化工进展 ›› 2024, Vol. 43 ›› Issue (12): 6838-6848.DOI: 10.16085/j.issn.1000-6613.2023-2080
• 材料科学与技术 • 上一篇
周添红1,2(), 翟天骄1,2, 王金怡1,2, 苏旭1,2, 王花兰3, 张洪伟1,2(
)
收稿日期:
2023-11-28
修回日期:
2024-01-30
出版日期:
2024-12-15
发布日期:
2025-01-11
通讯作者:
张洪伟
作者简介:
周添红(1984—),男,副教授,研究方向为水污染控制。E-mail:zhouth@163.com。
基金资助:
ZHOU Tianhong1,2(), ZHAI Tianjiao1,2, WANG Jinyi1,2, SU Xu1,2, WANG Hualan3, ZHANG Hongwei1,2(
)
Received:
2023-11-28
Revised:
2024-01-30
Online:
2024-12-15
Published:
2025-01-11
Contact:
ZHANG Hongwei
摘要:
抗生素在水环境中的污染问题已经受到广泛关注,而光催化技术在该领域具有较好的应用前景。半导体复合构建Z型异质结能够提高载流子分离效率,进而提高光催化降解效率。本文采用水热法制备了CoFe2O4/BiFeO3 Z型异质结,并对其结构及光磁性能进行表征,将其应用于光催化降解盐酸黄连素,综合评价其光催化性能。结果表明:复合催化剂具有良好的光和磁响应性能;在使用CoFe2O4和BiFeO3比例为1∶2的复合异质结,催化剂用量为20mg,污染物浓度为5mg/L,pH为3时,反应120min的降解率达到86.76%,且该异质结展现出较好的稳定性。控制反应的活性物质为空穴和超氧自由基。Z型异质结的构建使得其光催化性能提高。CoFe2O4/BiFeO3 Z型异质结有良好的环境友好性,可应用于水环境中抗生素的降解。该研究为光催化降解抗生素等有机污染物提供了一个可行性思路。
中图分类号:
周添红, 翟天骄, 王金怡, 苏旭, 王花兰, 张洪伟. CoFe2O4/BiFeO3 Z型异质结的制备及其光催化降解盐酸黄连素[J]. 化工进展, 2024, 43(12): 6838-6848.
ZHOU Tianhong, ZHAI Tianjiao, WANG Jinyi, SU Xu, WANG Hualan, ZHANG Hongwei. Preparation of CoFe2O4/BiFeO3 Z-scheme heterojunction and its photocatalytic degradation of berberine hydrochloride[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6838-6848.
1 | YANG Wei, CHEN Hui, HAN Xuan, et al. Preparation of magnetic Co-Fe modified porous carbon from agricultural wastes by microwave and steam activation for mercury removal[J]. Journal of Hazardous Materials, 2020, 381: 120981. |
2 | HU Guang, YANG Jian, DUAN Xu, et al. Recent developments and challenges in zeolite-based composite photocatalysts for environmental applications[J]. Chemical Engineering Journal, 2021, 417: 129209. |
3 | 杨沂嫡, 梁永兵, 李君文, 等. 我国生活饮用水抗生素耐药基因污染现状及其检测技术研究进展[J]. 中国公共卫生, 2021, 37(10): 1575-1579. |
YANG Yidi, LIANG Yongbing, LI Junwen, et al. Progress in researches on contamination of antibiotic resistance genes in drinking water and its detection techniques in China[J]. Chinese Journal of Public Health, 2021, 37(10): 1575-1579. | |
4 | 水博阳, 宋小三, 范文江. 光催化技术在水处理中的研究进展及挑战[J]. 化工进展, 2021, 40(S2): 356-363. |
SHUI Boyang, SONG Xiaosan, FAN Wenjiang. Research progress and challenges of photocatalytic technology in water treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 356-363. | |
5 | SINGH Mahender, KUMAR Ashish, KRISHNAN Venkata. Influence of different bismuth oxyhalides on the photocatalytic activity of graphitic carbon nitride: A comparative study under natural sunlight[J]. Materials Advances, 2020, 1(5): 1262-1272. |
6 | WANG Zhuangzhuang, LI Yuan, CHENG Qiang, et al. Sb-based photocatalysts for degradation of organic pollutants: A review[J]. Journal of Cleaner Production, 2022, 367: 133060. |
7 | ZHAO Chen, PAN Xi, WANG Zhihua, et al. 1+1>2: A critical review of MOF/bismuth-based semiconductor composites for boosted photocatalysis[J]. Chemical Engineering Journal, 2021, 417: 128022. |
8 | ZHANG Liuyang, ZHANG Jianjun, YU Huogen, et al. Emerging S-scheme photocatalyst[J]. Advanced Materials, 2022, 34(11): e2107668. |
9 | DI Tingmin, XU Quanlong, WingKei HO, et al. Review on metal sulphide-based Z-scheme photocatalysts[J]. ChemCatChem, 2019, 11(5): 1394-1411. |
10 | 胥生元, 郝玮, 王杰, 等. 半导体光催化剂BiOCl异质结的构建及应用[J]. 化工进展, 2023, 42(3): 1493-1507. |
XU Shengyuan, HAO Wei, WANG Jie, et al. Construction and application of BiOCl heterojunction as semiconductor photocatalyst[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1493-1507. | |
11 | 黄文迪, 孙静, 申婷婷, 等. Co-BiVO4异质结光催化剂的制备及其性能[J]. 化工进展, 2017, 36(11): 4080-4086. |
HUANG Wendi, SUN Jing, SHEN Tingting, et al. Preparation and properties of Co-doped BiVO4 heterojunction photocatalysts fabricated by hydrothermal method[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4080-4086. | |
12 | SHI Anqi, SUN Dazhong, ZHANG Xuemei, et al. Direct Z-scheme photocatalytic system: Insights into the formative factors of photogenerated carriers transfer channel from ultrafast dynamics[J]. ACS Catalysis, 2022, 12(15): 9570-9578. |
13 | 卞俊杰, 王万圆, 满恒孝, 等. BiOX(Cl, Br, I)/Bi2WO6异质结型复合光催化剂用于高浓度氮氧化物的脱除[J]. 化工进展, 2021, 40(11): 6094-6101. |
BIAN Junjie, WANG Wanyuan, MAN Hengxiao, et al. BiOX(Cl, Br, I)/Bi2WO6 heterojunction composites as photocatalysts for high concentration NO removal[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6094-6101. | |
14 | KUMAR Ajay, CHANDEL Manisha, SHARMA Arush, et al. Robust visible light active PANI/LaFeO3/CoFe2O4 ternary heterojunction for the photo-degradation and mineralization of pharmaceutical effluent: Clozapine[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106159. |
15 | 龚鹏程, 严群, 陈锦富, 等. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
GONG Pengcheng, YAN Qun, CHEN Jinfu, et al. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. | |
16 | HE Wei, LIU Liang, MA Tingting, et al. Controllable morphology CoFe2O4/g-C3N4 p-n heterojunction photocatalysts with built-in electric field enhance photocatalytic performance[J]. Applied Catalysis B: Environmental, 2022, 306: 121107. |
17 | ZHU Junjiang, LI Hailong, ZHONG Linyun, et al. Perovskite oxides: Preparation, characterizations, and applications in heterogeneous catalysis[J]. ACS Catalysis, 2014, 4(9): 2917-2940. |
18 | 张琴琴, 李再兴, 陈晓飞, 等. 钙钛矿型光催化材料的应用现状及进展[J]. 精细化工, 2022, 39(12): 2398-2408, 2480. |
ZHANG Qinqin, LI Zaixing, CHEN Xiaofei, et al. Status quo and progress of perovskite-type photocatalysts[J]. Fine Chemicals, 2022, 39(12): 2398-2408, 2480. | |
19 | ARAZAS Andrea Pauline Ricasata, WU Chia-Chen, CHANG Kaoshuo. Hydrothermal fabrication and analysis of piezotronic-related properties of BiFeO3 nanorods[J]. Ceramics International, 2018, 44(12): 14158-14162. |
20 | CHOI T, LEE S, CHOI Y J, et al. Switchable ferroelectric diode and photovoltaic effect in BiFeO3 [J]. Science, 2009, 324(5923): 63-66. |
21 | FATIMA Sabeen, Irfan ALI S, IQBAL Muhammad Z, et al. The high photocatalytic activity and reduced band gap energy of La and Mn co-doped BiFeO3/graphene nanoplatelet (GNP) nanohybrids[J]. RSC Advances, 2017, 7(57): 35928-35937. |
22 | SANDO Daniel, Cécile CARRÉTÉRO, GRISOLIA Mathieu N, et al. Revisiting the optical band gap in epitaxial BiFeO3 thin films[J]. Advanced Optical Materials, 2018, 6(2): 1700836. |
23 | MARWAT Mohsin ALI, ULLAH Habib, USMAN Muhammad, et al. Significantly improved photocatalytic activity of the SnO2/BiFeO3 heterojunction for pollutant degradation and mechanism[J]. Ceramics International, 2022, 48(10): 14789-14798. |
24 | ZHANG Yizhen, LIU Lifen, VAN DER BRUGGEN Bart, et al. A free-standing 3D nano-composite photo-electrode—Ag/ZnO nanorods arrays on Ni foam effectively degrade berberine[J]. Chemical Engineering Journal, 2019, 373: 179-191. |
25 | DING Peiren, JI Haodong, LI Peishen, et al. Visible-light degradation of antibiotics catalyzed by titania/zirconia/graphitic carbon nitride ternary nanocomposites: A combined experimental and theoretical study[J]. Applied Catalysis B: Environmental, 2022, 300: 120633. |
26 | BIESINGER Mark C, PAYNE Brad P, GROSVENOR Andrew P, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni[J]. Applied Surface Science, 2011, 257(7): 2717-2730. |
27 | ZHENG Tingting, ZHANG Yan, JIA Zirui, et al. Customized dielectric-magnetic balance enhanced electromagnetic wave absorption performance in Cu x S/CoFe2O4 composites[J]. Chemical Engineering Journal, 2023, 457: 140876. |
28 | GAO Ying, ZHU Weihuang, LIU Jiawu, et al. Mesoporous sulfur-doped CoFe2O4 as a new Fenton catalyst for the highly efficient pollutants removal[J]. Applied Catalysis B: Environmental, 2021, 295: 120273. |
29 | 韩沐竹. 铁酸钴复合材料在电芬顿体系中降解亚甲基蓝染料废水的研究[D]. 沈阳: 辽宁大学, 2022. |
HAN Muzhu. Degradation of methylene blue dye wastewater by cobalt ferrate composites in electro-Fenton system[D]. Shenyang: Liaoning University, 2022. | |
30 | JIA Yuefa, WU Changjin, KIM Deok-Hyeon, et al. Nitrogen doped BiFeO3 with enhanced magnetic properties and photo-Fenton catalytic activity for degradation of bisphenol A under visible light[J]. Chemical Engineering Journal, 2018, 337: 709-721. |
31 | LIANG Jia, ZHU Gangqiang, LIU Peng, et al. Synthesis and characterization of Fe-doped β-Bi2O3 porous microspheres with enhanced visible light photocatalytic activity[J]. Superlattices and Microstructures, 2014, 72: 272-282. |
32 | GE Min, XU Deliang, CHEN Zhixin, et al. Magnetostrictive-piezoelectric-triggered nanocatalytic tumor therapy[J]. Nano Letters, 2021, 21(16): 6764-6772. |
33 | 邵鲁华. 二维层状铋系光催化剂的制备及其降解有机污染物性能研究[D]. 长沙: 湖南大学, 2021. |
SHAO Luhua. Preparation of two-dimensional layered bismuth-based photocatalyst and its degradation performance for organic pollutants[D]. Changsha: Hunan University, 2021. | |
34 | SAKAR M, BALAKUMAR S, SARAVANAN P, et al. Annealing temperature mediated physical properties of bismuth ferrite (BiFeO3) nanostructures synthesized by a novel wet chemical method[J]. Materials Research Bulletin, 2013, 48(8): 2878-2885. |
35 | HONG Peidong, LI Yulian, HE Junyong, et al. Rapid degradation of aqueous doxycycline by surface CoFe2O4/H2O2 system: Behaviors, mechanisms, pathways and DFT calculation[J]. Applied Surface Science, 2020, 526: 146557. |
36 | 黄星星. 电催化氧化法高效处理制药废水研究[D]. 兰州: 兰州交通大学, 2021. |
HUANG Xingxing. Treatment of pharmaceutical wastewater by the method of electrocatalytic oxidation[D]. Lanzhou: Lanzhou Jiatong University, 2021. | |
37 | HUANG Danlian, LI Jing, ZENG Guangming, et al. Facile construction of hierarchical flower-like Z-scheme AgBr/Bi2WO6 photocatalysts for effective removal of tetracycline: Degradation pathways and mechanism[J]. Chemical Engineering Journal, 2019, 375: 121991. |
38 | WEN Xiaoju, NIU Chenggang, GUO Hai, et al. Photocatalytic degradation of levofloxacin by ternary Ag2CO3/CeO2/AgBr photocatalyst under visible-light irradiation: Degradation pathways, mineralization ability, and an accelerated interfacial charge transfer process study[J]. Journal of Catalysis, 2018, 358: 211-223. |
39 | 朱鸿杰. 新型铁基Z-scheme型光催化剂构建机理及光催化性能研究[D]. 南京: 南京大学, 2020. |
ZHU Hongjie. Study on mechanism and performance of novel Fe-based Z-scheme photocatalyst[D]. Nanjing: Nanjing University, 2020. | |
40 | 张路. 可见光驱动BiOI基异质结活化过硫酸盐降解有机染料的效能与机制[D]. 哈尔滨: 哈尔滨理工大学, 2022. |
ZHANG Lu. Efficiency and mechanism of visible light-driven BiOI-based heterojunction activated persulfate degradation of organic dyes[D]. Harbin: Harbin University of Science and Technology, 2022. | |
41 | 柴嘉男. 铋基Z型Bi3O4Cl/Bi2MoO6复合光催化剂的构建及光催化活性研究[D]. 沈阳: 辽宁大学, 2021.CHAIJianan. Construction of bismuth based Z-scheme Bi3O4Cl/Bi2MoO6 composite photocatalyst and study on photocatalytic activity[D]. Shenyang: Liaoning University, 2021. |
42 | LEE Sin-Li, Li-Ngee HO, Soon-An ONG, et al. A highly efficient immobilized ZnO/Zn photoanode for degradation of azo dye Reactive Green 19 in a photocatalytic fuel cell[J]. Chemosphere, 2017, 166: 118-125. |
43 | WANG Jie, ZHANG Qian, DENG Fang, et al. Rapid toxicity elimination of organic pollutants by the photocatalysis of environment-friendly and magnetically recoverable step-scheme SnFe2O4/ZnFe2O4 nano-heterojunctions[J]. Chemical Engineering Journal, 2020, 379: 122264. |
44 | ZHANG Guoquan, ZHAO Luying, HU Xiaoxin, et al. Synergistic activation of sulfate by TiO2 nanotube arrays-based electrodes for berberine degradation: Insight into pH-dependant ORR-strengthened reactive radicals co-generation mechanism[J]. Applied Catalysis B: Environmental, 2022, 313: 121453. |
45 | LUO Yidan, WEI Xiaoqian, GAO Bin, et al. Synergistic adsorption-photocatalysis processes of graphitic carbon nitrate (g-C3N4) for contaminant removal: Kinetics, models, and mechanisms[J]. Chemical Engineering Journal, 2019, 375: 122019. |
46 | LIANG Yinghua, LIN Shuanglong, LIU Li, et al. Oil-in-water self-assembled Ag@AgCl QDs sensitized Bi2WO6: Enhanced photocatalytic degradation under visible light irradiation[J]. Applied Catalysis B: Environmental, 2015, 164: 192-203. |
47 | LU Mingli, XIAO Xinyan, XIAO Yu, et al. One-pot hydrothermal fabrication of 2D/2D BiOIO3/BiOBr Z-scheme heterostructure with enhanced photocatalytic activity[J]. Journal of Colloid and Interface Science, 2022, 625: 664-679. |
48 | HE Zuming, LIN Kai, WONG Ngie Hing, et al. Elucidation of mechanisms, pathways, and toxicity of fabricated Z-scheme KNbO3/ZnIn2S4 hollow core-shell composites for enhanced ciprofloxacin photodegradation[J]. Chemical Engineering Journal, 2023, 475: 146262. |
49 | YU Zhengkun, ZHOU Yunlei, ZHANG Haowei, et al. One-pot hydrothermal preparation of rich-oxygen vacant Bi2SiO5/CuBi2O4 Z-Scheme heterojunction for visible light-driven photocatalytic removal of antibiotic-resistant bacteria[J]. Chemical Engineering Journal, 2023, 478: 147353. |
[1] | 张政, 刘琳, 李子晨, 王梦琦, 黄春燕, 葛圆圆. 载铜地质聚合物微球的制备及其催化降解双酚S的性能[J]. 化工进展, 2024, 43(9): 5290-5301. |
[2] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[3] | 付佳, 谌伦建, 徐冰, 华绍烽, 李从强, 杨明坤, 邢宝林, 仪桂云. 模拟煤炭气化废水中苯酚的微生物降解[J]. 化工进展, 2023, 42(1): 526-537. |
[4] | 伊学农, 李京梅, 高玉琼. 紫外-高铁酸盐体系氧化降解水中的萘普生[J]. 化工进展, 2022, 41(8): 4562-4570. |
[5] | 吕莹, 胡学武, 陈素素, 刘兴宇, 陈勃伟, 张明江. 多环芳烃污染土壤的微生物修复技术研究进展[J]. 化工进展, 2022, 41(6): 3249-3262. |
[6] | 周永泉, 张艾, 刘亚男, 王铮. 等离子体射流耦合活性碳纤维去除水中糖皮质激素[J]. 化工进展, 2022, 41(4): 2209-2215. |
[7] | 许泽涛, 曹怡婷, 王俏, 王志红. 固相钴基催化剂活化过一硫酸盐在水处理中的研究进展[J]. 化工进展, 2022, 41(2): 730-739. |
[8] | 高天, 张伊黎, 熊卓, 赵永椿, 张军营. 改性氧化钛光催化氧化单质汞性能及其影响因素研究进展[J]. 化工进展, 2022, 41(2): 690-700. |
[9] | 翟重渊, 赵丹荻, 何亚鹏, 黄惠, 陈步明, 郭忠诚. 掺硼金刚石阳极电催化降解新兴抗生素类污染物研究进展[J]. 化工进展, 2022, 41(12): 6615-6626. |
[10] | 王吉坤, 李阳, 陈贵锋, 刘敏, 寇丽红, 王琦, 何毅聪. 臭氧催化氧化降解煤化工高盐废水有机物的机理[J]. 化工进展, 2022, 41(1): 493-502. |
[11] | 张轩, 宋小三, 赵珀, 董元华, 刘云. 高级氧化技术处理1,4-二![]() |
[12] | 苏碧云, 冉良涛, 胡雅和, 张翱, 韩巧巧, 武晋娣, 刘伊婷, 孟祖超. 分子氧化及光电催化氧化对石油Pickering乳液的破乳研究进展[J]. 化工进展, 2021, 40(7): 3995-4002. |
[13] | 孙金龙, 张宇, 刘福跃, 田浩然, 刘崎峰. 基于碳基催化剂活化过二硫酸盐降解有机污染物的研究进展[J]. 化工进展, 2021, 40(3): 1653-1666. |
[14] | 罗艳红, 岳秀萍, 姜悦如, 赵博玮, 高艳娟, 段燕青. 高级氧化技术降解吲哚的研究进展[J]. 化工进展, 2021, 40(2): 1025-1034. |
[15] | 卞俊杰, 王万圆, 满恒孝, 文成新. BiOX(Cl,Br,I)/Bi2WO6异质结型复合光催化剂用于高浓度氮氧化物的脱除[J]. 化工进展, 2021, 40(11): 6094-6101. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |