化工进展 ›› 2019, Vol. 38 ›› Issue (05): 2234-2242.DOI: 10.16085/j.issn.1000-6613.2018-1618
收稿日期:
2018-08-07
修回日期:
2019-01-21
出版日期:
2019-05-05
发布日期:
2019-05-05
作者简介:
<named-content content-type="corresp-name">付凤艳</named-content>(1981—),女,博士,讲师,研究方向为高分子化学。E-mail:<email>1374195561@qq.com</email>。
基金资助:
Fengyan FU(),Jie ZHANG,Jingquan CHENG,Sufang ZHANG,Yan ZHANG,Jing FAN
Received:
2018-08-07
Revised:
2019-01-21
Online:
2019-05-05
Published:
2019-05-05
摘要:
保护环境,开发环保型能源,对人类和社会具有重要意义。质子交换膜燃料电池由于其能量转化率高,可实现零排放,近年来引起了电池领域研究者们的兴趣。氧化石墨烯(GO)由于存在活性氧官能团,可以和离子型聚合物进行复合以制备复合质子交换膜。氧化石墨烯类的复合质子交换膜应用于燃料电池时可以提高膜在高温低湿度条件下的质子传导率,降低甲醇渗透率,提高电池的功率密度。本文首先介绍了氧化石墨烯的制备方法,然后从不同的离子型聚合物基质复合质子交换膜的类别出发,详细介绍了氧化石墨烯在Nafion、聚醚醚酮、聚苯并咪唑和壳聚糖等不同种类的离子型聚合物中的应用现状及作用机理,同时对其在质子交换膜的应用方面存在的问题及应用前景做了评论和展望。
中图分类号:
付凤艳, 张杰, 程敬泉, 张素芳, 张彦, 樊静. 氧化石墨烯在燃料电池质子交换膜中的应用[J]. 化工进展, 2019, 38(05): 2234-2242.
Fengyan FU, Jie ZHANG, Jingquan CHENG, Sufang ZHANG, Yan ZHANG, Jing FAN. Application of graphene oxide in proton exchange membrane for fuel cell[J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2234-2242.
1 | KERRES J A . Blended and cross-linked ionomer membranes for application in membrane fuel cells [J]. Fuel Cells, 2005, 5 (2): 230-247. |
2 | SCHALENBACH M , HOEFNER T , PACIOK P , et al . Gas permeation through Nafion [J]. J. Phys.Chem.C, 2015,119 (45): 25145-25155. |
3 | ITO H, MAEDA T , NAKANO A , et al . Properties of Nafion membranes under PEM water electrolysis conditions [J]. Int.J. Hydrogen Energy, 2011, 36 (17): 10527-10540. |
4 | EFTEKHARI A , SHULGA Y M , BASKAKOV S A , et al . Graphene oxide membranes for electrochemical energy storage and conversion [J]. Int. J. Hydrogen Energy, 2018, 43 (4): 2307-2326. |
5 | DONG Y Z , LIU M J , LIU Y , et al . Molybdenum-doped mesoporous carbon/graphene composites as efficient electrocatalysts for the oxygen reduction reaction [J]. J.Mater.Chem.A, 2015, 3 (39): 19969-19973. |
6 | FERRARI A C , BASKO D M . Raman spectroscopy as a versatile tool for studying the properties of graphene [J]. Nat. Nanotechnol., 2013, 8 (4): 235-246. |
7 | STINE R , LEE W K, WHITENER K E , et al . Chemical stability of graphene fluoride produced by exposure to XeF2 [J]. Nano Lett., 2013, 13 (9): 4311-4316. |
8 | 肖淑娟,于守武,谭小耀 . 石墨烯类材料的应用及研究进展[J]. 化工进展,2015, 34(5):1345-1348. |
XIAO S J , YU S W , TAN X Y . Research progress and the applications of graphene materials [J]. Chemical Industry and Engineering Progress, 2015, 34(5): 1345-1348. | |
9 | GAO W . The chemistry of graphene oxide. graphene oxide reduction. recipes, spectroscopy. applications [M].US: Springer International Publishing , 2015: 61-95. |
10 | AMBROSI A , CHUA C K , BONANNI A , et al . Electrochemistry of graphene and related materials [J]. Chem. Rev., 2014, 114 (14): 7150-7188. |
11 | RAVIKUMAR, SCOTT K . Freestanding sulfonated graphene oxide paper: a new polymer electrolyte for polymer electrolyte fuel cells [J]. Chem. Commun. ,2012, 48 (45): 5584 |
12 | SHEN H , WANG N , MA K, et al . Tuning inter-layer spacing of graphene oxide laminates with solvent green to enhance its nanofiltration performance [J]. J. Membr. Sci.,2017, 527: 43-50. |
13 | HUMMERS W S , OFFEMAN R E . Preparation of graphitic oxide [J]. J. Am. Chem. Soc., 1958, 80: 1339. |
14 | 王慧 . 氧化石墨烯及其功能化改性材料富集水中重金属离子机理研究[D]. 长沙:湖南大学,2016. |
WANG H . Application of graphene oxide and its functional composites for enrichment of heavy metal ions from aqueous solution [D]. Changsha: Hunan University, 2016. | |
15 | SHAO Y , WANG J , ENGELHARD M , et al . Facile and controllable electrochemical reduction of graphene oxide and its applications [J]. J.Mater. Chem., 2010, 20 (4): 743-748. |
16 | SONG M K , ZHU X B , LIU M L . A triazole-based polymer electrolyte membrane for fuel cells operated in a wide temperature range (25~150°C) with little humidification [J]. J. Power Sources ,2013, 241: 219-224. |
17 | ZHANG H , SHEN P K . Recent development of polymer electrolyte membranes for fuel cells [J]. Chem. Rev. ,2012, 112 (5): 2780-2832. |
18 | KETPANG K , SON B, LEE D, et al . Porous zirconium oxide nanotube modified Nafion composite membrane for polymer electrolyte membrane fuel cells operated under dry conditions [J]. J. Membr. Sci. ,2015, 488: 154-165. |
19 | KETPANG K , LEE K, SHANMUGAM S . Facile synthesis of porous metal oxide nanotubes and modified Nafion composite membranes for polymer electrolyte fuel cells operated under low relative humidity [J]. ACS Appl. Mater. Interfaces, 2014, 6 (19): 16734-16744. |
20 | GARAGA M N , AGUILEAR L , YAGHINI N , et al . Achieving enhanced ionic mobility in nanoporous silica by controlled surface interactions [J]. Phys. Chem. Chem. Phys., 2017, 19 (8): 5727-5736. |
21 | JIA W , TANG B B , WU P Y . Novel composite PEM with long-range ionic nanochannels induced by carbon nanotube/graphene oxide nanoribbon composites [J]. ACS Appl. Mater. Interfaces, 2016, 8 (42): 28955-28963. |
22 | 张杰 . 氧化石墨烯/聚合物复合质子交换膜研究进展 [J]. 高分子通报,2016,4:37-46 |
ZHANG J . Recent progress in graphene oxide/polymer blend proton exchange membrane [J]. Polymer Bulletin, 2016, 4: 37-46. | |
23 | FENG H B , CHENG R , ZHAO X , et al . A low-temperature method to produce highly reduced graphene oxide [J]. Nature Commun., 2013, 4: 1539. |
24 | SUN M , LI J H . Graphene oxide membranes: functional structures, preparation and environmental applications [J]. Nano Today, 2018, 20: 121-137. |
25 | CHEN D , FENG H B , LI J H . Graphene oxide: preparation, functionalization, and electrochemical applications [J]. Chem. Rev., 2012, 112 (11): 6027-6053. |
26 | FENG H B , LIU Y , LI J H . Highly reduced graphene oxide supported Pt nanocomposites as highly efficient catalysts for methanol oxidation [J]. Chem. Commun., 2015, 51 (12): 2418-2420 . |
27 | ZHAO X X , YUAN W X , WU Q X , et al . High-temperature passive direct methanol fuel cells operating with concentrated fuels [J]. J. Power Sources, 2015, 273: 517-521. |
28 | CUI Y H , BAKER A P , XU X , et al . Enhancement of Nafion based membranes for direct methanol fuel cell applications through the inclusion of ammonium-X zeolite fillers [J]. J. Power Sources, 2015, 294: 369-376. |
29 | LIN C W , LU Y S . Highly ordered graphene oxide paper laminated with a Nafion membrane for direct methanol fuel cells [J]. J. Power Sources, 2013, 237: 187-194. |
30 | WANG L S , LAI A N , LIN C X , et al . Orderly sandwich-shaped graphene oxide/Nafion composite membranes for direct methanol fuel cells [J]. J. Membr. Sci., 2015, 492: 58-66. |
31 | YAN X H , WU R , XU J B , et al . Monolayer graphene - Nafion sandwich membrane for direct methanol fuel cells [J]. J. Power Sources, 2016, 311: 188-194. |
32 | FENG K , TANG B B , WU P Y . “Evaporating” graphene oxide sheets (GOSs) for rolled up GOSs and its applications in proton exchange membrane fuel cell [J]. ACS Appl. Mater. Interfaces, 2013, 5(4): 1481-1488. |
33 | WEI J , TANG B B , WU P Y . Novel slightly reduced graphene oxide based proton exchange membrane with constructed long-range ionic nanochannels via self-assembling of Nafion [J]. ACS Appl. Mater. Interfaces, 2017, 9 (27): 22620-22627. |
34 | LEE D C, YANG H N , PARK S H , et al . Nafion/ graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell [J]. J. Membr. Sci., 2014, 452: 20-28. |
35 | CHIEN H C , TSAI L D , HUANG C P , et al . Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells [J]. Int.J. Hydrogen Energy, 2013, 38 (31): 13792-13801. |
36 | LI Z H , XI J Y , ZHOU H P , et al . Preparation and characterization of sulfonated poly(ether ether ketone)/poly(vinylidene fluoride) blend membrane for vanadium redox flow battery application [J]. J. Power Sources, 2013, 237: 132-140. |
37 | MIKHAILENKO S D , ROBERTSON G P , GUIVER M D , et al . Properties of PEMs based on cross-linked sulfonated poly(ether ether ketone) [J]. J.Membr.Sci., 2006, 285: 306-316. |
38 | JIANG Z Q , ZHAO X S , FU Y Z , et al . Composite membranes based on sulfonated poly(ether ether ketone) and SDBS-adsorbed graphene oxide for direct methanol fuel cells [J]. J.Mater. Chem., 2012, 22 (47): 24862-24869. |
39 | JIANG Z Q , ZHAO X S , MANTHIRAM A . Sulfonated poly(ether ether ketone) membranes with sulfonated graphene oxide fillers for direct methanol fuel cells [J]. Int.J. Hydrogen Energy, 2013, 38 (14): 5875-5884. |
40 | JIANG Z J , JIANG Z Q , TIAN X N , et al . Sulfonated holey graphene oxide (SHGO) filled sulfonated poly(ether ether ketone) membrane: the role of holes in the SHGO in improving its performance as proton exchange membrane for direct methanol fuel cells [J]. ACS Appl. Mater. Interfaces, 2017, 9 (23): 20046-20056. |
41 | RAVI K , MAMLOUK M , SCOTT K . Sulfonated polyether ether ketone – sulfonated graphene oxide composite membranes for polymer electrolyte fuel cells [J]. RSC Adv., 2014, 4 (2): 617-623. |
42 | YIN Y H , WANG H Y , CAO L , et al . Sulfonated poly(ether ether ketone)-based hybrid membranes containing graphene oxide with acid-base pairs for direct methanol fuel cells [J]. Electrochim. Acta , 2016, 203: 178-188. |
43 | HE Y K , WANG J T , ZHANG H Q , et al . Polydopamine-modified graphene oxide nanocomposite membrane for proton exchange membrane fuel cell under anhydrous conditions [J]. J.Mater.Chem.A, 2014, 2 (25): 9548-9558. |
44 | LEE K S, SPENDELOW J S , CHOE Y K , et al . An operationally flexible fuel cell based on quaternary ammonium-biphosphate ion pairs [J]. Nature Energy, 2016, 1 (9): 16120-16126. |
45 | MELCHIOR J P , MAJER G , KREUER K D . Why do proton conducting polybenzimidazole phosphoric acid membranes perform well in high-temperature PEM fuel cells [J]. Phys. Chem. Chem. Phys, 2017, 19 (1): 601-612. |
46 | QIU X , UEDA M , HU H Y , et al . Poly(2,5-benzimidazole)-grafted graphene oxide as an effective proton conductor for construction of nanocomposite proton exchange membrane [J]. ACS Appl. Mater. Interfaces, 2017, 9 (38): 33049-33058. |
47 | XU C X , CAO Y C , KUMAR R , et al . A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells [J]. J.Mater. Chem. , 2011, 21 (30): 11359-11364. |
48 | XUE C , ZOU J , SUN Z N , et al . Graphite oxide/functionalized gaphene oxide and polybenzimidazole composite membranes for high temperature proton exchange membrane fuel cells [J]. Int.J. Hydrogen Energy, 2014, 39 (15): 7931-7939. |
49 | ÜREGEN N , PEHLIVANOGLU K , ÖZDEMIR Y , et al . Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells [J]. Int.J. Hydrogen Energy, 2017, 42 (4): 2636-2647. |
50 | YANG J S , LIU C , GAO L P , et al . Novel composite membranes of triazole modified graphene oxide and polybenzimidazole for high temperature polymer electrolyte membrane fuel cell applications [J]. RSC Adv., 2015, 5 (122): 101049-101054. |
51 | YANG J M , CHIU H C . Preparation and characterization of polyvinyl alcohol/chitosan blended membrane for alkaline direct methanol fuel cells [J]. J.Membr. Sci., 2012, 419-420: 65-71. |
52 | SRINOPHAKUN T , MARTKUMCHAN S . Ionic conductivity in a chitosan membrane for a PEM fuel cell using molecular dynamics simulation [J]. Carbohydr. Polym., 2012, 88: 194-200. |
53 | SHARMA P P , KULSHRESTHA V . Synthesis of highly stable and high water retentive functionalized biopolymer-graphene oxide modified cation exchange membranes [J]. RSC Adv., 2015, 5 (70): 56498-56506. |
54 | LIU Y H , WANG J T , ZHANG H Q , et al . Enhancement of proton conductivity of chitosan membrane enabled by sulfonated graphene oxide under both hydrated and anhydrous conditions [J]. J. Power Sources, 2014, 269: 898-911. |
55 | SHIRDAST A , SHARIF A , ABDOLLAHI M . Effect of the incorporation of sulfonated chitosan/sulfonated graphene oxide on the proton conductivity of chitosan membranes [J]. J. Power Sources, 2016, 306: 541-551. |
56 | BAI H J , LI Y F , ZHANG H Q , et al . Anhydrous proton exchange membranes comprising of chitosan and phosphorylated graphene oxide for elevated temperature fuel cells [J]. J. Membr. Sci., 2015, 495: 48-60. |
57 | PANDEY R P , SHAHI V K . A N-o-sulfonic acid benzyl chitosan (NSBC) and N, N-dimethylene phosphonic acid propylsilane graphene oxide (NMPSGO) based multi-functional polymer electrolyte membrane with enhanced water retention and conductivity [J]. RSC Adv., 2014, 4 (100): 57200-57209. |
58 | KAZEROONIAN F K , IRANAGH S A , MODARRESS H . Molecular dynamics simulation study of carboxylated and sulfonated poly(arylene ether sulfone) membranes for fuel cell applications [J]. Int.J. Hydrogen Energy, 2015, 40 (46): 15690-15703. |
59 | PAN H Y , CHEN S X , ZHANG Y Y , et al . Preparation and properties of the cross-linked sulfonated polyimide containing benzimidazole as electrolyte membranes in fuel cells [J]. J. Membr. Sci., 2015, 476: 87-94. |
60 | KOWSARI E , ZARE A , ANSARI V . Phosphoric acid-doped ionic liquid-functionalized graphene oxide/sulfonated polyimide composites as proton exchange membrane [J]. Int.J. Hydrogen Energy, 2015, 40 (40): 13964-13978. |
61 | MERLE G , HOSSEINY S S , WESSLING M , et al . New cross-linked PVA based polymer electrolyte membranes for alkaline fuel cells [J]. J.Membr. Sci., 2012, 409/410: 191-199. |
62 | ERKARTAL M , USTA H , CITIR M , et al . Proton conducting poly(vinyl alcohol) (PVA)/poly (2-acrylamido-2-methylpropane sulfonic acid) (PAMPS)/zeolitic imidazolate framework (ZIF) ternary composite membrane [J]. J. Membr. Sci., 2016, 499:156-163. |
63 | ALLAN J T S , PREST L E , EASTON E B . The sulfonation of polyvinyl chloride: synthesis and characterization for proton conducting membrane applications [J]. J. Membr. Sci., 2015, 489: 175-182. |
64 | WOO J J, SEO S J, YUN S H , et al . Enhanced stability and proton conductivity of sulfonated polystyrene/PVC composite membranes through proper copolymerization of styrene with -methylstyrene and acrylonitrile [J]. J. Membr. Sci., 2010, 363: 80-86. |
65 | YADAV R , SUBHASH A , CHEMMENCHERYR N , et al . Graphene and graphene oxide for fuel cell technology [J]. Ind. Eng. Chem. Res, 2018, 57 (29): 9333-9350. |
66 | BEYDAGHI H , JAVANBAKHT M , KOWSARI E . Synthesis and characterization of poly(vinyl alcohol)/sulfonated graphene oxide nanocomposite membranes for use in proton exchange membrane fuel cells (PEMFCs) [J]. Ind. Eng. Chem. Res, 2014, 53 (43): 16621-16632. |
67 | ZHAO Y X , FU Y Q , HE Y , et al . Enhanced performance of poly(ether sulfone) based composite proton exchange membranes with sulfonated polymer brush functionalized graphene oxide [J]. RSC Adv., 2015, 5 (113): 93480-93490. |
68 | MIAO S L , ZHANG H Q , LI X B , et al . A morphology and property study of composite membranes based on sulfonated polyarylene ether sulfone and adequately sulfonated graphene oxide [J]. Int.J. Hydrogen Energy, 2016, 41(1): 331-341. |
69 | KO T, KIM K, LIM M Y, et al . Sulfonated poly(arylene ether sulfone) composite membranes having poly(2.5-benzimidazole)- grafted graphene oxide for fuel cell applications [J]. J. Mater.Chem.A, 2015, 3 (41): 20595-20606. |
70 | PANDEY R P , THAKUR A K , SHAHI V K . Sulfonated polyimide / acid –functionalized graphene oxide composite polymer electrolyte membranes with improved proton conductivity and water-retention properties [J]. ACS Appl. Mater. Interfaces, 2014, 6 (19): 16993-17002. |
[1] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[2] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[3] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[4] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[5] | 蒋博龙, 崔艳艳, 史顺杰, 常嘉城, 姜楠, 谭伟强. 过渡金属Co3O4/ZnO-ZIF氧还原催化剂Co/Zn-ZIF模板法制备及其产电性能[J]. 化工进展, 2023, 42(6): 3066-3076. |
[6] | 马哲杰, 张文励, 赵炫凯, 李平. PEMFC阴极催化层氧传质阻力影响的研究进展[J]. 化工进展, 2023, 42(6): 2860-2873. |
[7] | 张浩月, 李春丽, 徐博, 李筱贺, 仝铃, 邱广明. 分段取样法研究改进Hummers法制备GO结构特性及其机理[J]. 化工进展, 2023, 42(5): 2606-2615. |
[8] | 何阳, 李思盈, 李传强, 袁小亚, 郑旭煦. 热还原氧化石墨烯/环氧树脂复合涂层的防腐性能[J]. 化工进展, 2023, 42(4): 1983-1994. |
[9] | 于海强, 郭泉忠, 杜克勤, 汪川. 脉冲电沉积PbO2涂层在PEMFC不锈钢双极板上的应用[J]. 化工进展, 2023, 42(2): 917-924. |
[10] | 高帷韬, 殷屺男, 涂自强, 龚繁, 李阳, 徐宏, 王诚, 毛宗强. 金属有机框架材料中的质子传导及其在质子交换膜中的应用[J]. 化工进展, 2022, 41(S1): 260-268. |
[11] | 胡兵, 徐立军, 何山, 苏昕, 汪继伟. 碳达峰与碳中和目标下PEM电解水制氢研究进展[J]. 化工进展, 2022, 41(9): 4595-4604. |
[12] | 陈哲坤, 潘伟童, 姚顶松, 丁路, 王辅臣. 质子交换膜燃料电池微孔层浆液微观结构与流变性[J]. 化工进展, 2022, 41(7): 3808-3815. |
[13] | 熊剑, 夏柳芬, 虞雷, 费安杰, 徐楚, 陈盛亚, 江国栋. 氧化石墨烯复合TiO2-B薄膜的制备及其电致变色性能[J]. 化工进展, 2022, 41(7): 3794-3800. |
[14] | 潘文政, 纪志永, 汪婧, 李淑明, 黄智辉, 郭小甫, 刘杰, 赵颖颖, 袁俊生. 微生物燃料电池处理偶氮含盐废水的产电性能和降解过程[J]. 化工进展, 2022, 41(6): 3306-3313. |
[15] | 陈勇, 程宁, 杨育兵, 卢凯玲, 罗应, 易慧. 氧化石墨烯插层膨润土复合材料高效吸附碱性紫3染料[J]. 化工进展, 2022, 41(6): 3324-3332. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |