化工进展 ›› 2025, Vol. 44 ›› Issue (1): 538-548.DOI: 10.16085/j.issn.1000-6613.2023-2241
蒋莉萍(
), 张雪乔(
), 钟晓娟, 魏于凡, 肖利, 郭旭晶, 羊依金
收稿日期:2023-12-21
修回日期:2024-03-13
出版日期:2025-01-15
发布日期:2025-02-13
通讯作者:
张雪乔
作者简介:蒋莉萍(1997—),女,硕士研究生,研究方向为水污染控制理论及技术。E-mail:1131838623@qq.com。
基金资助:
JIANG Liping(
), ZHANG Xueqiao(
), ZHONG Xiaojuan, WEI Yufan, XIAO Li, GUO Xujing, YANG Yijin
Received:2023-12-21
Revised:2024-03-13
Online:2025-01-15
Published:2025-02-13
Contact:
ZHANG Xueqiao
摘要:
钒渣来自转炉钒渣,含有大量铁元素,它的二次利用具有重大的经济价值与现实意义。本文以H2SO4为酸浸液,利用响应面法优化酸浸工艺参数,后通过煅烧-水热法成功制备出ɑ-Fe2O3/Bi2WO6复合光催化剂,在模拟可见光作用下光降解染料废水甲基橙(MO)。结果表明,响应面优化酸浸实验的最佳工艺参数为H2SO4浓度2.8mol/L、酸浸温度98℃、酸浸时间138min、固液比1∶4.2,钒渣中Fe的浸出率为71.0%;以钒渣为铁源,采用沉淀-煅烧法制备出α-Fe2O3后,通过水热法合成VS-Fe2O3/Bi2WO6,其光降解性能明显优于商业Fe2O3/Bi2WO6,VS-Fe2O3的最佳掺杂量为10%,当H2O2投加量为19.58mmol/L、pH=6.5、催化剂投加量为0.4g/L、MO初始浓度为10mg/L、光反应6h时,MO去除率达96%,COD去除率为88.4%,出水COD为13.34mg/L,符合《污水综合排放标准》一级标准,光反应速率常数为纯相Bi2WO6的4.8倍;MO的降解机理主要为H2O2协同VS-Fe2O3/Bi2WO6作用下的光芬顿反应。本文可为钒渣高效、清洁的资源化利用及其在光催化领域的资源化利用提供参考。
中图分类号:
蒋莉萍, 张雪乔, 钟晓娟, 魏于凡, 肖利, 郭旭晶, 羊依金. 钒渣酸浸提铁工艺优化及复合光催化剂的制备[J]. 化工进展, 2025, 44(1): 538-548.
JIANG Liping, ZHANG Xueqiao, ZHONG Xiaojuan, WEI Yufan, XIAO Li, GUO Xujing, YANG Yijin. Optimization of acid leaching process of iron from vanadium slag and preparation of composite photocatalysts[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 538-548.
| 因素 | 水平 | ||
|---|---|---|---|
| -1 | 0 | 1 | |
| H2SO4浓度(A)/mol·L-1 | 2 | 2.5 | 3 |
| 酸浸温度(B)/℃ | 90 | 100 | 110 |
| 酸浸时间(C)/min | 100 | 120 | 140 |
| 固液比(D)/g·mL-1 | 1∶3 | 1∶4 | 1∶5 |
表1 响应面法实验设计因素及水平
| 因素 | 水平 | ||
|---|---|---|---|
| -1 | 0 | 1 | |
| H2SO4浓度(A)/mol·L-1 | 2 | 2.5 | 3 |
| 酸浸温度(B)/℃ | 90 | 100 | 110 |
| 酸浸时间(C)/min | 100 | 120 | 140 |
| 固液比(D)/g·mL-1 | 1∶3 | 1∶4 | 1∶5 |
| 来源 | 平方和 | 自由度 | 均方 | F | P | 显著性 |
|---|---|---|---|---|---|---|
| 模型 | 2678.23 | 14 | 191.30 | 41.55 | <0.0001 | 显著 |
| H2SO4浓度(A) | 1359.58 | 1 | 1359.58 | 295.32 | <0.0001 | |
| 酸浸温度(B) | 387.15 | 1 | 387.15 | 84.09 | <0.0001 | |
| 酸浸时间(C) | 59.59 | 1 | 59.59 | 12.94 | 0.0029 | |
| 固液比(D) | 164.06 | 1 | 164.06 | 35.64 | <0.0001 | |
| AB | 23.47 | 1 | 23.47 | 5.10 | 0.0404 | |
| AC | 0.44 | 1 | 0.44 | 0.096 | 0.7612 | |
| AD | 2.06 | 1 | 2.06 | 0.45 | 0.5145 | |
| BC | 0.060 | 1 | 0.060 | 0.013 | 0.9107 | |
| BD | 0.010 | 1 | 0.010 | 0.002 | 0.9635 | |
| CD | 3.76 | 1 | 3.76 | 0.82 | 0.3812 | |
| A2 | 660.86 | 1 | 660.86 | 143.55 | <0.0001 | |
| B2 | 56.07 | 1 | 56.07 | 12.18 | 0.0036 | |
| C2 | 25.11 | 1 | 25.11 | 5.45 | 0.0349 | |
| D2 | 68.46 | 1 | 68.46 | 14.87 | 0.0017 | |
| 残差 | 64.45 | 14 | 4.60 | |||
| 失拟项 | 53.55 | 10 | 5.35 | 1.96 | 0.2693 | 不显著 |
| 纯误差 | 10.90 | 4 | 2.73 | |||
| 总和 | 2742.68 | 28 |
表2 回归模型方差分析结果来源
| 来源 | 平方和 | 自由度 | 均方 | F | P | 显著性 |
|---|---|---|---|---|---|---|
| 模型 | 2678.23 | 14 | 191.30 | 41.55 | <0.0001 | 显著 |
| H2SO4浓度(A) | 1359.58 | 1 | 1359.58 | 295.32 | <0.0001 | |
| 酸浸温度(B) | 387.15 | 1 | 387.15 | 84.09 | <0.0001 | |
| 酸浸时间(C) | 59.59 | 1 | 59.59 | 12.94 | 0.0029 | |
| 固液比(D) | 164.06 | 1 | 164.06 | 35.64 | <0.0001 | |
| AB | 23.47 | 1 | 23.47 | 5.10 | 0.0404 | |
| AC | 0.44 | 1 | 0.44 | 0.096 | 0.7612 | |
| AD | 2.06 | 1 | 2.06 | 0.45 | 0.5145 | |
| BC | 0.060 | 1 | 0.060 | 0.013 | 0.9107 | |
| BD | 0.010 | 1 | 0.010 | 0.002 | 0.9635 | |
| CD | 3.76 | 1 | 3.76 | 0.82 | 0.3812 | |
| A2 | 660.86 | 1 | 660.86 | 143.55 | <0.0001 | |
| B2 | 56.07 | 1 | 56.07 | 12.18 | 0.0036 | |
| C2 | 25.11 | 1 | 25.11 | 5.45 | 0.0349 | |
| D2 | 68.46 | 1 | 68.46 | 14.87 | 0.0017 | |
| 残差 | 64.45 | 14 | 4.60 | |||
| 失拟项 | 53.55 | 10 | 5.35 | 1.96 | 0.2693 | 不显著 |
| 纯误差 | 10.90 | 4 | 2.73 | |||
| 总和 | 2742.68 | 28 |
| VS | VS残渣 | ||
|---|---|---|---|
| 氧化物 | 质量分数/% | 氧化物 | 质量分数/% |
| Fe2O3 | 45.32 | Fe2O3 | 5.02 |
| SiO2 | 19.57 | SiO2 | 81.56 |
| V2O5 | 8.31 | V2O5 | 0.34 |
| Al2O3 | 4.22 | Al2O3 | 4.20 |
| MnO | 6.47 | MnO | 1.11 |
| TiO2 | 5.60 | TiO2 | 1.02 |
| MgO | 4.10 | MgO | 1.60 |
| Cr2O3 | 2.95 | Cr2O3 | 1.10 |
| CaO | 2.14 | CaO | 3.35 |
| NiO | 1.30 | NiO | 0.65 |
表3 VS与VS残渣的主要化学成分
| VS | VS残渣 | ||
|---|---|---|---|
| 氧化物 | 质量分数/% | 氧化物 | 质量分数/% |
| Fe2O3 | 45.32 | Fe2O3 | 5.02 |
| SiO2 | 19.57 | SiO2 | 81.56 |
| V2O5 | 8.31 | V2O5 | 0.34 |
| Al2O3 | 4.22 | Al2O3 | 4.20 |
| MnO | 6.47 | MnO | 1.11 |
| TiO2 | 5.60 | TiO2 | 1.02 |
| MgO | 4.10 | MgO | 1.60 |
| Cr2O3 | 2.95 | Cr2O3 | 1.10 |
| CaO | 2.14 | CaO | 3.35 |
| NiO | 1.30 | NiO | 0.65 |
| 氧化物 | 质量分数/% |
|---|---|
| Fe2O3 | 85.28 |
| MnO | 6.31 |
| Na2O | 3.35 |
| NiO | 2.14 |
| MgO | 0.90 |
| Al2O3 | 0.30 |
| 其他 | 1.72 |
表4 VS-Fe2O3主要化学成分分析
| 氧化物 | 质量分数/% |
|---|---|
| Fe2O3 | 85.28 |
| MnO | 6.31 |
| Na2O | 3.35 |
| NiO | 2.14 |
| MgO | 0.90 |
| Al2O3 | 0.30 |
| 其他 | 1.72 |
| 1 | WEN Jing, JIANG Tao, ZHENG Xiaole, et al. Efficient separation of chromium and vanadium by calcification roasting-sodium carbonate leaching from high chromium vanadium slag and V2O5 preparation[J]. Separation and Purification Technology, 2020, 230: 115881. |
| 2 | 吴优, 陈东辉, 刘武汉, 等. 2021年全球钒工业发展报告[J]. 钢铁钒钛, 2022, 43(5): 1-9. |
| WU You, CHEN Donghui, LIU Wuhan, et al. Global vanadium industry development report 2021[J]. Iron Steel Vanadium Titanium, 2022, 43(5): 1-9. | |
| 3 | 侯静, 吴恩辉, 李军. 提钒尾渣的综合利用研究现状及进展[J]. 矿产保护与利用, 2017(6): 103-108. |
| HOU Jing, WU Enhui, LI Jun. Current situation and progress of comprehensive utilization of vanadium extraction tailings[J]. Conservation and Utilization of Mineral Resources, 2017(6): 103-108. | |
| 4 | 王鹏, 赵礼兵, 崔春利, 等. 螺旋溜槽重选工艺在安徽周油坊铁矿厂的应用[J]. 选煤技术, 2020(2): 61-64. |
| WANG Peng, ZHAO Libing, CUI Chunli, et al. Application of the spiral chute gravity-separation process at Zhouyoufang iron ore Dressing Plant in Anhui Province[J]. Coal Preparation Technology, 2020(2): 61-64. | |
| 5 | 许崇光, 王海林, 杨欢, 等. 提钒尾渣的综合利用[J]. 铁合金, 2018, 49(1): 40-43. |
| XU Chongguang, WANG Hailin, YANG Huan, et al. Comprehensive utilization of extracting vanadium tailings[J]. Ferro-Alloys, 2018, 49(1): 40-43. | |
| 6 | 张英杰, 杨显万, 李敦钫, 等. 矿浆电解时金属的行为规律[J]. 有色金属, 2000,52(2): 41-43, 95. |
| ZHANG Yingjie, YANG Xianwan, LI Dunfang, et al. Metal behavior begularity during slurry electrolysis[J]. Nonferrous Metals Engineering, 2000,52(2): 41-43, 95. | |
| 7 | YU Fengqin, HUANGFU Lin, WANG Chao, et al. Recovery of Fe and Al from red mud by a novel fractional precipitation process[J]. Environmental Science and Pollution Research, 2020, 27(13): 14642-14653. |
| 8 | WEI Xuyi, GAO Yongfeng, HAN Junwei, et al. Optimisation of extraction of valuable metals from waste LED via response surface method[J]. Transactions of Nonferrous Metals Society of China, 2023, 33(3): 938-950. |
| 9 | AHMADI Ali, REZAEI Mojtaba, SADEGHIEH Seyed Mohammad. Interaction effects of flotation reagents for SAG mill reject of copper sulphide ore using response surface methodology[J]. Transactions of Nonferrous Metals Society of China, 2021, 31: 792-806. |
| 10 | SHAHNAZI Amirhossein, FIROOZI Sadegh, HAGHSHENAS FATMEHSARI Davoud. Selective leaching of arsenic from copper converter flue dust by Na2S and its stabilization with Fe2(SO4)3 [J]. Transactions of Nonferrous Metals Society of China, 2020, 30(6): 1674-1686. |
| 11 | HOU Wenyuan, LI Hesong, LI Mao, et al. Effects of electrolysis process parameters on alumina dissolution and their optimization[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(12): 3390-3403. |
| 12 | XIONG Yuting, WANG Ling, WANG Long, et al. Optimization and kinetic analysis of direct acid leaching of vanadium from converter vanadium slag under atmospheric pressure[J]. Minerals Engineering, 2023, 198: 108091. |
| 13 | ZHANG Liwu, MAN Yi, ZHU Yongfa. Effects of Mo replacement on the structure and visible-light-induced photocatalytic performances of Bi2WO6 photocatalyst[J]. ACS Catalysis, 2011, 1(8): 841-848. |
| 14 | SHIVANI V, HARISH S, ARCHANA J, et al. Highly efficient 3-D hierarchical Bi2WO6 catalyst for environmental remediation[J]. Applied Surface Science, 2019, 488: 696-706. |
| 15 | MANDARI Kotesh Kumar, Namgyu SON, KANG Misook. Improved charge carrier separation of Schottky junction containing a bimetallic Cu-Pd alloy and N-Bi2WO6 square-shaped discs for photocatalytic H2 performance[J]. Journal of Colloid and Interface Science, 2021, 593: 276-289. |
| 16 | LI xiaoni, DU Cunhao, WU Hanqi, et al. Preparation and characterization of Fe2O3/Bi2WO6 composite and photocatalytic degradation mechanism of microcystin-LR[J]. Water Science and Engineering, 2021, 14(2): 109-118. |
| 17 | 成洁, 李鸿乂, 海栋, 等. 镁化焙烧钒渣中钒的酸浸动力学(英文)[J]. 中国有色金属学报(英文版), 2024, 34(2): 669-680. |
| CHENG Jie, LI Hongyi, Dong HAI, et al. Acidic leaching kinetics of vanadium from magnesiation roasted vanadium slag[J]. Transactions of Nonferrous Metals Society of China, 2024, 34(2): 669-680. | |
| 18 | 方姿予, 张炜, 王金鼎, 等. Ni/SiO2催化剂催化2-甲基呋喃加氢性能[J]. 精细化工, 2024, 41(5): 1060-1066. |
| FANG Ziyu, ZHANG Wei, WANG Jinding, et al. Catalytic performance of Ni/SiO2 on 2-methylfuran hydrogenation[J]. Fine Chemicals, 2024, 41(5): 1060-1066. | |
| 19 | FUJITA Junnosuke, MARTELL Arthur E, NAKAMOTO Kazuo. Infrared spectra of metal chelate compounds. VI. A normal coordinate treatment of oxalato metal complexes[J]. The Journal of Chemical Physics, 1962, 36(2): 324-331. |
| 20 | DONG Zihui, ZHANG Jie, YAN Baijun. Co-extraction of vanadium titanium and chromium from vanadium slag by oxalic acid hydrothermal leaching with synergy of Fe powder[J]. Metallurgical and Materials Transactions B, 2021, 52(6): 3961-3969. |
| 21 | SONG Sinae, CHO Hong-Baek, KIM Hee Taik. Surfactant-free synthesis of high surface area silica nanoparticles derived from rice husks by employing the Taguchi approach[J]. Journal of Industrial and Engineering Chemistry, 2018, 61: 281-287. |
| 22 | NAGAI N, HASHIMOTO H. FT-IR-ATR study of depth profile of SiO2 ultra-thin films[J]. Applied Surface Science, 2001, 172(3/4): 307-311. |
| 23 | GUAN Feifei, YAO Lanfang, XIE Fujiang, et al. Optical and magnetic properties of Fe2O3/SiO2 nano-composite films[J]. Journal of Wuhan University of Technology-Mater Sci Ed, 2010, 25(2): 206-209. |
| 24 | ZHAO Xiaole, SU Yingchun, LI Shubin, et al. A green method to synthesize flowerlike Fe(OH)3 microspheres for enhanced adsorption performance toward organic and heavy metal pollutants[J]. Journal of Environmental Sciences, 2018, 73: 47-57. |
| 25 | DONG Zihui, ZHANG Jie, YAN Baijun. Hydrothermal separation of titanium vanadium and chromium from a pregnant oxalic acid leachate[J]. Materials, 2022, 15(4): 1538. |
| 26 | KOPYLOVICH M N, KIRILLOV A M, BAEV A K, et al. Heteronuclear iron(Ⅲ)-chromium(Ⅲ) hydroxo complexes and hydroxides, and their catalytic activity towards peroxidative oxidation of alkanes[J]. Journal of Molecular Catalysis A: Chemical, 2003, 206(1/2): 163-178. |
| 27 | SUJANA M G, ANAND S. Ferric hydroxide: Preparation, characterisation and fluoride removal studies from water[J]. Desalination and Water Treatment, 2014, 52(34/35/36): 6453-6463. |
| 28 | NAKANISHI Takuya, IIDA Hironori, OSAKA Tetsuya. Preparation of iron oxide nanoparticles via successive reduction-oxidation in reverse micelles[J]. Chemistry Letters, 2003, 32(12): 1166-1167. |
| 29 | ZHAO Jianhui, WANG Yuanzhou, LI Ning, et al. Efficient degradation of ciprofloxacin by magnetic γ-Fe2O3-MnO2 with oxygen vacancy in visible-light/peroxymonosulfate system[J]. Chemosphere, 2021, 276: 130257. |
| 30 | JANA Sumanta, MONDAL Anup, GHOSH Ashutosh. Fabrication of stable NiO/Fe2O3 heterostructure: A versatile hybrid material for electrochemical sensing of glucose, methanol and enhanced photodecomposition and/photoreduction of water contaminants[J]. Applied Catalysis B: Environmental, 2018, 232: 26-36. |
| 31 | GU Songhui, WANG Lingzhi, ZHANG Jinlong. Enhanced visible light photocatalytic activity of flower-like Bi2WO6 loaded with MnO x [J]. Chinese Journal of Chemistry, 2017, 35(2): 153-158. |
| 32 | YUE Jing, FAN Aidong, GUO Jiaxiu, et al. Synthesis of an ultrathin MnO2 nanosheet-coated Bi2WO6 nanosheet as a heterojunction photocatalyst with enhanced photocatalytic activity[J]. Chemical Engineering Journal, 2022, 429: 132193. |
| 33 | XUE Yisong, XIAO Jinhua, LI Kang, et al. One-dimensional Z-scheme NiO/Bi2WO6 heterostructures for enhancing visible-light photocatalytic activity[J]. Journal of Nanoparticle Research, 2021, 23(12): 265. |
| 34 | WANG Wenliang, ZHAO Wenli, ZHANG Haochun, et al. 2D/2D step-scheme α-Fe2O3/Bi2WO6 photocatalyst with efficient charge transfer for enhanced photo-Fenton catalytic activity[J]. Chinese Journal of Catalysis, 2021, 42(1): 97-106. |
| 35 | SAHAR Shafaq, Akif ZEB, LIU Yanan, et al. Enhanced Fenton, photo-Fenton and peroxidase-like activity and stability over Fe3O4/g-C3N4 nanocomposites[J]. Chinese Journal of Catalysis, 2017, 38(12): 2110-2119. |
| 36 | 李智铭, 魏智强, 李超, 等. 尖晶石结构ZnFe2O4纳米晶的形貌调控和光芬顿降解RhB性能[J]. 复合材料学报, 2024, 41(2): 795-803. |
| LI Zhiming, WEI Zhiqiang, LI Chao, et al. Morphology modulation and photo-Fenton degradation of RhB properties in spinel-structured ZnFe2O4 nanocrystals[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 795-803. | |
| 37 | 国家环境保护总局. 污水综合排放标准: [S]. 北京: 中国标准出版社, 1998. |
| State Environmental Protection Administration of the People’s Republic of China. Integrated wastewater discharge standard: [S]. Beijing: Standards Press of China, 1998. |
| [1] | 刘炜, 张敏, 朱照琪, 王毅, 梁卫东, 孙寒雪. 黑色二氧化钛纳米材料的构筑及其应用现状[J]. 化工进展, 2025, 44(1): 341-353. |
| [2] | 吴宇琦, 李江涛, 丁建智, 宋秀兰, 苏冰琴. 焙烧镁铝水滑石脱除厌氧消化沼气中CO2的效果及机制[J]. 化工进展, 2024, 43(9): 5250-5261. |
| [3] | 李子寒, 舒建成, 曹文星, 杨慧敏, 陈梦君. 菱锰矿浸出前后理化特性及界面水化行为变化规律[J]. 化工进展, 2024, 43(9): 5320-5328. |
| [4] | 吴泽亮, 管琦卉, 陈世霞, 王珺. 炔烃选择性加氢制烯烃反应的研究进展[J]. 化工进展, 2024, 43(8): 4366-4381. |
| [5] | 付涛, 李立, 高莉宁, 朱富维, 曹炜烨, 陈华鑫. 水泥基硼掺杂石墨相氮化碳降解NO[J]. 化工进展, 2024, 43(8): 4403-4410. |
| [6] | 李斌德, 王碧侠, 袁文龙, 党晓娥, 马红周. 钛白副产硫酸亚铁制备电池级磷酸铁[J]. 化工进展, 2024, 43(8): 4523-4533. |
| [7] | 毛华恺, 余洋, 张悦, 夏广坤, 吴赟韬, 楼乐瑶, 牛文娟, 刘念. 生物炭光催化氧化-吸附协同降解亚硝酸盐[J]. 化工进展, 2024, 43(8): 4757-4765. |
| [8] | 张世蕊, 范朕连, 宋慧平, 张丽娜, 高宏宇, 程淑艳, 程芳琴. 粉煤灰负载光催化材料的研究进展[J]. 化工进展, 2024, 43(7): 4043-4058. |
| [9] | 潘彤彤, 崔香梅. 葡甲胺功能化rGO/MWCNTs-OH复合气凝胶的制备及对硼的吸附[J]. 化工进展, 2024, 43(6): 3386-3397. |
| [10] | 解仲凯, 施伟东. 电荷极化光催化剂光转化二氧化碳制多碳化学品的研究进展[J]. 化工进展, 2024, 43(5): 2714-2722. |
| [11] | 吴晨赫, 刘彧旻, 杨昕旻, 崔记伟, 姜韶堃, 叶金花, 刘乐全. 粉体光催化全水分解技术研究进展[J]. 化工进展, 2024, 43(4): 1810-1822. |
| [12] | 耿启金, 崔文文, 刘莹, 杨金美, 王元芳, 杨华蕾, 丁加中, 臧家兴, 孙厚伟. 光催化流化聚团动态尺度评估方法[J]. 化工进展, 2024, 43(12): 6583-6588. |
| [13] | 胡恒, 徐娜, 李梓良, 于嘉朋, 李旭, 张玮. T型微反应器中合成脂肪酸甲酯磺酸盐动力学及工艺优化[J]. 化工进展, 2024, 43(12): 6634-6644. |
| [14] | 张志强, 成春春, 左硕, 周娜, 王佳琴, 覃冬兰. 碳酸锂晶体团聚现象及调控方法[J]. 化工进展, 2024, 43(12): 6645-6661. |
| [15] | 周添红, 翟天骄, 王金怡, 苏旭, 王花兰, 张洪伟. CoFe2O4/BiFeO3 Z型异质结的制备及其光催化降解盐酸黄连素[J]. 化工进展, 2024, 43(12): 6838-6848. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |