化工进展 ›› 2024, Vol. 43 ›› Issue (12): 6634-6644.DOI: 10.16085/j.issn.1000-6613.2023-2127
• 化工过程与装备 • 上一篇
胡恒(), 徐娜(
), 李梓良, 于嘉朋, 李旭, 张玮(
)
收稿日期:
2023-12-01
修回日期:
2024-01-15
出版日期:
2024-12-15
发布日期:
2025-01-11
通讯作者:
张玮
作者简介:
胡恒(1999—),男,硕士研究生,研究方向为化工过程建模与优化。E-mail:2338677295@qq.com基金资助:
HU Heng(), XU Na(
), LI Ziliang, YU Jiapeng, LI Xu, ZHANG Wei(
)
Received:
2023-12-01
Revised:
2024-01-15
Online:
2024-12-15
Published:
2025-01-11
Contact:
ZHANG Wei
摘要:
降膜反应器合成脂肪酸甲酯磺酸盐存在内部温度分布不均、产率下降的问题。基于微反应器高效反应特性,本文尝试在T型微反应器中合成脂肪酸甲酯磺酸盐。考察了磺化反应过程中温度、摩尔比、老化时间、老化温度等因素对产物中活性物含量(产物中活性物的质量分数)的影响,采用响应面法探究各因素对活性物含量影响强弱顺序及交互作用,并在此基础上进行工艺条件优化。分析得出,各因素对活性物含量影响由强到弱的顺序为:三氧化硫与硬脂酸甲酯摩尔比>老化温度>磺化温度>老化时间。优化结果显示,当磺化温度为86.4℃、SO3与硬脂酸甲酯摩尔比为1.4、老化时间为47min、老化温度为90℃时,产品活性物含量达88.1%,相比工业合成提高了5%左右。建立了微反应器体系下脂肪酸甲酯SO3磺化反应的动力学方程式,拟合出动力学相关参数,为实现工艺过程可控、产物预测及反应器结构优化提供依据。采用NSGA2算法对工艺进行双目标优化,结合TOPSIS方法从Pareto解集中选出最佳工艺方案。
中图分类号:
胡恒, 徐娜, 李梓良, 于嘉朋, 李旭, 张玮. T型微反应器中合成脂肪酸甲酯磺酸盐动力学及工艺优化[J]. 化工进展, 2024, 43(12): 6634-6644.
HU Heng, XU Na, LI Ziliang, YU Jiapeng, LI Xu, ZHANG Wei. Kinetics and process optimization of synthesis of methyl ester sulfonate in T-type microreactor[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6634-6644.
水平 | 磺化温度(A)/℃ | SO3/MS 摩尔比(B) | 老化时间(C)/min | 老化温度(D)/℃ |
---|---|---|---|---|
-2 | 60 | 0.8 | 20 | 60 |
-1 | 70 | 1 | 30 | 70 |
0 | 80 | 1.2 | 40 | 80 |
1 | 90 | 1.4 | 50 | 90 |
2 | 100 | 1.6 | 60 | 100 |
表1 实验因素水平
水平 | 磺化温度(A)/℃ | SO3/MS 摩尔比(B) | 老化时间(C)/min | 老化温度(D)/℃ |
---|---|---|---|---|
-2 | 60 | 0.8 | 20 | 60 |
-1 | 70 | 1 | 30 | 70 |
0 | 80 | 1.2 | 40 | 80 |
1 | 90 | 1.4 | 50 | 90 |
2 | 100 | 1.6 | 60 | 100 |
序号 | 磺化温度(A)/℃ | SO3/MS摩尔比(B) | 老化时间(C)/min | 老化温度(D)/℃ | 实际值/% | 预测值/% |
---|---|---|---|---|---|---|
1 | 1 | -1 | 1 | 1 | 72.8 | 72.9 |
2 | 0 | 2 | 0 | 0 | 85.2 | 86.0 |
3 | 1 | -1 | -1 | 1 | 70.1 | 69.9 |
4 | -1 | -1 | 1 | -1 | 50.8 | 53.2 |
5 | 0 | 0 | 0 | 2 | 86.1 | 86.3 |
6 | -1 | 1 | 1 | -1 | 75.6 | 76.0 |
7 | 0 | -2 | 0 | 0 | 49.3 | 47.4 |
8 | -2 | 0 | 0 | 0 | 66.5 | 64.2 |
9 | 0 | 0 | 0 | 0 | 75.8 | 74.9 |
10 | 1 | 1 | -1 | -1 | 78.1 | 78.1 |
11 | 0 | 0 | 0 | -2 | 69.4 | 67.0 |
12 | 0 | 0 | 0 | 0 | 76.2 | 74.9 |
13 | 1 | -1 | 1 | -1 | 63.6 | 63.4 |
14 | -1 | -1 | -1 | -1 | 47.5 | 48.6 |
15 | -1 | -1 | -1 | 1 | 59.6 | 60.1 |
16 | 0 | 0 | -2 | 0 | 67.7 | 67.3 |
17 | 0 | 0 | 0 | 0 | 75.6 | 74.9 |
18 | 0 | 0 | 0 | 0 | 73.8 | 74.9 |
19 | 0 | 0 | 2 | 0 | 75 | 74.4 |
20 | -1 | 1 | -1 | -1 | 71.2 | 71.9 |
21 | 0 | 0 | 0 | 0 | 74.3 | 74.9 |
22 | 0 | 0 | 0 | 0 | 73.9 | 74.9 |
23 | 1 | 1 | 1 | 1 | 89 | 88.1 |
24 | 1 | 1 | 1 | -1 | 80 | 80.3 |
25 | -1 | 1 | -1 | 1 | 81.3 | 81.7 |
26 | 1 | -1 | -1 | -1 | 59.8 | 60.7 |
27 | 2 | 0 | 0 | 0 | 77 | 78.3 |
28 | -1 | 1 | 1 | 1 | 86.1 | 86.0 |
29 | 1 | 1 | -1 | 1 | 87.3 | 85.7 |
30 | -1 | -1 | 1 | 1 | 64.8 | 65.0 |
表2 实验设计及结果
序号 | 磺化温度(A)/℃ | SO3/MS摩尔比(B) | 老化时间(C)/min | 老化温度(D)/℃ | 实际值/% | 预测值/% |
---|---|---|---|---|---|---|
1 | 1 | -1 | 1 | 1 | 72.8 | 72.9 |
2 | 0 | 2 | 0 | 0 | 85.2 | 86.0 |
3 | 1 | -1 | -1 | 1 | 70.1 | 69.9 |
4 | -1 | -1 | 1 | -1 | 50.8 | 53.2 |
5 | 0 | 0 | 0 | 2 | 86.1 | 86.3 |
6 | -1 | 1 | 1 | -1 | 75.6 | 76.0 |
7 | 0 | -2 | 0 | 0 | 49.3 | 47.4 |
8 | -2 | 0 | 0 | 0 | 66.5 | 64.2 |
9 | 0 | 0 | 0 | 0 | 75.8 | 74.9 |
10 | 1 | 1 | -1 | -1 | 78.1 | 78.1 |
11 | 0 | 0 | 0 | -2 | 69.4 | 67.0 |
12 | 0 | 0 | 0 | 0 | 76.2 | 74.9 |
13 | 1 | -1 | 1 | -1 | 63.6 | 63.4 |
14 | -1 | -1 | -1 | -1 | 47.5 | 48.6 |
15 | -1 | -1 | -1 | 1 | 59.6 | 60.1 |
16 | 0 | 0 | -2 | 0 | 67.7 | 67.3 |
17 | 0 | 0 | 0 | 0 | 75.6 | 74.9 |
18 | 0 | 0 | 0 | 0 | 73.8 | 74.9 |
19 | 0 | 0 | 2 | 0 | 75 | 74.4 |
20 | -1 | 1 | -1 | -1 | 71.2 | 71.9 |
21 | 0 | 0 | 0 | 0 | 74.3 | 74.9 |
22 | 0 | 0 | 0 | 0 | 73.9 | 74.9 |
23 | 1 | 1 | 1 | 1 | 89 | 88.1 |
24 | 1 | 1 | 1 | -1 | 80 | 80.3 |
25 | -1 | 1 | -1 | 1 | 81.3 | 81.7 |
26 | 1 | -1 | -1 | -1 | 59.8 | 60.7 |
27 | 2 | 0 | 0 | 0 | 77 | 78.3 |
28 | -1 | 1 | 1 | 1 | 86.1 | 86.0 |
29 | 1 | 1 | -1 | 1 | 87.3 | 85.7 |
30 | -1 | -1 | 1 | 1 | 64.8 | 65.0 |
来源 | 平方和 | 自由度 | 均方差 | F | P | 显著性 |
---|---|---|---|---|---|---|
模型 | 3369.85 | 14 | 240.7 | 96.73 | <0.0001 | 高度显著 |
A | 299.63 | 1 | 299.63 | 120.42 | <0.0001 | 高度显著 |
B | 2231.08 | 1 | 2231.08 | 896.64 | <0.0001 | 高度显著 |
C | 74.91 | 1 | 74.91 | 30.1 | <0.0001 | 高度显著 |
D | 556.81 | 1 | 556.81 | 223.77 | <0.0001 | 高度显著 |
AB | 34.22 | 1 | 34.22 | 13.75 | 0.0021 | 高度显著 |
AC | 3.61 | 1 | 3.61 | 1.45 | 0.2471 | — |
AD | 5.06 | 1 | 5.06 | 2.03 | 0.1742 | — |
BC | 0.3025 | 1 | 0.3025 | 0.1216 | 0.7322 | — |
BD | 2.89 | 1 | 2.89 | 1.16 | 0.2982 | — |
CD | 0.0625 | 1 | 0.0625 | 0.0251 | 0.8762 | — |
A2 | 23.57 | 1 | 23.57 | 9.47 | 0.0077 | 高度显著 |
B2 | 115.5 | 1 | 115.5 | 46.42 | <0.0001 | 高度显著 |
C2 | 28.93 | 1 | 28.93 | 11.63 | 0.0039 | 高度显著 |
D2 | 5.2 | 1 | 5.2 | 2.09 | 0.1688 | 不显著 |
残差 | 37.32 | 15 | 2.49 | — | — | — |
失拟项 | 31.77 | 10 | 3.18 | 2.86 | 0.1288 | 不显著 |
纯误差 | 5.55 | 5 | 1.11 | — | — | — |
总和 | 3407.17 | 29 | — | — | — | — |
表3 回归模型方差分析
来源 | 平方和 | 自由度 | 均方差 | F | P | 显著性 |
---|---|---|---|---|---|---|
模型 | 3369.85 | 14 | 240.7 | 96.73 | <0.0001 | 高度显著 |
A | 299.63 | 1 | 299.63 | 120.42 | <0.0001 | 高度显著 |
B | 2231.08 | 1 | 2231.08 | 896.64 | <0.0001 | 高度显著 |
C | 74.91 | 1 | 74.91 | 30.1 | <0.0001 | 高度显著 |
D | 556.81 | 1 | 556.81 | 223.77 | <0.0001 | 高度显著 |
AB | 34.22 | 1 | 34.22 | 13.75 | 0.0021 | 高度显著 |
AC | 3.61 | 1 | 3.61 | 1.45 | 0.2471 | — |
AD | 5.06 | 1 | 5.06 | 2.03 | 0.1742 | — |
BC | 0.3025 | 1 | 0.3025 | 0.1216 | 0.7322 | — |
BD | 2.89 | 1 | 2.89 | 1.16 | 0.2982 | — |
CD | 0.0625 | 1 | 0.0625 | 0.0251 | 0.8762 | — |
A2 | 23.57 | 1 | 23.57 | 9.47 | 0.0077 | 高度显著 |
B2 | 115.5 | 1 | 115.5 | 46.42 | <0.0001 | 高度显著 |
C2 | 28.93 | 1 | 28.93 | 11.63 | 0.0039 | 高度显著 |
D2 | 5.2 | 1 | 5.2 | 2.09 | 0.1688 | 不显著 |
残差 | 37.32 | 15 | 2.49 | — | — | — |
失拟项 | 31.77 | 10 | 3.18 | 2.86 | 0.1288 | 不显著 |
纯误差 | 5.55 | 5 | 1.11 | — | — | — |
总和 | 3407.17 | 29 | — | — | — | — |
T/K | k1 | T-1/10-3K-1 | lnk1 |
---|---|---|---|
333.15 | 3.89113 | 3.00165 | 1.3587 |
338.15 | 4.41761 | 2.95727 | 1.4856 |
343.15 | 4.74267 | 2.91418 | 1.5566 |
348.15 | 5.42322 | 2.87232 | 1.6907 |
353.15 | 6.38659 | 2.83166 | 1.8542 |
表4 不同反应温度下的速率常数
T/K | k1 | T-1/10-3K-1 | lnk1 |
---|---|---|---|
333.15 | 3.89113 | 3.00165 | 1.3587 |
338.15 | 4.41761 | 2.95727 | 1.4856 |
343.15 | 4.74267 | 2.91418 | 1.5566 |
348.15 | 5.42322 | 2.87232 | 1.6907 |
353.15 | 6.38659 | 2.83166 | 1.8542 |
磺化 温度/℃ | SO3/MS 摩尔比 | 老化 时间/min | 老化 温度/℃ | 能耗 成本/CNY | 活性物含量/% | 与最优水平接近指数 |
---|---|---|---|---|---|---|
63.3 | 1.6 | 20.7 | 98.7 | 7.48 | 85.2 | 0.637 |
64.1 | 1.6 | 20.6 | 98.6 | 7.54 | 85.4 | 0.631 |
63.6 | 1.6 | 21.4 | 99.4 | 7.61 | 86.1 | 0.618 |
64.8 | 1.6 | 22.3 | 98.9 | 7.80 | 86.8 | 0.596 |
66.0 | 1.6 | 22.6 | 99.9 | 7.95 | 87.9 | 0.572 |
表5 决策得到最优解集的解
磺化 温度/℃ | SO3/MS 摩尔比 | 老化 时间/min | 老化 温度/℃ | 能耗 成本/CNY | 活性物含量/% | 与最优水平接近指数 |
---|---|---|---|---|---|---|
63.3 | 1.6 | 20.7 | 98.7 | 7.48 | 85.2 | 0.637 |
64.1 | 1.6 | 20.6 | 98.6 | 7.54 | 85.4 | 0.631 |
63.6 | 1.6 | 21.4 | 99.4 | 7.61 | 86.1 | 0.618 |
64.8 | 1.6 | 22.3 | 98.9 | 7.80 | 86.8 | 0.596 |
66.0 | 1.6 | 22.6 | 99.9 | 7.95 | 87.9 | 0.572 |
方案 类别 | 磺化 温度/℃ | SO3/MS 摩尔比 | 老化 时间/min | 老化 温度/℃ | 能耗 成本/CNY | 活性物 含量/% | 与最优 水平接近指数 |
---|---|---|---|---|---|---|---|
优化 方案 | 63.3 | 1.6 | 20.7 | 98.7 | 7.48 | 85.2 | 0.637 |
初始 方案 | 86.4 | 1.4 | 47 | 90 | 9.67 | 88.1 | 0.584 |
表6 双目标最佳方案与单目标方案对比
方案 类别 | 磺化 温度/℃ | SO3/MS 摩尔比 | 老化 时间/min | 老化 温度/℃ | 能耗 成本/CNY | 活性物 含量/% | 与最优 水平接近指数 |
---|---|---|---|---|---|---|---|
优化 方案 | 63.3 | 1.6 | 20.7 | 98.7 | 7.48 | 85.2 | 0.637 |
初始 方案 | 86.4 | 1.4 | 47 | 90 | 9.67 | 88.1 | 0.584 |
1 | SIWAYANAN Parthiban, BAN Zhen hong, ZHANG Xinchi, et al. α-sulfo fatty methyl ester sulfonate: A review on chemistry, processing technologies, performance, and applications in laundry detergents[J]. Journal of Surfactants and Detergents, 2021, 24(3): 385-399. |
2 | 宋金玉, 彭志强, 孙笑宇. 脂肪酸甲酯磺酸盐的性能测试及其在洗衣液中的应用[J]. 日用化学工业, 2018, 48(12): 691-694. |
SONG Jinyu, PENG Zhiqiang, SUN Xiaoyu. The performance test of fatty acid methyl ester sulfonate and its application in the liquid detergent[J]. China Surfactant Detergent & Cosmetics, 2018, 48(12): 691-694. | |
3 | YAVRUKOVA Veronika I, SHANDURKOV Dimitar N, MARINOVA Krastanka G, et al. Cleaning ability of mixed solutions of sulfonated fatty acid methyl esters[J]. Journal of Surfactants and Detergents, 2020, 23(3): 617-627. |
4 | Yee Seng LIM, BAHARUDIN Nur Bazlina, Yee Wei UNG. Methyl ester sulfonate: A high-performance surfactant capable of reducing builders dosage in detergents[J]. Journal of Surfactants and Detergents, 2019, 22(3): 549-558. |
5 | YUSUFF Adeyinka S, BODE-OLAJIDE Favour B. Comparing the performances of different sulfonating agents in sulfonation of methyl esters synthesized from used cooking oil[J]. Tenside Surfactants Detergents, 2023, 60(4): 277-285. |
6 | RUSSO Vincenzo, MILICIA Antonio, DI SERIO Martino, et al. Falling film reactor modelling for sulfonation reactions[J]. Chemical Engineering Journal, 2019, 377: 120464. |
7 | Arkadiusz CHRUŚCIEL, HRECZUCH Wiesław. Kinetic modelling and improvement of the ageing step of industrial alkylbenzene sulfonation process[J]. Chemical Engineering and Processing-Process Intensification, 2022, 181: 109143. |
8 | IVANCHINA Emiliya, IVASHKINA Elena, DOLGANOVA Irena, et al. Linear alkylbenzenes sulfonation: Design of film reactor and its influence on the formation of deactivating components[J]. Journal of Surfactants and Detergents, 2020, 23(6): 1007-1015. |
9 | AGHEL Babak, HEIDARYAN Ehsan, SAHRAIE Sasan, et al. Application of the microchannel reactor to carbon dioxide absorption[J]. Journal of Cleaner Production, 2019, 231: 723-732. |
10 | 王彦谦, 王远洋. 微反应器中费托合成的研究进展[J]. 化工进展, 2021, 40(S2): 185-191. |
WANG Yanqian, WANG Yuanyang. Research progress of Fischer-Tropsch synthesis in microreactor[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 185-191. | |
11 | LING Weisong, ZHOU Wei, YU Wei, et al. Experimental investigation on thermal and hydraulic performance of microchannels with interlaced configuration[J]. Energy Conversion and Management, 2018, 174: 439-452. |
12 | DENG Jian, ZHANG Jisong, WANG Kai, et al. Microreaction technology for synthetic chemistry[J]. Chinese Journal of Chemistry, 2019, 37(2): 161-170. |
13 | GUO Shuai, CAO Jianyang, LIU Meiqi, et al. Intensification and kinetic study of trifluoromethylbenzen nitration with mixed acid in the microreactor[J]. Chemical Engineering and Processing-Process Intensification, 2023, 183: 109239. |
14 | 张经纬, 周弋惟, 陈卓, 等. 微反应器内的有机合成前沿进展[J]. 化工学报, 2022, 73(8): 3472-3482. |
ZHANG Jingwei, ZHOU Yiwei, CHEN Zhuo, et al. Advances in frontiers of organic synthesis in microreactor[J]. CIESC Journal, 2022, 73(8): 3472-3482. | |
15 | 张家康, 张月成, 赵继全. 微通道反应器中精细化学品合成危险工艺研究进展[J]. 精细化工, 2023, 40(4): 728-740. |
ZHANG Jiakang, ZHANG Yuecheng, ZHAO Jiquan. Research progresses on hazardous processes for fine chemical synthesis in microchannel reactors[J]. Fine Chemicals, 2023, 40(4): 728-740. | |
16 | XU Yiming, LI Ping, MA Haoran, et al. Multistep cascade continuous flow synthesis of AOS based on microreactor[J]. Chemical Engineering and Processing-Process Intensification, 2023, 192: 109505. |
17 | 孟维军, 徐一鸣, 李平, 等. 微通道内连续合成十二烷基苯磺酸的响应面分析及混合过程模拟[J]. 化工进展, 2021, 40(11): 5998-6008. |
MENG Weijun, XU Yiming, LI Ping, et al. Response surface analysis and mixing process simulation of continuous synthesis of dodecylbenzene sulfonic acid in microchannels[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 5998-6008. | |
18 | XU Yiming, LIU Suli, MENG Weijun, et al. Continuous sulfonation of hexadecylbenzene in a microreactor[J]. Green Processing and Synthesis, 2021, 10(1): 219-229. |
19 | XIE Tianming, ZENG Changfeng, WANG Chongqing, et al. Preparation of methyl ester sulfonates based on sulfonation in a falling film microreactor from hydrogenated palm oil methyl esters with gaseous SO3 [J]. Industrial & Engineering Chemistry Research, 2013, 52(10): 3714-3722. |
20 | XIE Yu, FENG Mingjian, ZHANG Min, et al. Kinetics model of piperacillin synthesis in a microreactor[J]. Chemical Engineering Science, 2022, 259: 117821. |
21 | ZHAO Hailing, LIU Sai’er, SHANG Minjing, et al. Direct oxidation of benzene to phenol in a microreactor: Process parameters and reaction kinetics study[J]. Chemical Engineering Science, 2021, 246: 116907. |
22 | ZHANG Hong, SHANG Minjing, SONG Yang, et al. Continuous synthesis of tetraalkylammonium-based ethyl sulphate ionic liquid and its kinetic study in microreactors[J]. AIChE Journal, 2019, 65(4): 1245-1255. |
23 | CHEN Yu, YU Jiayuan, YANG Yiqian, et al. A continuous process for cyclic carbonate synthesis from CO2 catalyzed by the ionic liquid in a microreactor system: Reaction kinetics, mass transfer, and process optimization[J]. Chemical Engineering Journal, 2023, 455: 140670. |
24 | LIN Xiyan, WANG Kai, ZHOU Baiyang, et al. A microreactor-based research for the kinetics of polyvinyl butyral (PVB) synthesis reaction[J]. Chemical Engineering Journal, 2020, 383: 123181. |
25 | LI Guangxiao, LIU Saier, DOU Xiaoyong, et al. Synthesis of adipic acid through oxidation of K/a oil and its kinetic study in a microreactor system[J]. AIChE Journal, 2020, 66(9): e16289. |
26 | CHAUDHARI Pranava, THAKUR Amit K, KUMAR Rahul, et al. Comparison of NSGA-Ⅲ with NSGA-Ⅱ for multi objective optimization of adiabatic styrene reactor[J]. Materials Today: Proceedings, 2022, 57: 1509-1514. |
27 | KOSE Haluk Anil, YILDIZELI Alperen, CADIRCI Sertac. Parametric study and optimization of microchannel heat sinks with various shapes[J]. Applied Thermal Engineering, 2022, 211: 118368. |
28 | SHANMUGAM Mathiyazhagan, SIRISHA MAGANTI Lakshmi. Multi-objective optimization of parallel microchannel heat sink with inlet/outlet U, I, Z type manifold configuration by RSM and NSGA-Ⅱ[J]. International Journal of Heat and Mass Transfer, 2023, 201: 123641. |
29 | WANG Guilian, DING Guifu, LIU Rui, et al. Multi-objective optimization of a bidirectional-ribbed microchannel based on CFD and NSGA-Ⅱ genetic algorithm[J]. International Journal of Thermal Sciences, 2022, 181: 107731. |
30 | 徐一鸣, 袁华, 刘素丽, 等. 微通道反应器中工业混合直链烷基苯磺酸盐的连续合成工艺研究[J]. 化工学报, 2022, 73(3): 1184-1193. |
XU Yiming, YUAN Hua, LIU Suli, et al. Study on the continuous synthesis process of industrial mixed linear alkyl benzene sulfonates in a microchannel reactor[J]. CIESC Journal, 2022, 73(3): 1184-1193. | |
31 | YUSUFF Adeyinka S, PORWAL Jyoti, BHONSLE Aman K, et al. Valorization of used cooking oil as a source of anionic surfactant fatty acid methyl ester sulfonate: Process optimization and characterization studies[J]. Biomass Conversion and Biorefinery, 2023, 13(10): 8903-8914. |
32 | 王嘉鑫. 甲苯磺化动力学及超重力磺化工艺研究[D]. 北京: 北京化工大学, 2022. |
WANG Jiaxin. Study on sulfonation kinetics and supergravity sulfonation process of toluene[D]. Beijing: Beijing University of Chemical Technology, 2022. | |
33 | SENTHIL KANNAN V, LENIN K, NAVNEETHAKRISHNAN P. Machining parameters optimization in laser beam machining for micro elliptical profiles using TOPSIS method[J]. Materials Today: Proceedings, 2020, 21: 727-730. |
[1] | 毛宁轩, 万小维, 鞠杰, 胡彦杰, 江浩. 工业气固流化床内流场的CFD-PBM数值模拟和结构优化[J]. 化工进展, 2024, 43(S1): 13-20. |
[2] | 孙启超, 聂美华, 伍联营, 胡仰栋. 风光储一体化水电联产系统的优化设计及调度[J]. 化工进展, 2024, 43(9): 4882-4891. |
[3] | 吴宇琦, 李江涛, 丁建智, 宋秀兰, 苏冰琴. 焙烧镁铝水滑石脱除厌氧消化沼气中CO2的效果及机制[J]. 化工进展, 2024, 43(9): 5250-5261. |
[4] | 李依梦, 陈运全, 何畅, 张冰剑, 陈清林. 基于物理信息神经网络的甲烷无氧芳构化反应的正反问题[J]. 化工进展, 2024, 43(9): 4817-4823. |
[5] | 殷晨阳, 刘永峰, 陈睿哲, 张璐, 宋金瓯, 刘海峰. 基于量子化学计算的正己烷热解反应动力学模拟[J]. 化工进展, 2024, 43(8): 4273-4282. |
[6] | 曾武清, 王予, 卜庆国, 马硕, 白东明, 张宗建, 张鹏, 马丹丹, 王圣博, 王润其, 武丽雯, 刘晨, 马洪亭. 陈腐垃圾掺烧对垃圾炉焚烧特性的影响[J]. 化工进展, 2024, 43(8): 4642-4653. |
[7] | 顾颂琦, 孙凡飞, 韦尧, 宋兴飞, 南兵, 李丽娜, 黄宇营. 时间分辨热化学原位XAFS方法[J]. 化工进展, 2024, 43(7): 3747-3755. |
[8] | 潘彤彤, 崔香梅. 葡甲胺功能化rGO/MWCNTs-OH复合气凝胶的制备及对硼的吸附[J]. 化工进展, 2024, 43(6): 3386-3397. |
[9] | 熊远帆, 李华山, 龚宇烈. 非共沸工质蒸发式冷凝器多目标优化设计[J]. 化工进展, 2024, 43(6): 2950-2960. |
[10] | 刘思宇, 杨卷, 陈培, 陈祖田, 闫斌, 刘育红, 邱介山. 富氮多孔碳纳米片的氮掺杂构型调控及其储锌性能[J]. 化工进展, 2024, 43(5): 2673-2683. |
[11] | 王东亮, 李婧玮, 孟文亮, 杨勇, 周怀荣, 范宗良. 二氧化碳加氢制甲醇过程碳氢利用率的影响因素与工艺优化分析[J]. 化工进展, 2024, 43(5): 2843-2850. |
[12] | 侯立凯, 范旭, 包福兵. 微小液体流量校准技术[J]. 化工进展, 2024, 43(2): 579-585. |
[13] | 陈俊先, 刘震, 焦文磊, 张天钰, 吕家孟, 姬忠礼. 基于微波谐振原理的天然气管道内液滴浓度测量方法[J]. 化工进展, 2024, 43(2): 734-742. |
[14] | 马长金, 李腾, 安维中, 林子昕, 别海燕. 碳酸丙烯酯为萃取剂萃取精馏分离碳酸二甲酯-甲醇流程模拟与经济性评价[J]. 化工进展, 2024, 43(12): 6608-6614. |
[15] | 尹瑞, 尹少武, 杨立坤, 童莉葛, 刘传平, 王立. 数据中心芯片级间接液冷技术与强化传热进展[J]. 化工进展, 2024, 43(11): 6010-6030. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |