化工进展 ›› 2024, Vol. 43 ›› Issue (11): 6271-6292.DOI: 10.16085/j.issn.1000-6613.2023-1914
• 材料科学与技术 • 上一篇
马香港1(), 丁远1,2, 张俊格1, 刘应良1, 徐慎刚1(), 曹少魁1
收稿日期:
2023-10-31
修回日期:
2024-01-02
出版日期:
2024-11-15
发布日期:
2024-12-07
通讯作者:
徐慎刚
作者简介:
马香港(1997—),男,硕士研究生,研究方向为光催化剂(降解源于高分子材料的有机污染物、分解水制氢)的合成与性能评价。E-mail:18438621627@163.com。
基金资助:
MA Xianggang1(), DING Yuan1,2, ZHANG Junge1, LIU Yingliang1, XU Shengang1(), CAO Shaokui1
Received:
2023-10-31
Revised:
2024-01-02
Online:
2024-11-15
Published:
2024-12-07
Contact:
XU Shengang
摘要:
光催化技术可源源不断地利用清洁的太阳能来实现对内分泌干扰物双酚A(BPA)的有效降解,从而在众多降解方法中脱颖而出。类石墨相氮化碳(g-C3N4)作为经典的半导体材料,具有合成简单、热稳定性和化学稳定性好、经济无污染等优点,广泛应用于光催化降解领域。但是本体g-C3N4由于高的光生电子-空穴对复合率、较窄的可见光吸收范围以及较低的氧化电位,使得其降解BPA的性能大大降低。为了提高g-C3N4对BPA的降解能力,研究者采用多种改性方法对g-C3N4进行改性。本文主要综述了元素掺杂、形貌调控、异质结的构建以及共聚等手段对g-C3N4进行改性的进展,从电子结构、能带结构和光学性能等角度出发,详细总结了改性后g-C3N4对BPA的降解性能以及降解机理;其次,总结了BPA常见的降解路径及安全性分析;最后针对改性g-C3N4降解BPA的有效选择性进行了展望。
中图分类号:
马香港, 丁远, 张俊格, 刘应良, 徐慎刚, 曹少魁. 改性g-C3N4光催化降解双酚A的研究进展[J]. 化工进展, 2024, 43(11): 6271-6292.
MA Xianggang, DING Yuan, ZHANG Junge, LIU Yingliang, XU Shengang, CAO Shaokui. Progress of photocatalytic degradation of bisphenol A by modified g-C3N4[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6271-6292.
光催化剂 | 异质结类型 | 光源条件 | 催化剂使用量/mg | BPA浓度/mg·L-1 | 性能 | 参考文献 |
---|---|---|---|---|---|---|
g-C3N4/BiOI | Ⅱ | 氙灯300W,λ>400nm | 50 | 20 | 60min降解100% | [ |
C3N4/Bi4O5I2 | Ⅱ | 氙灯300W,λ>400nm | 50 | 10 | 60min降解100% | [ |
D35-TiO2/g-C3N4 | Ⅱ | 氙灯300W,λ>400nm | 50 | 10 | 15min降解100% | [ |
N-KTiNbO5/g-C3N4 | Ⅱ | 氙灯300W,λ>420nm | 100 | 2 | 120min降解100% | [ |
g-C3N4/BiOCl x I1-x | Ⅱ | 氙灯500W,λ>420nm | 30 | 10 | 40min降解100% | [ |
g-C3N4/BiOBr | Ⅱ | 氙灯300W,λ>420nm | 10 | 10 | 120min降解96.6% | [ |
BiOCl0.75I0.25/g-C3N4 | Ⅱ | 氙灯500W,λ>420nm | 10 | 10 | 60min降解100% | [ |
In2O3/g-C3N4 | Ⅱ | 氙灯,λ>420nm | 50 | 50 | 180min降解91% | [ |
表1 基于g-C3N4的Ⅱ型异质结光催化剂降解BPA的性能
光催化剂 | 异质结类型 | 光源条件 | 催化剂使用量/mg | BPA浓度/mg·L-1 | 性能 | 参考文献 |
---|---|---|---|---|---|---|
g-C3N4/BiOI | Ⅱ | 氙灯300W,λ>400nm | 50 | 20 | 60min降解100% | [ |
C3N4/Bi4O5I2 | Ⅱ | 氙灯300W,λ>400nm | 50 | 10 | 60min降解100% | [ |
D35-TiO2/g-C3N4 | Ⅱ | 氙灯300W,λ>400nm | 50 | 10 | 15min降解100% | [ |
N-KTiNbO5/g-C3N4 | Ⅱ | 氙灯300W,λ>420nm | 100 | 2 | 120min降解100% | [ |
g-C3N4/BiOCl x I1-x | Ⅱ | 氙灯500W,λ>420nm | 30 | 10 | 40min降解100% | [ |
g-C3N4/BiOBr | Ⅱ | 氙灯300W,λ>420nm | 10 | 10 | 120min降解96.6% | [ |
BiOCl0.75I0.25/g-C3N4 | Ⅱ | 氙灯500W,λ>420nm | 10 | 10 | 60min降解100% | [ |
In2O3/g-C3N4 | Ⅱ | 氙灯,λ>420nm | 50 | 50 | 180min降解91% | [ |
光催化剂 | 异质结类型 | 光源条件 | 催化剂 使用量/mg | BPA浓度 /mg·L-1 | 性能 | 参考文献 |
---|---|---|---|---|---|---|
g-C3N4/Bi/γ-Bi2O3 | 全固态Z型 | 氙灯500W,λ>420nm | 20 | 15 | 240min降解70.1% | [ |
AgBr/Ag/g-C3N4@NGA | 全固态Z型 | 氙灯500W,λ>420nm | 70 | 10 | 120min降解92% | [ |
CQDs/g-C3N4/BiOBr | 全固态Z型 | LED30W,峰值波450nm,色温6297K | 30 | 15 | 60min降解92% | [ |
Fe2O3-ZnO@C/g-C3N4 | 全固态Z型 | 氙灯500W | 200 | 10 | 60min降解92% | [ |
Au/g-C3N4/Co3O4 | 直接Z型 | 氙灯500W,λ>420nm | 40 | 15 | 150min降解90.3% | [ |
CeO2/g-C3N4 | 直接Z型 | 氙灯500W,λ>400nm | 40 | 15 | 150min降解94.1% | [ |
BiOBr/g-C3N4 | 直接Z型 | 氙灯300W,λ>420nm | 100 | 5 | 100min降解100% | [ |
g-C3N4/Bi4O7 | 直接Z型 | 氙灯500W,λ>420nm | 80 | 20 | 100min降解100% | [ |
α-Fe2O3/g-C3N4 | 直接Z型 | 氙灯500W | 20 | 15 | 180min降解91.1% | [ |
Ag3PO4/g-C3N4 | 直接Z型 | 5 | 10 | 180min降解92.8% | [ | |
Bi12O15Cl6@W18O49@g-C3N4/PDI | 直接Z型 | 氙灯300W,λ>300nm | 18 | 10 | 30min降解100% | [ |
g-C3N4@CoFe2O4/Fe2O3 | 直接Z型 | 氙灯500W,λ>400nm | 10 | 30 | 80min降解98.1% | [ |
Ag3PO4/g-C3N4 | 直接Z型 | 氙灯300W,λ>420nm | 10 | 10 | 80min降解100% | [ |
Uio-66-NH2/g-C3N4 | 直接Z型 | 氙灯300W,λ>400nm | 10 | 20 | 60min降解100% | [ |
表2 基于g-C3N4的Z型异质结光催化剂降解BPA的性能
光催化剂 | 异质结类型 | 光源条件 | 催化剂 使用量/mg | BPA浓度 /mg·L-1 | 性能 | 参考文献 |
---|---|---|---|---|---|---|
g-C3N4/Bi/γ-Bi2O3 | 全固态Z型 | 氙灯500W,λ>420nm | 20 | 15 | 240min降解70.1% | [ |
AgBr/Ag/g-C3N4@NGA | 全固态Z型 | 氙灯500W,λ>420nm | 70 | 10 | 120min降解92% | [ |
CQDs/g-C3N4/BiOBr | 全固态Z型 | LED30W,峰值波450nm,色温6297K | 30 | 15 | 60min降解92% | [ |
Fe2O3-ZnO@C/g-C3N4 | 全固态Z型 | 氙灯500W | 200 | 10 | 60min降解92% | [ |
Au/g-C3N4/Co3O4 | 直接Z型 | 氙灯500W,λ>420nm | 40 | 15 | 150min降解90.3% | [ |
CeO2/g-C3N4 | 直接Z型 | 氙灯500W,λ>400nm | 40 | 15 | 150min降解94.1% | [ |
BiOBr/g-C3N4 | 直接Z型 | 氙灯300W,λ>420nm | 100 | 5 | 100min降解100% | [ |
g-C3N4/Bi4O7 | 直接Z型 | 氙灯500W,λ>420nm | 80 | 20 | 100min降解100% | [ |
α-Fe2O3/g-C3N4 | 直接Z型 | 氙灯500W | 20 | 15 | 180min降解91.1% | [ |
Ag3PO4/g-C3N4 | 直接Z型 | 5 | 10 | 180min降解92.8% | [ | |
Bi12O15Cl6@W18O49@g-C3N4/PDI | 直接Z型 | 氙灯300W,λ>300nm | 18 | 10 | 30min降解100% | [ |
g-C3N4@CoFe2O4/Fe2O3 | 直接Z型 | 氙灯500W,λ>400nm | 10 | 30 | 80min降解98.1% | [ |
Ag3PO4/g-C3N4 | 直接Z型 | 氙灯300W,λ>420nm | 10 | 10 | 80min降解100% | [ |
Uio-66-NH2/g-C3N4 | 直接Z型 | 氙灯300W,λ>400nm | 10 | 20 | 60min降解100% | [ |
1 | YAMAZAKI Eriko, YAMASHITA Nobuyoshi, TANIYASU Sachi, et al. Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India[J]. Ecotoxicology and Environmental Safety, 2015, 122: 565-572. |
2 | HUANG Y Q, WONG C K C, ZHENG J S, et al. Bisphenol A (BPA) in China: A review of sources, environmental levels, and potential human health impacts[J]. Environment International, 2012, 42: 91-99. |
3 | MA Ya, LIU Haohao, WU Jinxia, et al. The adverse health effects of bisphenol A and related toxicity mechanisms[J]. Environmental Research, 2019, 176: 108575. |
4 | P Venkata Laxma REDDY, KIM Ki-Hyun, KAVITHA Beluri, et al. Photocatalytic degradation of bisphenol A in aqueous media: A review[J]. Journal of Environmental Management, 2018, 213: 189-205. |
5 | ALMEIDA Susana, RAPOSO António, Maira ALMEIDA-GONZÁLEZ, et al. Bisphenol A: Food exposure and impact on human health[J]. Comprehensive Reviews in Food Science and Food Safety, 2018, 17(6): 1503-1517. |
6 | BRAUN Joseph M. Early-life exposure to EDCs: Role in childhood obesity and neurodevelopment[J]. Nature Reviews Endocrinology, 2017, 13(3): 161-173. |
7 | REZG Raja, Saloua EL-FAZAA, GHARBI Najoua, et al. Bisphenol A and human chronic diseases: Current evidences, possible mechanisms, and future perspectives[J]. Environment International, 2014, 64: 83-90. |
8 | Jaromir MICHAŁOWICZ. Bisphenol A—Sources, toxicity and biotransformation[J]. Environmental Toxicology and Pharmacology, 2014, 37(2): 738-758. |
9 | Ali YAGHOOT-NEZHAD, Stanisław WACŁAWEK, Soheila MADIHI-BIDGOLI, et al. Heterogeneous photocatalytic activation of electrogenerated chlorine for the production of reactive oxygen and chlorine species: A new approach for bisphenol A degradation in saline wastewater[J]. Journal of Hazardous Materials, 2023, 445: 130626. |
10 | HASSANI Aydin, EGHBALI Paria, MAHDIPOUR Fayyaz, et al. Insights into the synergistic role of photocatalytic activation of peroxymonosulfate by UVA-LED irradiation over CoFe2O4-rGO nanocomposite towards effective bisphenol A degradation: Performance, mineralization, and activation mechanism[J]. Chemical Engineering Journal, 2023, 453: 139556. |
11 | Evanthia DIAMANTI-KANDARAKIS, BOURGUIGNON Jean-Pierre, GIUDICE Linda C, et al. Endocrine-disrupting chemicals: An endocrine society scientific statement[J]. Endocrine Reviews, 2009, 30(4): 293-342. |
12 | CHEN Zhihao, LIU Zhuang, HU Jiaqi, et al. β-Cyclodextrin-modified graphene oxide membranes with large adsorption capacity and high flux for efficient removal of bisphenol A from water[J]. Journal of Membrane Science, 2020, 595: 117510. |
13 | TAGHIZADEH Tohid, Amin TALEBIAN-KIAKALAIEH, JAHANDAR Hoda, et al. Biodegradation of bisphenol A by the immobilized laccase on some synthesized and modified forms of zeolite Y[J]. Journal of Hazardous Materials, 2020, 386: 121950. |
14 | ZHAO Danyang, TIAN Yuyang, JING Xiaofei, et al. PAF-1@cellulose nanofibril composite aerogel for highly-efficient removal of bisphenol A[J]. Journal of Materials Chemistry A, 2019, 7(1): 157-164. |
15 | JIANG Shunfeng, LING Lili, CHEN Wenjing, et al. High efficient removal of bisphenol A in a peroxymonosulfate/iron functionalized biochar system: Mechanistic elucidation and quantification of the contributors[J]. Chemical Engineering Journal, 2019, 359: 572-583. |
16 | HACIOSMANOĞLU Gül Gülenay, Tuğçe DOĞRUEL, Seval GENÇ, et al. Adsorptive removal of bisphenol A from aqueous solutions using phosphonated levan[J]. Journal of Hazardous Materials, 2019, 374: 43-49. |
17 | BHATNAGAR Amit, ANASTOPOULOS Ioannis. Adsorptive removal of bisphenol A (BPA) from aqueous solution: A review[J]. Chemosphere, 2017, 168: 885-902. |
18 | LI Guiying, ZU Lei, WONG Po-Keung, et al. Biodegradation and detoxification of bisphenol A with one newly-isolated strain Bacillus sp. GZB: Kinetics, mechanism and estrogenic transition[J]. Bioresource Technology, 2012, 114: 224-230. |
19 | YANG Yuyin, WANG Zhao, XIE Shuguang. Aerobic biodegradation of bisphenol A in river sediment and associated bacterial community change[J]. Science of the Total Environment, 2014, 470/471: 1184-1188. |
20 | VILLEGAS Laura G Cordova, MASHHADI Neda, CHEN Miao, et al. A short review of techniques for phenol removal from wastewater[J]. Current Pollution Reports, 2016, 2(3): 157-167. |
21 | OHKO Y, ANDO I, NIWA C, et al. Degradation of bisphenol A in water by TiO2 photocatalyst[J]. Environmental Science & Technology, 2001, 35(11): 2365-2368. |
22 | Isil GÜLTEKIN, INCE Nilsun H. Synthetic endocrine disruptors in the environment and water remediation by advanced oxidation processes[J]. Journal of Environmental Management, 2007, 85(4): 816-832. |
23 | YAN Suding, SHI Yue, TAO Yufang, et al. Enhanced persulfate-mediated photocatalytic oxidation of bisphenol A using bioelectricity and a g-C3N4/Fe2O3 heterojunction[J]. Chemical Engineering Journal, 2019, 359: 933-943. |
24 | JIANG Xunheng, WANG Laichun, YU Fan, et al. Photodegradation of organic pollutants coupled with simultaneous photocatalytic evolution of hydrogen using quantum-dot-modified g-C3N4 catalysts under visible-light irradiation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 12695-12705. |
25 | ZHOU Jing, AN Xiaoqiang, TANG Qingwen, et al. Dual channel construction of WO3 photocatalysts by solution plasma for the persulfate-enhanced photodegradation of bisphenol A[J]. Applied Catalysis B: Environmental, 2020, 277: 119221. |
26 | KANIGARIDOU Ypatia, PETALA Athanasia, FRONTISTIS Zacharias, et al. Solar photocatalytic degradation of bisphenol A with CuO x /BiVO4: Insights into the unexpectedly favorable effect of bicarbonates[J]. Chemical Engineering Journal, 2017, 318: 39-49. |
27 | CAO Shaowen, Jingxiang LOW, YU Jiaguo, et al. Polymeric photocatalysts based on graphitic carbon nitride[J]. Advanced Materials, 2015, 27(13): 2150-2176. |
28 | MAO Liuhao, LU Bingru, SHI Jinwen, et al. Rapid high-temperature hydrothermal post treatment on graphitic carbon nitride for enhanced photocatalytic H2 evolution[J]. Catalysis Today, 2023, 409: 94-102. |
29 | GORDANSHEKAN Ariya, ARABIAN Shakiba, SOLAIMANY NAZAR Ali Reza, et al. A comprehensive comparison of green Bi2WO6/g-C3N4 and Bi2WO6/TiO2 S-scheme heterojunctions for photocatalytic adsorption/degradation of Cefixime: Artificial neural network, degradation pathway, and toxicity estimation[J]. Chemical Engineering Journal, 2023, 451: 139067. |
30 | LI Kaining, ZHOU Weichuang, LI Xiaofang, et al. Synergistic effect of cyano defects and CaCO3 in graphitic carbon nitride nanosheets for efficient visible-light-driven photocatalytic NO removal[J]. Journal of Hazardous Materials, 2023, 442: 130040. |
31 | ISMAEL Mohammed. Environmental remediation and sustainable energy generation via photocatalytic technology using rare earth metals modified g-C3N4: A review[J]. Journal of Alloys and Compounds, 2023, 931: 167469. |
32 | TANG Chensi, CHENG Min, LAI Cui, et al. Recent progress in the applications of non-metal modified graphitic carbon nitride in photocatalysis[J]. Coordination Chemistry Reviews, 2023, 474: 214846. |
33 | YI Jianjian, Wiam EL-ALAMI, SONG Yanhua, et al. Emerging surface strategies on graphitic carbon nitride for solar driven water splitting[J]. Chemical Engineering Journal, 2020, 382: 122812. |
34 | LIU Wen, LI Yunyi, LIU Fuyang, et al. Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: Mechanisms, degradation pathway and DFT calculation[J]. Water Research, 2019, 151: 8-19. |
35 | WANG Yan, WANG Sibo,LOU Xiong Wen David. Dispersed nickel cobalt oxyphosphide nanoparticles confined in multichannel hollow carbon fibers for photocatalytic CO2 reduction[J]. Angewandte Chemie International Edition, 2019, 58(48): 17236-17240. |
36 | ZHU Xiaolin, LIN Yixiong, MARTIN Jovan San, et al. Lead halide perovskites for photocatalytic organic synthesis[J]. Nature Communications, 2019, 10(1): 2843. |
37 | MILLER Dale R, WANG Jianjun, GILLAN Edward G. Rapid, facile synthesis of nitrogen-rich carbon nitride powders[J]. Journal of Materials Chemistry, 2002, 12(8): 2463-2469. |
38 | WANG Shaomang, LI Dinglong, SUN Cheng, et al. Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation[J]. Applied Catalysis B: Environmental, 2014, 144: 885-892. |
39 | CHANG Chun, FU Yu, HU Meng, et al. Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation[J]. Applied Catalysis B: Environmental, 2013, 142/143: 553-560. |
40 | Wee-Jun ONG, TAN Lling-Lling, Yun Hau NG, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability?[J]. Chemical Reviews, 2016, 116(12): 7159-7329. |
41 | QIU Pengxiang, XU Chenmin, CHEN Huan, et al. One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: Role of oxygen on visible light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2017, 206: 319-327. |
42 | LI Jianghua, SHEN Biao, HONG Zhenhua, et al. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity[J]. Chemical Communications, 2012, 48(98): 12017-12019. |
43 | ZHANG Sai, LIU Yang, GU Pengcheng, et al. Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C3N4: Mechanism exploration from both experimental and DFT studies[J]. Applied Catalysis B: Environmental, 2019, 248: 1-10. |
44 | HE Xi, LEI Ling, WEN Jinglin, et al. One-pot synthesis of C-doping and defects co-modified g-C3N4 for enhanced visible-light photocatalytic degradation of bisphenol A[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 106911. |
45 | WU Ming, HE Xin, JING Binghua, et al. Novel carbon and defects co-modified g-C3N4 for highly efficient photocatalytic degradation of bisphenol A under visible light[J]. Journal of Hazardous Materials, 2020, 384: 121323. |
46 | LIN Kun-Yi Andrew, ZHANG Zhiyu. Degradation of Bisphenol A using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst[J]. Chemical Engineering Journal, 2017, 313: 1320-1327. |
47 | LIU Lianlian, CHEN Fei, WU Jinghang, et al. Fine tuning of phosphorus active sites on g-C3N4 nanosheets for enhanced photocatalytic decontamination[J]. Journal of Materials Chemistry A, 2021, 9(17): 10933-10944. |
48 | JING Liquan, WANG Duidui, HE Minqiang, et al. An efficient broad spectrum-driven carbon and oxygen co-doped g-C3N4 for the photodegradation of endocrine disrupting: Mechanism, degradation pathway, DFT calculation and toluene selective oxidation[J]. Journal of Hazardous Materials, 2021, 401: 123309. |
49 | ZHU Yue, CHEN Zhenhuan, GAO Yaowen, et al. General synthesis of carbon and oxygen dual-doped graphitic carbon nitride via copolymerization for non-photochemical oxidation of organic pollutant[J]. Journal of Hazardous Materials, 2020, 394: 122578. |
50 | GU Jiayu, CHEN Huan, JIANG Fang, et al. Visible light photocatalytic mineralization of bisphenol A by carbon and oxygen dual-doped graphitic carbon nitride[J]. Journal of Colloid and Interface Science, 2019, 540: 97-106. |
51 | LIANG Xiaofei, WANG Guanlong, DONG Xiaoli, et al. Graphitic carbon nitride with carbon vacancies for photocatalytic degradation of bisphenol A[J]. ACS Applied Nano Materials, 2019, 2(1): 517-524. |
52 | XU Jihong, SONG Jianxin, MIN Yulin, et al. Mg-induced g-C3N4 synthesis of nitrogen-doped graphitic carbon for effective activation of peroxymonosulfate to degrade organic contaminants[J]. Chinese Chemical Letters, 2022, 33(6): 3113-3118. |
53 | XU Fan, MO Zhao, YAN Jia, et al. Nitrogen-rich graphitic carbon nitride nanotubes for photocatalytic hydrogen evolution with simultaneous contaminant degradation[J]. Journal of Colloid and Interface Science, 2020, 560: 555-564. |
54 | RENGARAJ S, LI X Z. Photocatalytic degradation of bisphenol A as an endocrine disruptor in aqueous suspension using Ag-TiO2 catalysts[J]. International Journal of Environment and Pollution, 2006, 27(1/2/3): 20. |
55 | WANG Yanbin, ZHAO Xu, CAO Di, et al. Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid[J]. Applied Catalysis B: Environmental, 2017, 211: 79-88. |
56 | WANG Qi, LIU Cun, ZHOU Dongmei, et al. Degradation of bisphenol a using peroxymonosulfate activated by single-atomic cobalt catalysts: Different reactive species at acidic and alkaline pH[J]. Chemical Engineering Journal, 2022, 439: 135002. |
57 | SI Qishi, GUO Wanqian, LIU Banghai, et al. Spin-states-assistance peroxymonosulfate absorption via Mn doped catalyst with/without light for BPA oxidation: The negative contribution of electrons transfer by light[J]. Chemical Engineering Journal, 2022, 443: 136399. |
58 | MA Jianqing, HUANG Ziheng, XI Hao, et al. Magnetic Fe-doping g-C3N4/graphite: The effect of supporters and the performance in Fenton-like reactions[J]. Desalination and Water Treatment, 2019, 142: 371-380. |
59 | XU Lijie, QI Lanyue, HAN Yu, et al. Improvement of Fe2+/peroxymonosulfate oxidation of organic pollutants by promoting Fe2+ regeneration with visible light driven g-C3N4 photocatalysis[J]. Chemical Engineering Journal, 2022, 430: 132828. |
60 | BAI Xue, SHI Juan, XU Lu, et al. Fe-g-C3N4/reduced graphene oxide lightless application for efficient peroxymonosulfate activation and pollutant mineralization: Comprehensive exploration of reactive sites[J]. Science of the Total Environment, 2023, 855: 158799. |
61 | CHEN Hong Hak, LAN Ching Sim, Hon Leong KAH, et al. M/g-C3N4 (M=Ag, Au, and Pd) composite: Synthesis via sunlight photodeposition and application towards the degradation of bisphenol A[J]. Environmental Science and Pollution Research, 2018, 25(25): 25401-25412. |
62 | SONG Hui, GUAN Zeyu, XIA Dongsheng, et al. Copper-oxygen synergistic electronic reconstruction on g-C3N4 for efficient non-radical catalysis for peroxydisulfate and peroxymonosulfate[J]. Separation and Purification Technology, 2021, 257: 117957. |
63 | CHEN Ting, ZHU Zhiliang, ZHANG Hua, et al. Cu-O-incorporation design for promoted heterogeneous catalysis: Synergistic effect of surface adsorption and catalysis towards efficient bisphenol A removal[J]. Applied Surface Science, 2021, 569: 151107. |
64 | CHEN Fei, LIU Lianlian, CHEN Jiejie, et al. Efficient decontamination of organic pollutants under high salinity conditions by a nonradical peroxymonosulfate activation system[J]. Water Research, 2021, 191: 116799. |
65 | XU Liangpang, LI Lejing, YU Luo, et al. Efficient generation of singlet oxygen on modified g-C3N4 photocatalyst for preferential oxidation of targeted organic pollutants[J]. Chemical Engineering Journal, 2022, 431: 134241. |
66 | CHEN Xiang, LIU Qing, WU Qiliang, et al. Incorporating graphitic carbon nitride (g-C3N4) quantum dots into bulk-heterojunction polymer solar cells leads to efficiency enhancement[J]. Advanced Functional Materials, 2016, 26(11): 1719-1728. |
67 | WANG Wanjun, YU Jimmy C, SHEN Zhurui, et al. g-C3N4 quantum dots: Direct synthesis, upconversion properties and photocatalytic application[J]. Chemical Communications, 2014, 50(70): 10148-10150. |
68 | TIAN Na, HUANG Hongwei, DU Xin, et al. Rational nanostructure design of graphitic carbon nitride for photocatalytic applications[J]. Journal of Materials Chemistry A, 2019, 7(19): 11584-11612. |
69 | SHE Xiaojie, LIU Liang, JI Haiyan, et al. Template-free synthesis of 2D porous ultrathin nonmetal-doped g-C3N4 nanosheets with highly efficient photocatalytic H2 evolution from water under visible light[J]. Applied Catalysis B: Environmental, 2016, 187: 144-153. |
70 | ZHANG Jinshui, CHEN Yan, WANG Xinchen. Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications[J]. Energy & Environmental Science, 2015, 8(11): 3092-3108. |
71 | CHEN Changbin, LI Chenxuan, ZHANG Yingjie, et al. Cyano-rich mesoporous carbon nitride nanospheres for visible-light-driven photocatalytic degradation of pollutants[J]. Environmental Science: Nano, 2018, 5(12): 2966-2977. |
72 | YANG Shuang, LIU Chang, WANG Jingbo, et al. Enhanced photocatalytic activity of g-C3N4 quantum dots/Bi3.64Mo0.36O6.55 nanospheres composites[J]. Journal of Solid State Chemistry, 2020, 287: 121347. |
73 | DING Yuan, LIN Zhi, DENG Jiawei, et al. Construction of carbon dots modified hollow g-C3N4 spheres via in situ calcination of cyanamide and glucose for highly enhanced visible light photocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy, 2022, 47(3): 1568-1578. |
74 | HUANG Ying, SU Minhua, ZHOU Ying, et al. LiCl-CN nanotubes ceramic films with highly efficient visible light — Driven photocatalytic active for bisphenol A degradation and efficient regeneration process[J]. Ceramics International, 2020, 46(17): 26492-26501. |
75 | LIU Bochuan, QIAO Meng, WANG Yanbin, et al. Persulfate enhanced photocatalytic degradation of bisphenol A by g-C3N4 nanosheets under visible light irradiation[J]. Chemosphere, 2017, 189: 115-122. |
76 | MENG Fanpeng, WANG Jun, TIAN Wenjie, et al. Graphitic carbon nitride nanosheets via acid pretreatments for promoted photocatalysis toward degradation of organic pollutants[J]. Journal of Colloid and Interface Science, 2022, 608: 1334-1347. |
77 | ZHANG Menglu, YANG Yu, AN Xiaoqiang, et al. Exfoliation method matters: The microstructure-dependent photoactivity of g-C3N4 nanosheets for water purification[J]. Journal of Hazardous Materials, 2022, 424: 127424. |
78 | SUN Jianhua, ZHANG Jinshui, ZHANG Mingwen, et al. Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles[J]. Nature Communications, 2012, 3: 1139. |
79 | TONG Zhenwei, YANG Dong, LI Zhen, et al. Thylakoid-inspired multishell g-C3N4 nanocapsules with enhanced visible-light harvesting and electron transfer properties for high-efficiency photocatalysis[J]. ACS Nano, 2017, 11(1): 1103-1112. |
80 | HUANG Jinhui, CHENG Wenjian, SHI Yahui, et al. Honeycomb-like carbon nitride through supramolecular preorganization of monomers for high photocatalytic performance under visible light irradiation[J]. Chemosphere, 2018, 211: 324-334. |
81 | WU Jun, XIE Yu, LING Yun, et al. Synthesis of flower-like g-C3N4/BiOBr and enhancement of the activity for the degradation of bisphenol A under visible light irradiation[J]. Frontiers in Chemistry, 2019, 7: 649. |
82 | LIU Chengyin, HUANG Hongwei, YE Liqun, et al. Intermediate-mediated strategy to horn-like hollow mesoporous ultrathin g-C3N4 tube with spatial anisotropic charge separation for superior photocatalytic H2 evolution[J]. Nano Energy, 2017, 41: 738-748. |
83 | Jingxiang LOW, YU Jiaguo, JARONIEC Mietek, et al. Heterojunction photocatalysts[J]. Advanced Materials, 2017, 29(20): 1601694. |
84 | FU Junwei, YU Jiaguo, JIANG Chuanjia, et al. g-C3N4-based heterostructured photocatalysts[J]. Advanced Energy Materials, 2018, 8(3): 1701503. |
85 | BARD Allen J, Marye Anne FOX. Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen[J]. Accounts of Chemical Research, 1995, 28(3): 141-145. |
86 | TADA Hiroaki, MITSUI Tomohiro, KIYONAGA Tomokazu, et al. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system[J]. Nature Materials, 2006, 5(10): 782-786. |
87 | Michael GRÄTZEL. Photoelectrochemical cells[J]. Nature, 2001, 414(6861): 338-344. |
88 | ZHANG Liuyang, ZHANG Jianjun, YU Huogen, et al. Emerging S-scheme photocatalyst[J]. Advanced Materials, 2022, 34(11): e2107668. |
89 | FU Junwei, XU Quanlong, Jingxiang LOW, et al. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst[J]. Applied Catalysis B: Environmental, 2019, 243: 556-565. |
90 | MA Ran, ZHANG Sai, LI Lei, et al. Enhanced visible-light-induced photoactivity of type-Ⅱ CeO2/g-C3N4 nanosheet toward organic pollutants degradation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9699-9708. |
91 | XU Yue, YOU Yong, HUANG Hongwei, et al. Bi4NbO8Cl {001} nanosheets coupled with g-C3N4 as 2D/2D heterojunction for photocatalytic degradation and CO2 reduction[J]. Journal of Hazardous Materials, 2020, 381: 121159. |
92 | DI Jun, XIA Jiexiang, YIN Sheng, et al. Preparation of sphere-like g-C3N4/BiOI photocatalysts via a reactable ionic liquid for visible-light-driven photocatalytic degradation of pollutants[J]. Journal of Materials Chemistry A, 2014, 2(15): 5340-5351. |
93 | XIA Jiexiang, JI Mengxia, DI Jun, et al. Construction of ultrathin C3N4/Bi4O5I2 layered nanojunctions via ionic liquid with enhanced photocatalytic performance and mechanism insight[J]. Applied Catalysis B: Environmental, 2016, 191: 235-245. |
94 | YANG Lei, BAI Xue, SHI Juan, et al. Quasi-full-visible-light absorption by D35-TiO2/g-C3N4 for synergistic persulfate activation towards efficient photodegradation of micropollutants[J]. Applied Catalysis B: Environmental, 2019, 256: 117759. |
95 | LIU Chao, ZHU Huajun, ZHU Yisong, et al. Ordered layered N-doped KTiNbO5/g-C3N4 heterojunction with enhanced visible light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2018, 228: 54-63. |
96 | HU Xiaonan, ZHANG Yao, WANG Boji, et al. Novel g-C3N4/BiOCl x I1- x nanosheets with rich oxygen vacancies for enhanced photocatalytic degradation of organic contaminants under visible and simulated solar light[J]. Applied Catalysis B: Environmental, 2019, 256: 117789. |
97 | QIN Yuyang, YANG Biqi, LI Hongjing, et al. Immobilized BiOCl0.75I0.25/g-C3N4 nanocomposites for photocatalytic degradation of bisphenol A in the presence of effluent organic matter[J]. Science of the Total Environment, 2022, 842: 156828. |
98 | UDDIN Ahmed, RAUF Abdur, WU Tong, et al. In2O3/oxygen doped g-C3N4 towards photocatalytic BPA degradation: Balance of oxygen between metal oxides and doped g-C3N4 [J]. Journal of Colloid and Interface Science, 2021, 602: 261-273. |
99 | RUAN Xian, HU Yongyou. Effectively enhanced photodegradation of Bisphenol A by in situ g-C3N4-Zn/Bi2WO6 heterojunctions and mechanism study[J]. Chemosphere, 2020, 246: 125782. |
100 | LIU Ning, LU Na, YU Hongtao, et al. Enhanced degradation of organic water pollutants by photocatalytic in situ activation of sulfate based on Z-scheme g-C3N4/BiPO4 [J]. Chemical Engineering Journal, 2022, 428: 132116. |
101 | DU Fuyou, LAI Zhan, TANG Huiyang, et al. Construction of dual Z-scheme Bi2WO6/g-C3N4/black phosphorus quantum dots composites for effective bisphenol A degradation[J]. Journal of Environmental Sciences, 2023, 124: 617-629. |
102 | ZHANG Yan, WU Yixiao, WAN Liang, et al. Double Z-Scheme g-C3N4/BiOI/CdS heterojunction with I3 -/I- pairs for enhanced visible light photocatalytic performance[J]. Green Energy & Environment, 2022, 7(6): 1377-1389. |
103 | LU Shuaishuai, WU Tong, LIU Yanan, et al. All-solid Z-scheme Bi/γ-Bi2O3/O-doped g-C3N4 heterojunction with Bi as electron shuttle for visible-light photocatalysis[J]. Journal of Alloys and Compounds, 2022, 911: 164980. |
104 | CHEN Yuexing, WANG Peilu, LIANG Yong, et al. Fabrication of a three-dimensional porous Z-scheme silver/silver bromide/graphitic carbon nitride@nitrogen-doped graphene aerogel with enhanced visible-light photocatalytic and antibacterial activities[J]. Journal of Colloid and Interface Science, 2019, 536: 389-398. |
105 | HUANG Liying, LIU Jiawei, LI Pengpeng, et al. CQDs modulating Z-scheme g-C3N4/BiOBr heterostructure for photocatalytic removing RhB, BPA and TC and E. coli by LED light[J]. Journal of Alloys and Compounds, 2022, 895: 162637. |
106 | CHAI Hua, YANG Chunyan, XU Peng, et al. Enhanced visible-light photocatalytic activity with Fe2O3-ZnO@C/g-C3N4 heterojunction: Characterization, kinetics, and mechanisms[J]. Journal of Cleaner Production, 2022, 377: 134511. |
107 | ZHAO Wei, MA Sisi, YANG Gang, et al. Z-scheme Au decorated carbon nitride/cobalt tetroxide plasmonic heterojunction photocatalyst for catalytic reduction of hexavalent chromium and oxidation of bisphenol A[J]. Journal of Hazardous Materials, 2021, 410: 124539. |
108 | ZHAO Wei, SHE Tiantian, ZHANG Jingyi, et al. A novel Z-scheme CeO2/g-C3N4 heterojunction photocatalyst for degradation of bisphenol A and hydrogen evolution and insight of the photocatalysis mechanism[J]. Journal of Materials Science & Technology, 2021, 85: 18-29. |
109 | LIU Chao, WU Qisheng, JI Mingwei, et al. Constructing Z-scheme charge separation in 2D layered porous BiOBr/graphitic C3N4 nanosheets nanojunction with enhanced photocatalytic activity[J]. Journal of Alloys and Compounds, 2017, 723: 1121-1131. |
110 | SUN Meng, WANG Yu, SHAO Yu, et al. Fabrication of a novel Z-scheme g-C3N4/Bi4O7 heterojunction photocatalyst with enhanced visible light-driven activity toward organic pollutants[J]. Journal of Colloid and Interface Science, 2017, 501: 123-132. |
111 | PAN Lifang, CAO Shihai, LIU Rui, et al. Graphitic carbon nitride grown in situ on aldehyde-functionalized α-Fe2O3: All-solid-state Z-scheme heterojunction for remarkable improvement of photo-oxidation activity[J]. Journal of Colloid and Interface Science, 2019, 548: 284-292. |
112 | MEI Jie, ZHANG Dapeng, LI Nan, et al. The synthesis of Ag3PO4/g-C3N4 nanocomposites and the application in the photocatalytic degradation of bisphenol A under visible light irradiation[J]. Journal of Alloys and Compounds, 2018, 749: 715-723. |
113 | ZHANG Zhuzhu, LIU Jiadi, GU Peiyang, et al. Preparation of a Bi12O15Cl6@W18O49@g-C3N4/PDI heterojunction with dual charge transfer paths and its photocatalytic performance for phenolic pollutants[J]. Separation and Purification Technology, 2022, 287: 120539. |
114 | Shiwen LYU, LIU Jingmin, ZHAO Ning, et al. MOF-derived CoFe2O4/Fe2O3 embedded in g-C3N4 as high-efficient Z-scheme photocatalysts for enhanced degradation of emerging organic pollutants in the presence of persulfate[J]. Separation and Purification Technology, 2020, 253: 117413. |
115 | DU Jinge, XU Zhe, LI Hui, et al. Ag3PO4/g-C3N4 Z-scheme composites with enhanced visible-light-driven disinfection and organic pollutants degradation: Uncovering the mechanism[J]. Applied Surface Science, 2021, 541: 148487. |
116 | HUANG Zhikun, YU Haojie, WANG Li, et al. Keywords: Bisphenol A[J]. Journal of Hazardous Materials, 2022, 436: 129052. |
117 | MU Feihu, DAI Benlin, WU Yahui, et al. 2D/3D S-scheme heterojunction of carbon nitride/iodine-deficient bismuth oxyiodide for photocatalytic hydrogen production and bisphenol A degradation[J]. Journal of Colloid and Interface Science, 2022, 612: 722-736. |
118 | XU Yin, TANG Xin, XIAO Yan, et al. Persulfate promoted visible photocatalytic elimination of bisphenol A by g-C3N4-CeO2 S-scheme heterojunction: The dominant role of photo-induced holes[J]. Chemosphere, 2023, 331: 138765. |
119 | Jingxiang LOW, CAO Shaowen, YU Jiaguo, et al. Two-dimensional layered composite photocatalysts[J]. Chemical Communications, 2014, 50(74): 10768-10777. |
120 | Shiwen LYU, LIU Jingmin, LI Chunyang, et al. Two novel MOFs@COFs hybrid-based photocatalytic platforms coupling with sulfate radical-involved advanced oxidation processes for enhanced degradation of bisphenol A[J]. Chemosphere, 2020, 243: 125378. |
121 | HUANG Kelei, LI Chunhu, ZHANG Xiuli, et al. Self-assembly synthesis of phosphorus-doped tubular g-C3N4/Ti3C2 MXene Schottky junction for boosting photocatalytic hydrogen evolution[J]. Green Energy & Environment, 2023, 8(1): 233-245. |
122 | KUMAR Ashish, SCHUERINGS Christian, KUMAR Suneel, et al. Perovskite-structured CaTiO3 coupled with g-C3N4 as a heterojunction photocatalyst for organic pollutant degradation[J]. Beilstein Journal of Nanotechnology, 2018, 9: 671-685. |
123 | LIU Guigao, ZHAO Guixia, ZHOU Wei, et al. In situ bond modulation of graphitic carbon nitride to construct p-n homojunctions for enhanced photocatalytic hydrogen production[J]. Advanced Functional Materials, 2016, 26(37): 6822-6829. |
124 | XU Chengqun, LIU Xiaolu, LIU Haiyang, et al. Molecular engineering for constructing a D-A system and enhancing delocalization in g-C3N4 with superior photocatalytic activity[J]. Journal of Materials Chemistry A, 2022, 10(39): 21031-21043. |
125 | GE Feiyue, HUANG Shuquan, YAN Jia, et al. Sulfur promoted n-π* electron transitions in thiophene-doped g-C3N4 for enhanced photocatalytic activity[J]. Chinese Journal of Catalysis, 2021, 42(3): 450-459. |
126 | FEI Heng, SHAO Junxia, LI Hua, et al. Construction of ultra-thin 2D CN-Br0.12/2%RhO x photo-catalyst with rapid electron and hole separation for efficient bisphenol A degradation[J]. Applied Catalysis B: Environmental, 2021, 299: 120623. |
127 | SAHU Rama Shanker, SHIH Yang-hsin, CHEN Wenling. New insights of metal free 2D graphitic carbon nitride for photocatalytic degradation of bisphenol A[J]. Journal of Hazardous Materials, 2021, 402: 123509. |
128 | Wen-Da OH, Li-Wen LOK, VEKSHA Andrei, et al. Enhanced photocatalytic degradation of bisphenol A with Ag-decorated S-doped g-C3N4 under solar irradiation: Performance and mechanistic studies[J]. Chemical Engineering Journal, 2018, 333: 739-749. |
129 | WANG Fei, LIU Shanshan, FENG Ziyue, et al. High-efficient peroxymonosulfate activation for rapid atrazine degradation by FeS x @MoS2 derived from MIL-88A(Fe)[J]. Journal of Hazardous Materials, 2022, 440: 129723. |
130 | YI Xiaohong, JI Haodong, WANG Chongchen, et al. Photocatalysis-activated SR-AOP over PDINH/MIL-88A(Fe) composites for boosted chloroquine phosphate degradation: Performance, mechanism, pathway and DFT calculations[J]. Applied Catalysis B: Environmental, 2021, 293: 120229. |
[1] | 万震, 王绍庆, 李志合, 赵天生. HZSM-5分子筛催化木质素热解制芳烃研究进展[J]. 化工进展, 2024, 43(S1): 517-532. |
[2] | 陈慕华, 嵇震, 王芳, 黄凯健, 付博, 刘博, 刘绍忠, 朱新宝. 纤维素基共聚型聚羧酸减水剂的合成及其性能[J]. 化工进展, 2024, 43(S1): 564-570. |
[3] | 石磊, 王倩, 赵晓胜, 刘宏臣, 车远军, 段玉, 李庆. 油页岩灰基分子筛的制备及对亚甲基蓝的吸附[J]. 化工进展, 2024, 43(S1): 650-661. |
[4] | 林梅洁, 米烁东, 包成. 金属-掺杂氧化铈体系H2/CO电化学反应机理研究进展[J]. 化工进展, 2024, 43(S1): 209-224. |
[5] | 李帅哲, 聂懿宸, PHIDSAVARD Keomeesay, 顾雯, 张伟, 刘娜, 徐高翔, 刘莹, 李兴勇, 陈玉保. 非贵金属催化生物质加氢脱氧制备烃基生物燃料的研究进展[J]. 化工进展, 2024, 43(S1): 225-242. |
[6] | 张浩, 刘世钰, 沈卫华, 方云进. Ca-ZSM-5催化尿素脱水制备单氰胺[J]. 化工进展, 2024, 43(S1): 365-373. |
[7] | 付维, 宁淑英, 蔡晨, 陈佳音, 周皞, 苏亚欣. Cu改性MIL-100(Fe)催化剂的SCR-C3H6脱硝特性[J]. 化工进展, 2024, 43(9): 4951-4960. |
[8] | 李镇武, 蒲迪, 熊亚春, 吴定莹, 金诚, 郭拥军. 驱油用纳米材料在提高采收率方面研究进展[J]. 化工进展, 2024, 43(9): 5035-5048. |
[9] | 欧红香, 闵政, 薛洪来, 曹海珍, 毕海普, 王钧奇. 疏水改性纳米氧化镁对短氟碳链泡沫性能影响[J]. 化工进展, 2024, 43(9): 5177-5184. |
[10] | 吴宇琦, 李江涛, 丁建智, 宋秀兰, 苏冰琴. 焙烧镁铝水滑石脱除厌氧消化沼气中CO2的效果及机制[J]. 化工进展, 2024, 43(9): 5250-5261. |
[11] | 张政, 刘琳, 李子晨, 王梦琦, 黄春燕, 葛圆圆. 载铜地质聚合物微球的制备及其催化降解双酚S的性能[J]. 化工进展, 2024, 43(9): 5290-5301. |
[12] | 孙燕, 谢晓阳, 冯倩颖, 郑璐, 何皎洁, 杨利伟, 白波. 基于单宁酸-铁(Ⅲ)改性正渗透膜制备及抗污染性能[J]. 化工进展, 2024, 43(9): 5309-5319. |
[13] | 焦文磊, 刘震, 陈俊先, 张天钰, 姬忠礼. 叶片式分离元件结构及性能影响因素研究进展[J]. 化工进展, 2024, 43(8): 4187-4202. |
[14] | 梁国威, 金晶, 董波, 侯封校. 化学链燃烧中煤灰原位改性对钙基载氧体炭沉积的影响[J]. 化工进展, 2024, 43(8): 4253-4261. |
[15] | 吴泽亮, 管琦卉, 陈世霞, 王珺. 炔烃选择性加氢制烯烃反应的研究进展[J]. 化工进展, 2024, 43(8): 4366-4381. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |