Degradation mechanism and mitigation strategy of high temperature proton exchange membrane fuel cells—part Ⅰ: materials
Ziqian WANG1,2,3(), Linlin YANG1,2, Hai SUN1,2()
1.Key Laboratory of Fuel Cells and Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China 2.Dalian National Laboratory for Clean Energy, Dalian 116023, Liaoning, China 3.University of Chinese Academy of Sciences, Beijing 100049,China
Ziqian WANG, Linlin YANG, Hai SUN. Degradation mechanism and mitigation strategy of high temperature proton exchange membrane fuel cells—part Ⅰ: materials[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2370-2389.
BP. BP statistical review of world energy[R]. London: BP, 2018: 8.
2
UNEP. Emissions gap report 2018: trends and progress towards the Cancun pledges, NDC targets and peaking of emissions[R]. Nairobi: UNEP, 2018: 13.
3
WBCSD. New energy solutions for 1.5℃: pathways and technologies to achieve the Paris agreement[R]. Geneva: WBCSD, 2018: 4.
4
SCHMIDT T J, BAURMEISTER J. Development status of high temperature PBI based membrane electrode assemblies[J]. ECS Transactions, 2008, 16(2): 263-270.
5
ENGL T. Electrode degradation in high-temperature polymer electrolyte[D]. Zürich: ETH-Zürich, 2015: 34.
6
OONO Y, SOUNAI A, HORI M. Long-term cell degradation mechanism in high-temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2012, 210: 366-373.
7
KANNAN A, KABZA A, SCHOLTA J. Long term testing of start–stop cycles on high temperature PEM fuel cell stack[J]. Journal of Power Sources, 2015, 277: 312-316.
ARAYA S S, ZHOU F, LISO V, et al. A comprehensive review of PBI-based high temperature PEM fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(46): 21310-21344.
10
WAINRIGHT J S, WANG J T, WENG D, et al. Acid-doped polybenzimidazoles-a new polymer electrolyte[J]. Journal of the Electrochemical Society, 1995, 142(7): L121-L123.
11
LI Q, JENSEN J O, SAVINELL R F, et al. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells[J]. Progress in Polymer Science, 2009, 34(5): 449-477.
12
QUARTARONE E, ANGIONI S, MUSTARELLI P. Polymer and composite membranes for proton-conducting, high-temperature fuel cells: a critical review[J]. Materials, 2017, 10(7): 687-703.
13
WU J, YUAN X Z, MARTIN J J, et al. A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies[J]. Journal of Power Sources, 2008, 184(1): 104-119.
14
ARLT T, MAIER W, T?TZKE C, et al. Synchrotron X-ray radioscopic in situ study of high-temperature polymer electrolyte fuel cells-effect of operation conditions on structure of membrane[J]. Journal of Power Sources, 2014, 246: 290-298.
15
MAIER W, ARLT T, WANNEK C, et al. In-situ synchrotron X-ray radiography on high temperature polymer electrolyte fuel cells[J]. Electrochemistry Communications, 2010, 12(10): 1436-1438.
16
MAIER G, MEIER-HAACK J. Sulfonated aromatic polymers for fuel cell membranes[J]. Advances in Polymer Science, 2008, 216: 1-62.
17
SAMMS S R, WASMUS S, SAVINELL R F. Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments[J]. Journal of the Electrochemical Society, 1996, 143(4): 1225-1232.
18
ORFANIDI A, DALETOU M K, SYGELLOU L, et al. The role of phosphoric acid in the anodic electrocatalytic layer in high temperature PEM fuel cells[J]. Journal of Applied Electrochemistry, 2013, 43(11): 1101-1116.
19
TANG H, PEIKANG S, JIANG S P, et al. A degradation study of Nafion proton exchange membrane of PEM fuel cells[J]. Journal of Power Sources, 2007, 170(1): 85-92.
20
TIMPERMAN L, LUO Y, ALONSO-VANTE N. On the availability of active sites for the hydrogen peroxide and oxygen reduction reactions on highly dispersed platinum nanoparticles[J]. ChemElectroChem, 2016, 3(10): 1705-1712.
21
BORUP R, MEYERS J, PIVOVAR B, et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation[J]. Chemical Reviews, 2007, 107(10): 3904-3951.
22
ZHAO D, YI B L, ZHANG H M, et al. The effect of platinum in a Nafion membrane on the durability of the membrane under fuel cell conditions[J]. Journal of Power Sources, 2010, 195(15): 4606-4612.
23
CHANG Z, PU H, WAN D, et al. Chemical oxidative degradation of polybenzimidazole in simulated environment of fuel cells[J]. Polymer Degradation and Stability, 2009, 94(8): 1206-1212.
24
LIAO J H, LI Q F, RUDBECK H C, et al. Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells[J]. Fuel Cells, 2011, 11(6): 745-755.
25
LIAO J, YANG J, LI Q, et al. Oxidative degradation of acid doped polybenzimidazole membranes and fuel cell durability in the presence of ferrous ions[J]. Journal of Power Sources, 2013, 238: 516-522.
26
CHANG Z, PU H, WAN D, et al. Effects of adjacent groups of benzimidazole on antioxidation of polybenzimidazoles[J]. Polymer Degradation and Stability, 2010, 95(12): 2648-2653.
27
OSSIANDER T, PERCHTHALER M, HEINZL C, et al. Influence of membrane type and molecular weight distribution on the degradation of PBI-based htpem fuel cells[J]. Journal of Membrane Science, 2016, 509: 27-35.
28
YU S, XIAO L, BENICEWICZ B C. Durability studies of PBI-based high temperature PEMFCs[J]. Fuel Cells, 2008, 8(3/4): 165-174.
29
LI Q, HE R, BERG R W, et al. Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells[J]. Solid State Ionics, 2004, 168(1/2): 177-185.
30
MORI T, HONJI A, KAHARA T, et al. Acid absorbancy of an electrode and its cell performance history[J]. Journal of the Electrochemical Society, 1988, 135(5): 1104-1109.
31
EBERHARDT S H, LOCHNER T, BüCHI F N, et al. Correlating electrolyte inventory and lifetime of HT-PEFC by accelerated stress testing[J]. Journal of The Electrochemical Society, 2015, 162(12): F1367-F1372.
32
BOAVENTURA M, MENDES A. Activation procedures characterization of MEA based on phosphoric acid doped PBI membranes[J]. International Journal of Hydrogen Energy, 2010, 35(20): 11649-11660.
33
S?NDERGAARD T, CLEEMANN L N, BECKER H, et al. Long-term durability of PBI-based HT-PEM fuel cells: effect of operating parameters[J]. Journal of the Electrochemical Society, 2018, 165(6): F3053-F3062.
34
LI Q. High temperature polymer electrolyte membrane fuel cells: approaches, status, and perspectives[M]. Switzerland: Springer, 2016: 5-487.
35
HARTNIG C, SCHMIDT T J. On a new degradation mode for high-temperature polymer electrolyte fuel cells: how bipolar plate degradation affects cell performance[J]. Electrochimica Acta, 2011, 56(11): 4237-4242.
36
MATAR S, HIGIER A, LIU H. The effects of excess phosphoric acid in a polybenzimidazole-based high temperature proton exchange membrane fuel cell[J]. Journal of Power Sources, 2010, 195(1): 181-184.
37
PILINSKI N, RASTEDT M, WAGNER P. Investigation of phosphoric acid distribution in PBI based HT-PEM fuel cells[J]. ECS Transactions, 2015, 69(17): 323-335.
38
BECKER H, REIMER U, AILI D, et al. Determination of anion transference number and phosphoric acid diffusion coefficient in high temperature polymer electrolyte membranes[J]. Journal of The Electrochemical Society, 2018, 165(10): F863-F869.
39
OONO Y, SOUNAI A, HORI M. Prolongation of lifetime of high temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2013, 241: 87-93.
40
LIN Y, ARLT T, KARDJILOV N, et al. In operando neutron radiography analysis of a high-temperature polymer electrolyte fuel cell based on a phosphoric acid-doped polybenzimidazole membrane using the hydrogen-deuterium contrast method[J]. Energies, 2018, 11(9): 2214-2227.
41
EBERHARDT S H, TOULEC M, MARONE F, et al. Dynamic operation of HT-PEFC: in-operando imaging of phosphoric acid profiles and (re)distribution[J]. Journal of the Electrochemical Society, 2015, 162(3): F310-F316.
42
HALTER J, MARONE F, SCHMIDT T J, et al. Breaking through the cracks: on the mechanism of phosphoric acid migration in high temperature polymer electrolyte fuel cells[J]. Journal of the Electrochemical Society, 2018, 165(14): F1176-F1183.
43
NIEMOLLER A, JAKES P, KAYSER S, et al. 3D printed sample holder for in-operando EPR spectroscopy on high temperature polymer electrolyte fuel cells[J]. Journal of Magnetic Resonance, 2016, 269: 157-161.
44
HALTER J, THOMAS S, K?R S K, et al. The influence of phosphoric acid migration on the performance of high temperature polymer electrolyte fuel cells[J]. Journal of Power Sources, 2018, 399: 151-156.
45
MELCHIOR J P, KREUER K D, MAIER J. Proton conduction mechanisms in the phosphoric acid-water system (H4P2O7-H3PO4·2H2O): A (1)H, (31)P and (17)O PFG-nmr and conductivity study[J]. Physical Chemistry Chemical Physics, 2016, 19(1): 587-600.
46
YANG J S, CLEEMANN L N, STEENBERG T, et al. High molecular weight polybenzimidazole membranes for high temperature PEMFC[J]. Fuel Cells, 2014, 14(1): 7-15.
47
S?NDERGAARD T, CLEEMANN L N, BECKER H, et al. Long-term durability of HT-PEM fuel cells based on thermally cross-linked polybenzimidazole[J]. Journal of Power Sources, 2017, 342: 570-578.
48
XIAO L, ZHANG H, JANA T, et al. Synthesis and characterization of pyridine-based polybenzimidazoles for high temperature polymer electrolyte membrane fuel cell applications[J]. Fuel Cells, 2005, 5(2): 287-295.
49
HE C, HAN K F, YU J H, et al. Novel anti-oxidative membranes based on sulfide-containing polybenzimidazole for high temperature proton exchange membrane fuel cells[J]. European Polymer Journal, 2016, 74: 168-179.
50
HSU S L C, LIN Y C, TASI T Y, et al. Synthesis and properties of fluorine- and siloxane-containing polybenzimidazoles for high temperature proton exchange membrane fuel cells[J]. Journal of Applied Polymer Science, 2013, 130(6): 4107-4112.
51
KUMBHARKAR S C, KARADKAR P B, KHARUL U K. Enhancement of gas permeation properties of polybenzimidazoles by systematic structure architecture[J]. Journal of Membrane Science, 2006, 286(1/2): 161-169.
52
PARVOLE J, JANNASCH P. Polysulfones grafted with poly(vinylphosphonic acid) for highly proton conducting fuel cell membranes in the hydrated and nominally dry state[J]. Macromolecules, 2008, 41(11): 3893-3903.
53
NI J, HU M, LIU D, et al. Synthesis and properties of highly branched polybenzimidazoles as proton exchange membranes for high-temperature fuel cells[J]. Journal of Materials Chemistry C, 2016, 4(21): 4814-4821.
54
HU M, NI J, ZHANG B, et al. Crosslinked polybenzimidazoles containing branching structure as membrane materials with excellent cell performance and durability for fuel cell applications[J]. Journal of Power Sources, 2018, 389: 222-229.
55
XU H, CHEN K, GUO X, et al. Synthesis and properties of hyperbranched polybenzimidazoles via A2+B3 approach[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2007, 45(6): 1150-1158.
56
SUN P, LI Z, DONG F, et al. High temperature proton exchange membranes based on cerium sulfophenyl phosphate doped polybenzimidazole by end-group protection and hot-pressing method[J]. International Journal of Hydrogen Energy, 2017, 42(1): 486-495.
57
KERRES J, ULLRICH A, MEIER F, et al. Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells[J]. Solid State Ionics, 1999, 125(1): 243-249.
58
HASIOTIS C, QINGFENG L, DEIMEDE V, et al. Development and characterization of acid-doped polybenzimidazole/sulfonated polysulfone blend polymer electrolytes for fuel cells[J]. Journal of The Electrochemical Society, 2001, 148(5): A513-A519.
59
MACK F, ANIOL K, ELLWEIN C, et al. Novel phosphoric acid-doped PBI-blends as membranes for high-temperature PEM fuel cells[J]. Journal of Materials Chemistry A, 2015, 3(20): 10864-10874.
60
KERRES J A, KATZFU? A, CHROMIK A, et al. Sulfonated poly(styrene)s-PBIOO? blend membranes: thermo-oxidative stability and conductivity[J]. Journal of Applied Polymer Science, 2014, 131(4): 39889-39898.
61
HAQUE M A. Physiochemical characteristics of solid electrolyte membranes for high-temperature PEM fuel cell[J]. International Journal of Electrochemical Science, 2019, 14: 371-386.
62
GALBIATI S, BARICCI A, CASALEGNO A, et al. Degradation in phosphoric acid doped polymer fuel cells: a 6000h parametric investigation[J]. International Journal of Hydrogen Energy, 2013, 38(15): 6469-6480.
63
LI Q F, RUDBECK H C, CHROMIK A, et al. Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes[J]. Journal of Membrane Science, 2010, 347(1/2): 260-270.
64
YANG J, JIANG H, GAO L, et al. Fabrication of crosslinked polybenzimidazole membranes by trifunctional crosslinkers for high temperature proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2018, 43(6): 3299-3307.
65
AILI D, LI Q, CHRISTENSEN E, et al. Crosslinking of polybenzimidazole membranes by divinylsulfone post-treatment for high-temperature proton exchange membrane fuel cell applications[J]. Polymer International, 2011, 60(8): 1201-1207.
66
WANG S, ZHAO C, MA W, et al. Preparation and properties of epoxy-cross-linked porous polybenzimidazole for high temperature proton exchange membrane fuel cells[J]. Journal of Membrane Science, 2012, 411/412: 54-63.
67
KIM S K, KO T, CHOI S W, et al. Durable cross-linked copolymer membranes based on poly(benzoxazine) and poly(2,5-benzimidazole) for use in fuel cells at elevated temperatures[J]. Journal of Materials Chemistry, 2012, 22(15): 7194-7205.
68
XU H, CHEN K, GUO X, et al. Synthesis of hyperbranched polybenzimidazoles and their membrane formation[J]. Journal of Membrane Science, 2007, 288(1/2): 255-260.
69
YANG J S, LI Q F, CLEEMANN L N, et al. Crosslinked hexafluoropropylidene polybenzimidazole membranes with chloromethyl polysulfone for fuel cell applications[J]. Advanced Energy Materials, 2013, 3(5): 622-630.
70
MAITY S, JANA T. Polybenzimidazole block copolymers for fuel cell: synthesis and studies of block length effects on nanophase separation, mechanical properties, and proton conductivity of PEM[J]. ACS Applied Materials & Interfaces, 2014, 6(9): 6851-6864.
71
H-S LEE, ROY A, LANE O, et al. Synthesis and characterization of poly(arylene ether sulfone)-b-polybenzimidazole copolymers for high temperature low humidity proton exchange membrane fuel cells[J]. Polymer, 2008, 49(25): 5387-5396.
72
MADER J A, BENICEWICZ B C. Synthesis and properties of segmented block copolymers of functionalised polybenzimidazoles for high-temperature PEM fuel cells[J]. Fuel Cells, 2011, 11(2): 222-237.
73
NAMAZI H, AHMADI H. Improving the proton conductivity and water uptake of polybenzimidazole-based proton exchange nanocomposite membranes with TiO2 and SiO2 nanoparticles chemically modified surfaces[J]. Journal of Power Sources, 2011, 196(5): 2573-2583.
74
PINAR F J, CA?IZARES P, RODRIGO M A, et al. Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount[J]. RSC Advances, 2012, 2(4): 1547-1556.
75
HOOSHYARI K, JAVANBAKHT M, SHABANIKIA A, et al. Fabrication BaZrO3/PBI-based nanocomposite as a new proton conducting membrane for high temperature proton exchange membrane fuel cells[J]. Journal of Power Sources, 2015, 276: 62-72.
76
SURYANI, CHANG C M, LIU Y L, et al. Polybenzimidazole membranes modified with polyelectrolyte-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells[J]. Journal of Materials Chemistry, 2011, 21(20): 7480-7486.
77
KANNAN R, AHER P P, PALANISELVAM T, et al. Artificially designed membranes using phosphonated multiwall carbon nanotube-polybenzimidazole composites for polymer electrolyte fuel cells[J]. The Journal of Physical Chemistry Letters, 2010, 1(14): 2109-2113.
78
ABOUZARI-LOTF E, ZAKERI M, NASEF M M, et al. Highly durable polybenzimidazole composite membranes with phosphonated graphene oxide for high temperature polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2019, 412: 238-245.
79
XU C, CAO Y, KUMAR R, et al. A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells[J]. Journal of Materials Chemistry, 2011, 21(30): 111359-111364.
80
HE R, LI Q, XIAO G, et al. Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors[J]. Journal of Membrane Science, 2003, 226(1/2): 169-184.
81
GóMEZ-ROMERO P, ASENSIO J A, BORRóS S. Hybrid proton-conducting membranes for polymer electrolyte fuel cells[J]. Electrochimica Acta, 2005, 50(24): 4715-4720.
82
DI S, YAN L, HAN S, et al. Enhancing the high-temperature proton conductivity of phosphoric acid doped poly(2,5-benzimidazole) by preblending boron phosphate nanoparticles to the raw materials[J]. Journal of Power Sources, 2012, 211: 161-168.
83
WU X, MAMLOUK M, SCOTT K. A PBI-Sb0.2Sn0.8P2O7-H3PO4 composite membrane for intermediate temperature fuel cells[J]. Fuel Cells, 2011, 11(5): 620-625.
84
LI M, SCOTT K. A polymer electrolyte membrane for high temperature fuel cells to fit vehicle applications[J]. Electrochimica Acta, 2010, 55(6): 2123-2128.
85
LIN H L, HUANG J R, CHEN Y T, et al. Polybenzimidazole/poly(tetrafluoro ethylene) composite membranes for high temperature proton exchange membrane fuel cells[J]. Journal of Polymer Research, 2012, 19(5): 9875-9882.
86
HAZARIKA M, JANA T. Novel proton exchange membrane for fuel cell developed from blends of polybenzimidazole with fluorinated polymer[J]. European Polymer Journal, 2013, 49(6): 1564-1576.
87
ZATO? M, ROZIèRE J, JONES D J. Current understanding of chemical degradation mechanisms of perfluorosulfonic acid membranes and their mitigation strategies: a review[J]. Sustainable Energy & Fuels, 2017, 1(3): 409-438.
88
HAO J, JIANG Y, GAO X, et al. Degradation reduction of polybenzimidazole membrane blended with CeO2 as a regenerative free radical scavenger[J]. Journal of Membrane Science, 2017, 522: 23-30.
89
EBERHARDT S H. Phosphoric acid electrolyte redistribution and loss in high[D]. Zürich: ETH-Zürich, 2016.
90
DU C, MING P, HOU M, et al. The preparation technique optimization of epoxy/compressed expanded graphite composite bipolar plates for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2010, 195(16): 5312-5319.
91
H-S OH, CHO Y, LEE W H, et al. Modification of electrodes using Al2O3 to reduce phosphoric acid loss and increase the performance of high-temperature proton exchange membrane fuel cells[J]. Journal of Materials Chemistry A, 2013, 1(7): 2878-2581.
92
BARRON O, SU H, LINKOV V, et al. CsHSO4 as proton conductor for high-temperature polymer electrolyte membrane fuel cells[J]. Journal of Applied Electrochemistry, 2014, 44(9): 1037-1045.
93
BARRON O, SU H, LINKOV V, et al. Enhanced performance and stability of high temperature proton exchange membrane fuel cell by incorporating zirconium hydrogen phosphate in catalyst layer[J]. Journal of Power Sources, 2015, 278: 718-724.
94
WANG S, SUN P, HAO X, et al. Ferric sulfophenyl phosphate bonded with phosphotungstic acid as a novel intercalated high-temperature inorganic-organic proton conductor[J]. Materials Chemistry and Physics, 2018, 213: 35-43.
95
BERBER M R, FUJIGAYA T, SASAKI K, et al. Remarkably durable high temperature polymer electrolyte fuel cell based on poly(vinylphosphonic acid)-doped polybenzimidazole[J]. Scientific Reports, 2013, 3(1): 1764.
96
BEVILACQUA N, GEORGE M G, GALBIATI S, et al. Phosphoric acid invasion in high temperature PEM fuel cell gas diffusion layers[J]. Electrochimica Acta, 2017, 257: 89-98.
97
HENGGE K, HEINZL C, PERCHTHALER M, et al. Unraveling micro- and nanoscale degradation processes during operation of high-temperature polymer-electrolyte-membrane fuel cells[J]. Journal of Power Sources, 2017, 364: 437-448.
98
ZHAO X, HAYASHI A, NODA Z, et al. Evaluation of change in nanostructure through the heat treatment of carbon materials and their durability for the start/stop operation of polymer electrolyte fuel cells[J]. Electrochimica Acta, 2013, 97: 33-41.
99
ZHANG Q, LING Y, CAI W, et al. High performance and durability of polymer-coated Pt electrocatalyst supported on oxidized multi-walled in high-temperature polymer electrolyte fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(26): 16714-16721.
100
ZAMORA H, PLAZA J, CA?IZARES P, et al. High-stability electrodes for high-temperature proton exchange membrane fuel cells by using advanced nanocarbonaceous materials[J]. ChemElectroChem, 2017, 4(12): 3288-3295.
101
LOBATO J, CA?IZARES P, RODRIGO M A, et al. Study of the influence of the amount of PBI–H3PO4 in the catalytic layer of a high temperature PEMFC[J]. International Journal of Hydrogen Energy, 2010, 35(3): 1347-1355.
102
JUNG G-B, TSENG C C, YEH C C, et al. Membrane electrode assemblies doped with H3PO4 for high temperature proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37(18): 13645-13651.
103
PARK J O, HONG S G, KIM T, et al. Role of binders in high temperature PEMFC electrode[J]. Journal of The Electrochemical Society, 2006, 158: 447-451.
104
MACK F, MORAWIETZ T, HIESGEN R, et al. PTFE distribution in high-temperature PEM electrodes and its effect on the cell performance[J]. ECS Transactions, 2013, 58(1): 881-888.
105
LIN H L, WU T J, LIN Y T, et al. Effect of polyvinylidene difluoride in the catalyst layer on high-temperature PEMFCs[J]. International Journal of Hydrogen Energy, 2015, 40(30): 9400-9409.
106
O’HAYRE R. Fuel cell fundamentals[M]. CHA S W, COLELLA W G, PRINZ F B. 3rd ed. Hoboken, New Jersey: John Wiley & Sons, 2016: 312.
107
MATHIAS M F, ROTH J, FLEMING J, et al. Diffusion media materials and characterisation[M]. New Jersey: John Wiley & Sons, 2010: 4.
108
SHAO Y, YIN G, GAO Y. Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell[J]. Journal of Power Sources, 2007, 171(2): 558-566.
109
ZHANG S, YUAN X Z, HIN J N C, et al. A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells[J]. Journal of Power Sources, 2009, 194(2): 588-600.
110
ARAGANE J, URUSHIBATA H, MURAHASHI T. Effect of operational potential on performance decay rate in a phosphoric acid fuel cell[J]. Journal of Applied Electrochemistry, 1996, 26(2): 147-152.
111
TANG L, HAN B, PERSSON K, et al. Electrochemical stability of nanometer-scale Pt particles in acidic environments[J]. Journal of the American Chemical Society, 2010, 132(2): 596-600.