polymer Research, 2012, 19(5): 9875-9882. | 86 | HAZARIKA M, JANA T. Novel proton exchange membrane for fuel cell developed from blends of polybenzimidazole with fluorinated polymer[J]. European Polymer Journal, 2013, 49(6): 1564-1576. | 87 | ZATO? M, ROZIèRE J, JONES D J. Current understanding of chemical degradation mechanisms of perfluorosulfonic acid membranes and their mitigation strategies: a review[J]. Sustainable Energy & Fuels, 2017, 1(3): 409-438. | 88 | HAO J, JIANG Y, GAO X, et al. Degradation reduction of polybenzimidazole membrane blended with CeO2 as a regenerative free radical scavenger[J]. Journal of Membrane Science, 2017, 522: 23-30. | 89 | EBERHARDT S H. Phosphoric acid electrolyte redistribution and loss in high[D]. Zürich: ETH-Zürich, 2016. | 90 | DU C, MING P, HOU M, et al. The preparation technique optimization of epoxy/compressed expanded graphite composite bipolar plates for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2010, 195(16): 5312-5319. | 91 | H-S OH, CHO Y, LEE W H, et al. Modification of electrodes using Al2O3 to reduce phosphoric acid loss and increase the performance of high-temperature proton exchange membrane fuel cells[J]. Journal of Materials Chemistry A, 2013, 1(7): 2878-2581. | 92 | BARRON O, SU H, LINKOV V, et al. CsHSO4 as proton conductor for high-temperature polymer electrolyte membrane fuel cells[J]. Journal of Applied Electrochemistry, 2014, 44(9): 1037-1045. | 93 | BARRON O, SU H, LINKOV V, et al. Enhanced performance and stability of high temperature proton exchange membrane fuel cell by incorporating zirconium hydrogen phosphate in catalyst layer[J]. Journal of Power Sources, 2015, 278: 718-724. | 94 | WANG S, SUN P, HAO X, et al. Ferric sulfophenyl phosphate bonded with phosphotungstic acid as a novel intercalated high-temperature inorganic-organic proton conductor[J]. Materials Chemistry and Physics, 2018, 213: 35-43. | 95 | BERBER M R, FUJIGAYA T, SASAKI K, et al. Remarkably durable high temperature polymer electrolyte fuel cell based on poly(vinylphosphonic acid)-doped polybenzimidazole[J]. Scientific Reports, 2013, 3(1): 1764. | 96 | BEVILACQUA N, GEORGE M G, GALBIATI S, et al. Phosphoric acid invasion in high temperature PEM fuel cell gas diffusion layers[J]. Electrochimica Acta, 2017, 257: 89-98. | 97 | HENGGE K, HEINZL C, PERCHTHALER M, et al. Unraveling micro- and nanoscale degradation processes during operation of high-temperature polymer-electrolyte-membrane fuel cells[J]. Journal of Power Sources, 2017, 364: 437-448. | 98 | ZHAO X, HAYASHI A, NODA Z, et al. Evaluation of change in nanostructure through the heat treatment of carbon materials and their durability for the start/stop operation of polymer electrolyte fuel cells[J]. Electrochimica Acta, 2013, 97: 33-41. | 99 | ZHANG Q, LING Y, CAI W, et al. High performance and durability of polymer-coated Pt electrocatalyst supported on oxidized multi-walled in high-temperature polymer electrolyte fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(26): 16714-16721. | 100 | ZAMORA H, PLAZA J, CA?IZARES P, et al. High-stability electrodes for high-temperature proton exchange membrane fuel cells by using advanced nanocarbonaceous materials[J]. ChemElectroChem, 2017, 4(12): 3288-3295. | 101 | LOBATO J, CA?IZARES P, RODRIGO M A, et al. Study of the influence of the amount of PBI–H3PO4 in the catalytic layer of a high temperature PEMFC[J]. International Journal of Hydrogen Energy, 2010, 35(3): 1347-1355. | 102 | JUNG G-B, TSENG C C, YEH C C, et al. Membrane electrode assemblies doped with H3PO4 for high temperature proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37(18): 13645-13651. | 103 | PARK J O, HONG S G, KIM T, et al. Role of binders in high temperature PEMFC electrode[J]. Journal of The Electrochemical Society, 2006, 158: 447-451. | 104 | MACK F, MORAWIETZ T, HIESGEN R, et al. PTFE distribution in high-temperature PEM electrodes and its effect on the cell performance[J]. ECS Transactions, 2013, 58(1): 881-888. | 105 | LIN H L, WU T J, LIN Y T, et al. Effect of polyvinylidene difluoride in the catalyst layer on high-temperature PEMFCs[J]. International Journal of Hydrogen Energy, 2015, 40(30): 9400-9409. | 106 | O’HAYRE R. Fuel cell fundamentals[M]. CHA S W, COLELLA W G, PRINZ F B. 3rd ed. Hoboken, New Jersey: John Wiley & Sons, 2016: 312. | 107 | MATHIAS M F, ROTH J, FLEMING J, et al. Diffusion media materials and characterisation[M]. New Jersey: John Wiley & Sons, 2010: 4. | 108 | SHAO Y, YIN G, GAO Y. Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell[J]. Journal of Power Sources, 2007, 171(2): 558-566. | 109 | ZHANG S, YUAN X Z, HIN J N C, et al. A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2009, 194(2): 588-600. | 110 | ARAGANE J, URUSHIBATA H, MURAHASHI T. Effect of operational potential on performance decay rate in a phosphoric acid fuel cell[J]. Journal of Applied Electrochemistry, 1996, 26(2): 147-152. | 111 | TANG L, HAN B, PERSSON K, et al. Electrochemical stability of nanometer-scale Pt particles in acidic environments[J]. Journal of the American Chemical Society, 2010, 132(2): 596-600. | 112 | KONDRATENKO M S, GALLYAMOV M O, TYUTYUNNIK O |
[1] |
陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[2] |
张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[3] |
王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[4] |
胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[5] |
张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[6] |
赵巍, 赵德银, 李世瀚, 刘洪达, 孙进, 郭艳秋. 三嗪型天然气管道缓蚀型减阻剂合成与应用[J]. 化工进展, 2023, 42(S1): 391-399. |
[7] |
许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[8] |
张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[9] |
雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[10] |
王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[11] |
刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[12] |
张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[13] |
王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[14] |
王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[15] |
李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
|
|