1 |
FABRE Andrea, CLEMENTE Alberto, BALAS Francisco, et al. Modeling the size distribution in a fluidized bed of nanopowder[J]. Environmental Science: Nano, 2017, 4(3): 670-678.
|
2 |
GENG Qijin, YANG Jinmei, WANG Lintong. A novel kinetic model to estimate the agglomerate diameter formed by nano-sized Titania in emulsion region of AFBPR[J]. Chemical Engineering Journal, 2019, 360: 1477-1485.
|
3 |
PELLEGRINO Francesco, Letizia PELLUTIÈ, SORDELLO Fabrizio, et al. Influence of agglomeration and aggregation on the photocatalytic activity of TiO2 nanoparticles[J]. Applied Catalysis B: Environmental, 2017, 216: 80-87.
|
4 |
MELCHER J, BARTH N, SCHILDE C, et al. Influence of TiO2 agglomerate and aggregate sizes on photocatalytic activity[J]. Journal of Materials Science, 2017, 52(2): 1047-1056.
|
5 |
HUANG Chaoning, FAN Erchuang, XU Hongliang, et al. Effect of particle size of vermiculite on the microstructure and photocatalytic performance of g-C3N4/vermiculite composite[J]. Solid State Sciences, 2021, 113: 106533.
|
6 |
MOOREHEAD Carli A, SIETINS Jennifer M, SWAB Jeffrey J. Meso-scale microstructural agglomerate quantification in boron carbide using X-ray microcomputed tomography [J]. Materials Characterization, 2018, 141: 177-185.
|
7 |
WANG X S, PALERO V, SORIA J, et al. Laser-based planar imaging of nano-particle fluidization: Part Ⅰ—Determination of aggregate size and shape[J]. Chemical Engineering Science, 2006, 61(16): 5476-5486.
|
8 |
LANGNER Marcel, KITZMANN Ivonne, RUPPERT Anna-Lena, et al. In-line particle size measurement and process influences on rotary fluidized bed agglomeration[J]. Powder Technology, 2020, 364: 673-679.
|
9 |
Vahdat VASEI H, MASOUDPANAH S M. Structural, optical and photocatalytic properties of cuboid ZnO particles[J]. Journal of Materials Research and Technology, 2021, 11: 112-120.
|
10 |
ZHOU Tao, LI Hongzhong. Estimation of agglomerate size for cohesive particles during fluidization[J]. Powder Technology, 1999, 101(1): 57-62.
|
11 |
柯希玮, 刘道银, 闫珂, 等. 基于动态平衡预测纳米颗粒流化床内聚团尺寸分布[J]. 化学反应工程与工艺, 2016, 32(5): 445-454.
|
|
KE Xiwei, LIU Daoyin, YAN Ke, et al. Prediction of the agglomerates size distribution in the nanoparticle fluidized bed based on dynamic equilibrium[J]. Chemical Reaction Engineering and Technology, 2016, 32(5): 445-454.
|
12 |
KUMAR Lalit, POUGATCH Konstantin, SALCUDEAN Martha, et al. Population balance modeling for the growth of agglomerates via primary and secondary agglomeration in gas-fluidized beds[J]. Powder Technology, 2017, 321: 499-513.
|
13 |
SINGH Abhinandan Kumar, TSOTSAS Evangelos. Stochastic model to simulate spray fluidized bed agglomeration: A morphological approach[J]. Powder Technology, 2019, 355: 449-460.
|
14 |
SERET Anthony, MOUSSA Charbel, BERNACKI Marc, et al. A mean field model of agglomeration as an extension to existing precipitation models[J]. Acta Materialia, 2020, 192: 40-51.
|
15 |
ZHOU Li, WANG Hui, ZHOU Tao, et al. Model of estimating nano-particle agglomerate sizes in a vibro-fluidized bed[J]. Advanced Powder Technology, 2013, 24(1): 311-316.
|
16 |
LI Jiageng, JIA Yong, OUYANG Bo, et al. Particle-scale and sub-grid drag models coupled CFD for simulating the CO methanation in a CFB riser[J]. Particuology, 2023, 83: 178-193.
|
17 |
LI Jinghai, HUANG Wenlai, CHEN Jianhua, et al. Mesoscience based on the EMMS principle of compromise in competition[J]. Chemical Engineering Journal, 2018, 333: 327-335.
|
18 |
KELLOGG Kevin M, LIU Peiyuan, HRENYA Christine M. Continuum prediction of entrainment rates and agglomeration of gas-fluidized, lightly-cohesive particles[J]. Chemical Engineering Science, 2019, 199: 249-257.
|
19 |
DENG Xiaoliang, HUANG Zhonghui, WANG Wenqiang, et al. Investigation of nanoparticle agglomerates properties using Monte Carlo simulations[J]. Advanced Powder Technology, 2016, 27(5): 1971-1979.
|
20 |
TAMADONDAR Mohammad R, ZARGHAMI Reza, TAHMASEBPOOR Maryam, et al. Characterization of the bubbling fluidization of nanoparticles[J]. Particuology, 2014, 16: 75-83.
|
21 |
YON J, MORÁN J, F-X OUF, et al. From monomers to agglomerates: A generalized model for characterizing the morphology of fractal-like clusters[J]. Journal of Aerosol Science, 2021, 151: 105628.
|
22 |
OPPOTSCH Josephine, ATHANASSIADIS Antonios, FRITSCH Miriam, et al. A simulation study for a cost-effective PET-like detector system intended to track particles in granular assemblies[J]. Particuology, 2024, 84: 117-125.
|
23 |
耿启金. 环隙流化床中纳米颗粒聚团流态化/光催化降解VOCs的研究[D]. 青岛: 青岛科技大学, 2011.
|
|
GENG Qijin. Study on fluidization/photocatalytic degradation of VOCs by nanoparticle agglomeration in annular fluidized bed[D].Qingdao: Qingdao University of Science & Technology, 2011.
|
24 |
金涌. 流态化工程原理[M]. 北京: 清华大学出版社, 2001: 133.
|
|
JIN Yong. Fluidization engineering principles[M]. Beijing: Tsinghua University Press, 2001: 133.
|