化工进展 ›› 2024, Vol. 43 ›› Issue (10): 5748-5764.DOI: 10.16085/j.issn.1000-6613.2023-1544
• 资源与环境化工 • 上一篇
黄致新1(), 王珺瑶2, 袁湘洲3, 邓帅1(), 赵洁4, 张欣懿1
收稿日期:
2023-09-04
修回日期:
2023-11-16
出版日期:
2024-10-15
发布日期:
2024-10-29
通讯作者:
邓帅
作者简介:
黄致新(2001—),男,硕士研究生,研究方向为生命周期评价。E-mail:zhixinhuang@tju.edu.cn。
基金资助:
HUANG Zhixin1(), WANG Junyao2, YUAN Xiangzhou3, DENG Shuai1(), ZHAO Jie4, ZHANG Xinyi1
Received:
2023-09-04
Revised:
2023-11-16
Online:
2024-10-15
Published:
2024-10-29
Contact:
DENG Shuai
摘要:
碳捕集技术对于实现碳中和目标不可或缺。特别地,将有机固体废弃物高值化为多孔炭吸附剂并捕集CO2,被认为是一种能够同时缓解气候变化以及固废污染的可持续方法,因此其吸附剂的合成与应用得到广泛关注。近年来,除化工、材料、热工研究方法外,在该领域内许多学者应用分子模拟、机器学习、生命周期评价等研究方法,在固废高值化为CO2吸附剂方面进行了卓有特色的交叉研究。然而,上述交叉研究仍较为分散,缺乏脉络总结,其丰厚潜力还未得到系统阐明。本文综述了固废高值化为多孔炭吸附剂的研究进展,除常规工艺方法、制取吸附剂的性能水平外,侧重于展示该领域中应用的交叉研究,包含分子模拟、机器学习、生命周期评价三方面。本文通过脉络梳理可为该领域内交叉研究的潜在发展方向提供指引。
中图分类号:
黄致新, 王珺瑶, 袁湘洲, 邓帅, 赵洁, 张欣懿. 有机固废高值化为CO2吸附剂研究进展:交叉研究综述[J]. 化工进展, 2024, 43(10): 5748-5764.
HUANG Zhixin, WANG Junyao, YUAN Xiangzhou, DENG Shuai, ZHAO Jie, ZHANG Xinyi. Research advances on upcycling organic solid waste into CO2 adsorbents: A cross-research review[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5748-5764.
原料 | 炭化方法 | 炭化温度 /℃ | 活化剂 | 活化温度 /℃ | 表面改性剂 | 吸附容量(25℃,1bar) /mmol·g-1 | 动态吸附容量 /mmol·g-1 | 选择性 (CO2-N2)/% |
---|---|---|---|---|---|---|---|---|
菠萝废弃物[ | 水热炭化 | 210 | 草酸锂、草酸钠、草酸钾 | 700 | — | 4.25 | 0.93 | 18.4~38.4 |
腐烂草莓[ | 水热炭化 | 180 | KOH | 650 | — | 4.49 | — | 20 |
菊君草[ | 水热炭化 | 250 | KOH | 700 | — | 4.90 | — | — |
山茶花[ | 水热炭化 | 250 | KOH | 700 | — | 5.00 | — | — |
中药固废[ | 水热炭化 | 270 | KOH | 600~800 | 尿素 | 4.02 | — | 21.26 |
虾壳[ | 热解 | 400 | KOH | 700 | — | 4.20 | — | 23 |
荷叶[ | 热解 | 500 | NaNH2 | 450~550 | NaNH2 | 3.5 | 0.82 | 21 |
榛子壳[ | 热解 | 500 | NaNH2 | 500~600 | NaNH2 | 4.23 | 1.00 | 17 |
菱角壳[ | 热解 | 500 | KOH | 550~650 | 硫脲 | 4.34 | 0.89 | 22 |
玉米芯[ | — | 700 | — | — | PEI | 4.75(20℃) | 2.6~2.7 | — |
莲杆[ | 热解 | 1000 | K2CO3/KHCO3 | 80 | — | — | — | — |
甘蔗渣[ | 热解 | 600 | KOH | 600 | 尿素 | 4.8 | — | 22 |
水热炭化 | 240 | KOH | 800 | 乙酸 | 4.47 | — | 21.5 | |
稻壳[ | — | 520 | KOH | 710 | — | 4.16 | — | — |
— | 200 | KOH | 700 | PEI | 4.50 | — | — | |
藻类[ | 热解 | 400~800 | KOH | 400~800 | — | 0.37~1.05 | — | — |
热解 | 800 | KOH | 600 | 尿素 | 3.44 | — | — | |
热解 | 800 | KOH | 600 | 尿素 | 3.94 | — | — | |
椰子壳[ | 热解 | 500 | KOH | 600 | — | 4.23 | — | — |
热解 | 800 | CO2 | 800 | — | 3.90 | — | — | |
热解 | 500 | K2CO3 | 600 | 尿素 | 4.70 | — | 11 | |
热解 | 500 | KOH | 650 | 尿素 | 4.80 | — | 15 | |
热解 | 500 | KOH | 650 | 氨 | 4.26 | — | — | |
PET废塑料[ | 热解 | 700 | KOH | 700 | — | — | 2.31 | — |
热解 | 600 | KOH | 700 | — | 4.42 | 3.31 | 14 | |
热解 | 600 | KOH | 700 | 尿素 | 4.58 | 3.51 | 19 | |
热解 | 600 | CO2 | 900 | — | 3.63 | 2.68 | — |
表1 有机固废基CO2吸附剂的性能水平
原料 | 炭化方法 | 炭化温度 /℃ | 活化剂 | 活化温度 /℃ | 表面改性剂 | 吸附容量(25℃,1bar) /mmol·g-1 | 动态吸附容量 /mmol·g-1 | 选择性 (CO2-N2)/% |
---|---|---|---|---|---|---|---|---|
菠萝废弃物[ | 水热炭化 | 210 | 草酸锂、草酸钠、草酸钾 | 700 | — | 4.25 | 0.93 | 18.4~38.4 |
腐烂草莓[ | 水热炭化 | 180 | KOH | 650 | — | 4.49 | — | 20 |
菊君草[ | 水热炭化 | 250 | KOH | 700 | — | 4.90 | — | — |
山茶花[ | 水热炭化 | 250 | KOH | 700 | — | 5.00 | — | — |
中药固废[ | 水热炭化 | 270 | KOH | 600~800 | 尿素 | 4.02 | — | 21.26 |
虾壳[ | 热解 | 400 | KOH | 700 | — | 4.20 | — | 23 |
荷叶[ | 热解 | 500 | NaNH2 | 450~550 | NaNH2 | 3.5 | 0.82 | 21 |
榛子壳[ | 热解 | 500 | NaNH2 | 500~600 | NaNH2 | 4.23 | 1.00 | 17 |
菱角壳[ | 热解 | 500 | KOH | 550~650 | 硫脲 | 4.34 | 0.89 | 22 |
玉米芯[ | — | 700 | — | — | PEI | 4.75(20℃) | 2.6~2.7 | — |
莲杆[ | 热解 | 1000 | K2CO3/KHCO3 | 80 | — | — | — | — |
甘蔗渣[ | 热解 | 600 | KOH | 600 | 尿素 | 4.8 | — | 22 |
水热炭化 | 240 | KOH | 800 | 乙酸 | 4.47 | — | 21.5 | |
稻壳[ | — | 520 | KOH | 710 | — | 4.16 | — | — |
— | 200 | KOH | 700 | PEI | 4.50 | — | — | |
藻类[ | 热解 | 400~800 | KOH | 400~800 | — | 0.37~1.05 | — | — |
热解 | 800 | KOH | 600 | 尿素 | 3.44 | — | — | |
热解 | 800 | KOH | 600 | 尿素 | 3.94 | — | — | |
椰子壳[ | 热解 | 500 | KOH | 600 | — | 4.23 | — | — |
热解 | 800 | CO2 | 800 | — | 3.90 | — | — | |
热解 | 500 | K2CO3 | 600 | 尿素 | 4.70 | — | 11 | |
热解 | 500 | KOH | 650 | 尿素 | 4.80 | — | 15 | |
热解 | 500 | KOH | 650 | 氨 | 4.26 | — | — | |
PET废塑料[ | 热解 | 700 | KOH | 700 | — | — | 2.31 | — |
热解 | 600 | KOH | 700 | — | 4.42 | 3.31 | 14 | |
热解 | 600 | KOH | 700 | 尿素 | 4.58 | 3.51 | 19 | |
热解 | 600 | CO2 | 900 | — | 3.63 | 2.68 | — |
材料 | 孔隙形状 | 表面化学组成 | 模拟方法 | 相互作用势 | 模拟条件 | 参考文献 |
---|---|---|---|---|---|---|
多孔炭 | 多孔材料 | 氢、羟基团、醚、酯 | GCMC | Compass | 298K | [ |
石墨层 | 狭缝型孔隙 | 吡啶N、羧基团 | GCMC | Lennard-Jones | 273~304K | [ |
多孔炭 | 纳米管 | 羧基团 | GCMC | Lennard-Jones | 119.8K | [ |
多孔炭 | 蜂窝状 | C-H group | GCMC | Lennard-Jones | 318.15K | [ |
多孔炭 | 纳米管 | — | GCMC | Lennard-Jones | 300K | [ |
煤炭 | 层状堆叠 | — | MD | GROMOS | 312~394K | [ |
多孔炭 | 多孔球 | — | GCMC | Lennard-Jones | — | [ |
多孔炭 | 片状 | 硫、氮掺杂 | MD | CVFF | 365K | [ |
石墨烯层 | 狭缝型纳米孔隙 | — | MD | Lennard-Jones | 353~413K | [ |
多孔炭 | 纳米管 | 羧、羰、羟基团 | GCMC | Lennard-Jones; Coulomb | 298K | [ |
煤炭 | 多孔材料 | 硫、氮掺杂 | MD | Lennard-Jones | 298K,313K,373K | [ |
多孔炭 | 纳米管 | 氢、羟、胺、羧基团 | GCMC | Lennard-Jones;Columbic | 298K,313K,373K | [ |
表2 多孔炭及其表面改性材料分子模型
材料 | 孔隙形状 | 表面化学组成 | 模拟方法 | 相互作用势 | 模拟条件 | 参考文献 |
---|---|---|---|---|---|---|
多孔炭 | 多孔材料 | 氢、羟基团、醚、酯 | GCMC | Compass | 298K | [ |
石墨层 | 狭缝型孔隙 | 吡啶N、羧基团 | GCMC | Lennard-Jones | 273~304K | [ |
多孔炭 | 纳米管 | 羧基团 | GCMC | Lennard-Jones | 119.8K | [ |
多孔炭 | 蜂窝状 | C-H group | GCMC | Lennard-Jones | 318.15K | [ |
多孔炭 | 纳米管 | — | GCMC | Lennard-Jones | 300K | [ |
煤炭 | 层状堆叠 | — | MD | GROMOS | 312~394K | [ |
多孔炭 | 多孔球 | — | GCMC | Lennard-Jones | — | [ |
多孔炭 | 片状 | 硫、氮掺杂 | MD | CVFF | 365K | [ |
石墨烯层 | 狭缝型纳米孔隙 | — | MD | Lennard-Jones | 353~413K | [ |
多孔炭 | 纳米管 | 羧、羰、羟基团 | GCMC | Lennard-Jones; Coulomb | 298K | [ |
煤炭 | 多孔材料 | 硫、氮掺杂 | MD | Lennard-Jones | 298K,313K,373K | [ |
多孔炭 | 纳米管 | 氢、羟、胺、羧基团 | GCMC | Lennard-Jones;Columbic | 298K,313K,373K | [ |
材料 | 表面化学组成 | 模拟方法 | CO2吸附能/kJ·mol-1 | 机制 | 参考文献 |
---|---|---|---|---|---|
多孔炭 | N/O共掺杂 | DFT | -29.34 | 氮氧协同增加表面吸附的范德华作用 | [ |
多孔炭球 | N掺杂、O掺杂 | DFT | -21.5 | 氧掺杂表面亲和力比氮掺杂表面亲和力弱 | [ |
石墨层 | N、P、S、O掺杂 | DFT/GCMC | -34.42 | 表面极性官能团的氢键相互作用增强CO2吸附性能 | [ |
C9N7 | N掺杂 | DFT/GCMC | -26.32 | 层间距与CO2吸附性能相关 | [ |
多孔炭 | Co掺杂、吡咯掺杂 | DFT | -21.4 | 表面与CO2没有明显电荷转移,阐明物理吸附机制 | [ |
多孔炭 | N/O共掺杂 | DFT/GCMC | -35.1 | 高氧含量表面掺杂氮增强静电相互作用 | [ |
C3N | B掺杂、P掺杂 | DFT | -30.53 | 磷掺杂表面的异质电荷密度分布和C、P原子的p轨道杂化 | [ |
石墨炔 | Sc掺杂、Cr掺杂 | DFT | -23.23 | 多金属共修饰的石墨炔具有协同作用 | [ |
多孔炭 | N/O共掺杂 | GCMC | -39.4 | 孔径增大和氮氧掺杂增强CO2吸附性能 | [ |
石墨烯 | N掺杂 | DFT | -34.75 | 负电荷密度增强氮掺杂表面的相互作用 | [ |
表3 MD/DFT模拟对多孔炭CO2吸附机制
材料 | 表面化学组成 | 模拟方法 | CO2吸附能/kJ·mol-1 | 机制 | 参考文献 |
---|---|---|---|---|---|
多孔炭 | N/O共掺杂 | DFT | -29.34 | 氮氧协同增加表面吸附的范德华作用 | [ |
多孔炭球 | N掺杂、O掺杂 | DFT | -21.5 | 氧掺杂表面亲和力比氮掺杂表面亲和力弱 | [ |
石墨层 | N、P、S、O掺杂 | DFT/GCMC | -34.42 | 表面极性官能团的氢键相互作用增强CO2吸附性能 | [ |
C9N7 | N掺杂 | DFT/GCMC | -26.32 | 层间距与CO2吸附性能相关 | [ |
多孔炭 | Co掺杂、吡咯掺杂 | DFT | -21.4 | 表面与CO2没有明显电荷转移,阐明物理吸附机制 | [ |
多孔炭 | N/O共掺杂 | DFT/GCMC | -35.1 | 高氧含量表面掺杂氮增强静电相互作用 | [ |
C3N | B掺杂、P掺杂 | DFT | -30.53 | 磷掺杂表面的异质电荷密度分布和C、P原子的p轨道杂化 | [ |
石墨炔 | Sc掺杂、Cr掺杂 | DFT | -23.23 | 多金属共修饰的石墨炔具有协同作用 | [ |
多孔炭 | N/O共掺杂 | GCMC | -39.4 | 孔径增大和氮氧掺杂增强CO2吸附性能 | [ |
石墨烯 | N掺杂 | DFT | -34.75 | 负电荷密度增强氮掺杂表面的相互作用 | [ |
年份 | 吸附剂类型 | 输入特征 | 预测指标 | 算法 | 数据集大小 | 预测效果 |
---|---|---|---|---|---|---|
2018[ | AC | T、P、比表面积、孔体积 | CO2吸附量 | LSSVM | 104 | R2>0.89 |
2019[ | PC | Sbet、Vmicro、Vmeso、Vtotal、T、P | CO2吸附量 | ANN | 1000 | R2>0.9 |
2019[ | PC | Sbet、Vmicro、Vmeso、T、P | CO2、N2吸附量 | ANN | 1138 | R2=0.96 |
2019[ | AC | 比表面积、Vmicro、T、P | CO2, CH4, N2及其混合物吸附量 | ANN | 40~417 | R2>0.99 |
2020[ | PC | N2等温线、T、P | CO2 、N2吸附量 | CNN | 679 | — |
2020[ | BWDPC | C、N、O、H、T、P、Sbet、Vmicro、Vmeso、Vultra | CO2吸附量 | RF | 6244 | 0.43(省略 k) |
2020[ | AC | P、T | CH4、CO2、N2吸附量 | ANN | — | R2=0.997~0.999 |
2020[ | 水炭、热解炭 | C、H、N、O、FC、A、V、tH、TH、CW、TP、PHR、tP | HHV、ER、ED | SVM | 248 | R2=0.90,0.94 |
2021[ | BWDPC | Sbet、Vtotal、Vmicro、C、O、H、N、T、P | CO2吸附量 | GBDT | 527 | R2=0.84 |
2021[ | BWDPC | 碳前体、活化剂、TP、孔体积、P、T | 比表面积、CO2吸附量 | ANN | 421 | R2>0.99 |
2022[ | AC、碳分子筛 | P、T、吸附剂类型(等温线数据) | N2、N2O、O2吸附量 | ANN | 1242 | R2=0.993~0.996 |
2022[ | AC、沸石 | P、(303K) | Ar, Xe, Kr, O2吸附量 | ANN | 1400 | R2=0.9978~0.9998 |
2022[ | BWDPC | Vmicro、Vmeso、Sbet、T、P | CO2吸附量 | ANN | 500 | 0.43(省略 k) |
2023[ | 生物炭 | TP、C、H、O、N、Sbet、Vtotal、Vmicro | CO2吸附量 | LGBM | 334 | R2=0.94 |
2023[ | PC | Vtotal、Vmicro、Vultra、Sbet、O、N、T、P | CO2吸附量 | RF | 1594 | R2>0.97 |
表4 近年碳基CO2吸附剂的ML模型
年份 | 吸附剂类型 | 输入特征 | 预测指标 | 算法 | 数据集大小 | 预测效果 |
---|---|---|---|---|---|---|
2018[ | AC | T、P、比表面积、孔体积 | CO2吸附量 | LSSVM | 104 | R2>0.89 |
2019[ | PC | Sbet、Vmicro、Vmeso、Vtotal、T、P | CO2吸附量 | ANN | 1000 | R2>0.9 |
2019[ | PC | Sbet、Vmicro、Vmeso、T、P | CO2、N2吸附量 | ANN | 1138 | R2=0.96 |
2019[ | AC | 比表面积、Vmicro、T、P | CO2, CH4, N2及其混合物吸附量 | ANN | 40~417 | R2>0.99 |
2020[ | PC | N2等温线、T、P | CO2 、N2吸附量 | CNN | 679 | — |
2020[ | BWDPC | C、N、O、H、T、P、Sbet、Vmicro、Vmeso、Vultra | CO2吸附量 | RF | 6244 | 0.43(省略 k) |
2020[ | AC | P、T | CH4、CO2、N2吸附量 | ANN | — | R2=0.997~0.999 |
2020[ | 水炭、热解炭 | C、H、N、O、FC、A、V、tH、TH、CW、TP、PHR、tP | HHV、ER、ED | SVM | 248 | R2=0.90,0.94 |
2021[ | BWDPC | Sbet、Vtotal、Vmicro、C、O、H、N、T、P | CO2吸附量 | GBDT | 527 | R2=0.84 |
2021[ | BWDPC | 碳前体、活化剂、TP、孔体积、P、T | 比表面积、CO2吸附量 | ANN | 421 | R2>0.99 |
2022[ | AC、碳分子筛 | P、T、吸附剂类型(等温线数据) | N2、N2O、O2吸附量 | ANN | 1242 | R2=0.993~0.996 |
2022[ | AC、沸石 | P、(303K) | Ar, Xe, Kr, O2吸附量 | ANN | 1400 | R2=0.9978~0.9998 |
2022[ | BWDPC | Vmicro、Vmeso、Sbet、T、P | CO2吸附量 | ANN | 500 | 0.43(省略 k) |
2023[ | 生物炭 | TP、C、H、O、N、Sbet、Vtotal、Vmicro | CO2吸附量 | LGBM | 334 | R2=0.94 |
2023[ | PC | Vtotal、Vmicro、Vultra、Sbet、O、N、T、P | CO2吸附量 | RF | 1594 | R2>0.97 |
1 | CAROLINA COLL, GIBBINS JON, SIGURD HEIBERG, et al. Carbon carpture, use and storage (CCUS)[R]. New York: United Nations Economic Commission for Europe (UNECE), 2021. |
2 | Mara OLIVARES-MARÍN, Mercedes MAROTO-VALER M. Development of adsorbents for CO2 capture from waste materials: A review[J]. Greenhouse Gases: Science and Technology, 2012, 2(1): 20-35. |
3 | WANG Junya, HUANG Liang, YANG Ruoyan, et al. Recent advances in solid sorbents for CO2 capture and new development trends[J]. Energy & Environmental Science, 2014, 7(11): 3478-3518. |
4 | WANG Qiang, LUO Jizhong, ZHONG Ziyi, et al. CO2 capture by solid adsorbents and their applications: Current status and new trends[J]. Energy & Environmental Science, 2011, 4(1): 42-55. |
5 | YUAN Xiangzhou, LEE Jong Gyu, YUN Heesun, et al. Solving two environmental issues simultaneously: Waste polyethylene terephthalate plastic bottle-derived microporous carbons for capturing CO2 [J]. Chemical Engineering Journal, 2020, 397: 125350. |
6 | KAZA Silpa, YAO Lisa, Perinaz BHADA-TATA, et al. What a waste 2.0: A global snapshot of solid waste management to 2050[M]. Washington, DC: World Bank, 2018. |
7 | YOU Siming, SONNE Christian, Yong Sik OK. COVID-19’s unsustainable waste management[J]. Science, 2020, 368(6498): 1438. |
8 | SINGH Gurwinder, LAKHI Kripal S, Sanchita SIL, et al. Biomass derived porous carbon for CO2 capture[J]. Carbon, 2019, 148: 164-186. |
9 | LI Shuangjun, YUAN Xiangzhou, DENG Shuai, et al. A review on biomass-derived CO2 adsorption capture: Adsorbent, adsorber, adsorption, and advice[J]. Renewable and Sustainable Energy Reviews, 2021, 152: 111708. |
10 | YUAN Xiangzhou, WANG Junyao, DENG Shuai, et al. Recent advancements in sustainable upcycling of solid waste into porous carbons for carbon dioxide capture[J]. Renewable and Sustainable Energy Reviews, 2022, 162: 112413. |
11 | YUAN Xiangzhou, DISSANAYAKE Pavani Dulanja, GAO Bin, et al. Review on upgrading organic waste to value-added carbon materials for energy and environmental applications[J]. Journal of Environmental Management, 2021, 296: 113128. |
12 | DANISH Mohammed, AHMAD Tanweer. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application[J]. Renewable and Sustainable Energy Reviews, 2018, 87: 1-21. |
13 | Jin Sun CHA, PARK Sung Hoon, JUNG Sang-Chul, et al. Production and utilization of biochar: A review[J]. Journal of Industrial and Engineering Chemistry, 2016, 40: 1-15. |
14 | WEI Lu, SEVILLA Marta, FUERTES Antonio B, et al. Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes[J]. Advanced Energy Materials, 2011, 1(3): 356-361. |
15 | GONZÁLEZ-GARCÍA P. Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 1393-1414. |
16 | YUAN Xiangzhou, LI Shuangjun, JEON Sunbin, et al. Valorization of waste polyethylene terephthalate plastic into N-doped microporous carbon for CO2 capture through a one-pot synthesis[J]. Journal of Hazardous Materials, 2020, 399: 123010. |
17 | THINES K R, ABDULLAH E C, MUBARAK N M, et al. Synthesis of magnetic biochar from agricultural waste biomass to enhancing route for waste water and polymer application: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 257-276. |
18 | YUAN Xiangzhou, SUVARNA Manu, Sean LOW, et al. Applied machine learning for prediction of CO2 adsorption on biomass waste-derived porous carbons[J]. Environmental Science & Technology, 2021, 55(17): 11925-11936. |
19 | NAZIR Ghazanfar, REHMAN Adeela, PARK Soo-Jin. Role of heteroatoms (nitrogen and sulfur)-dual doped corn-starch based porous carbons for selective CO2 adsorption and separation[J]. Journal of CO2 Utilization, 2021, 51: 101641. |
20 | REHMAN Adeela, NAZIR Ghazanfar, RHEE Kyong YOP, et al. A rational design of cellulose-based heteroatom-doped porous carbons: Promising contenders for CO2 adsorption and separation[J]. Chemical Engineering Journal, 2021, 420: 130421. |
21 | LAHIJANI Pooya, MOHAMMADI Maedeh, MOHAMED Abdul Rahman. Metal incorporated biochar as a potential adsorbent for high capacity CO2 capture at ambient condition[J]. Journal of CO2 Utilization, 2018, 26: 281-293. |
22 | Pennline H W. Sorbent research for the capture of carbon dioxide[R]. Pittsburgh: National Energy Technology Laboratory (NETL), 2016. |
23 | YUAN Xiangzhou, KUMAR Nallapaneni Manoj, Boris BRIGLJEVIĆ, et al. Sustainability-inspired upcycling of waste polyethylene terephthalate plastic into porous carbon for CO2 capture[J]. Green Chemistry, 2022, 24(4): 1494-1504. |
24 | RAGANATI Federica, CHIRONE Riccardo, AMMENDOLA Paola. CO2 capture by temperature swing adsorption: Working capacity As affected by temperature and CO2 partial pressure[J]. Industrial & Engineering Chemistry Research, 2020, 59(8): 3593-3605. |
25 | MALLESH D, ANBARASAN J, Mahesh KUMAR P, et al. Synthesis, characterization of carbon adsorbents derived from waste biomass and its application to CO2 capture[J]. Applied Surface Science, 2020, 530: 147226. |
26 | PLAZA M G, GONZÁLEZ A S, PEVIDA C, et al. Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications[J]. Applied Energy, 2012, 99: 272-279. |
27 | 朱梦媛. 菠萝废弃物基活性炭的制备及其低温CO2吸附性能[D]. 武汉: 武汉理工大学, 2019. |
ZHU Mengyuan. Preparation of pineapple waste-based activated carbon and its low-temperature CO2 adsorption performance[D]. Wuhan: Wuhan University of Technology, 2019. | |
28 | YUE Limin, RAO Linli, WANG Liwei, et al. Efficient CO2 capture by nitrogen-doped biocarbons derived from rotten strawberries[J]. Industrial & Engineering Chemistry Research, 2017, 56(47): 14115-14122. |
29 | COROMINA Helena Matabosch, WALSH Darren A, MOKAYA Robert. Biomass-derived activated carbon with simultaneously enhanced CO2 uptake for both pre and post combustion capture applications[J]. Journal of Materials Chemistry A, 2016, 4(1): 280-289. |
30 | 俞泽涛, 曾光华, 周雅彬, 等. 中药固废制备多孔碳及其CO2吸附性能[J]. 洁净煤技术, 2022, 28(10): 203-211. |
YU Zetao, ZENG Guanghua, ZHOU Yabin, et al. Preparation of porous carbon from solid waste of traditional Chinese medicine and its CO2 adsorption performance[J]. Clean Coal Technology, 2022, 28(10): 203-211. | |
31 | YANG Fangqi, WANG Jun, LIU Lu, et al. Synthesis of porous carbons with high N-content from shrimp shells for efficient CO2-capture and gas separation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15550-15559. |
32 | 刘沈芳. 生物质基氮掺杂多孔炭用于CO2吸附和超级电容器电极的研究[D]. 金华: 浙江师范大学, 2021. |
LIU Shenfang. Study on biomass-based nitrogen-doped porous carbon for CO2 adsorption and supercapacitor electrode[D]. Jinhua: Zhejiang Normal University, 2021. | |
33 | 刘清涛. PEI改性生物炭的制备及对CO2吸附性能的评价[J]. 环境科学学报, 2021, 41(3): 932-939. |
LIU Qingtao. Preparation of PEI-modified biochar and evaluation of its CO2 adsorption performance[J]. Acta Scientiae Circumstantiae, 2021, 41(3): 932-939. | |
34 | 邓淋, 俞倩倩. 莲杆基生物炭吸附CO2的性能研究[J]. 化工技术与开发, 2021, 50(4): 42-45. |
DENG Lin, YU Qianqian. Study on CO2 adsorption performance of sugarcane-based activated carbon[J]. Technology & Development of Chemical Industry, 2021, 50(4): 42-45. | |
35 | 张莉. 甘蔗渣活性炭的制备及其CO2吸附性能研究[D]. 武汉: 武汉科技大学, 2019. |
ZHANG Li. Study on preparation of bagasse activated carbon and its CO2 adsorption performance[D].Wuhan: Wuhan University of Science and Technology, 2019. | |
36 | LI Dawei, MA Tengfei, ZHANG Ruliang, et al. Preparation of porous carbons with high low-pressure CO2 uptake by KOH activation of rice husk char[J]. Fuel, 2015, 139: 68-70. |
37 | LIU Xin, SUN Chenggong, LIU Hao, et al. Developing hierarchically ultra-micro/mesoporous biocarbons for highly selective carbon dioxide adsorption[J]. Chemical Engineering Journal, 2019, 361: 199-208. |
38 | 丁帅. 改性海藻焦吸附脱除烟气中二氧化碳的研究[D]. 镇江: 江苏大学, 2020. |
DING Shuai. Study on adsorption and removal of carbon dioxide from flue gas by modified seaweed coke[D].Zhenjiang: Jiangsu University, 2020. | |
39 | 石硕. 藻基多孔生物炭的制备及其吸附烟气中CO2的研究[D]. 镇江: 江苏大学, 2021. |
SHI Shuo. Study on preparation of algae-based porous biochar and its adsorption of CO2 in flue gas[D]. Zhenjiang: Jiangsu University, 2021. | |
40 | YANG Jie, YUE Limin, HU Xin, et al. Efficient CO2 capture by porous carbons derived from coconut shell[J]. Energy & Fuels, 2017, 31(4): 4287-4293. |
41 | ELLO Aimé Serge, DE SOUZA Luiz K C, TROKOUREY Albert, et al. Coconut shell-based microporous carbons for CO2 capture[J]. Microporous and Mesoporous Materials, 2013, 180: 280-283. |
42 | YUE Limin, XIA Qiongzhang, WANG Liwei, et al. CO2 adsorption at nitrogen-doped carbons prepared by K2CO3 activation of urea-modified coconut shell[J]. Journal of Colloid and Interface Science, 2018, 511: 259-267. |
43 | CHEN Jie, YANG Jie, HU Gengshen, et al. Enhanced CO2 capture capacity of nitrogen-doped biomass-derived porous carbons[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1439-1445. |
44 | YANG Mingli, GUO Liping, HU Gengshen, et al. Highly cost-effective nitrogen-doped porous coconut shell-based CO2 sorbent synthesized by combining ammoxidation with KOH activation[J]. Environmental Science & Technology, 2015, 49(11): 7063-7070. |
45 | KAUR Balpreet, SINGH Jasminder, GUPTA Raj Kumar, et al. Porous carbons derived from polyethylene terephthalate (PET) waste for CO2 capture studies[J]. Journal of Environmental Management, 2019, 242: 68-80. |
46 | ZHAO Yunfeng, LIU Xin, HAN Yu. Microporous carbonaceous adsorbents for CO2 separation via selective adsorption[J]. RSC Advances, 2015, 5(38): 30310-30330. |
47 | LI Jiaxin, MICHALKIEWICZ Beata, MIN Jiakang, et al. Selective preparation of biomass-derived porous carbon with controllable pore sizes toward highly efficient CO2 capture[J]. Chemical Engineering Journal, 2019, 360: 250-259. |
48 | ZHAO Jie, DENG S, ZHAO Li, et al. Synergistic and competitive effect of H2O on CO2 adsorption capture: Mechanism explanations based on molecular dynamic simulation[J]. Journal of CO2 Utilization, 2021, 52: 101662. |
49 | HORSTMEIER J F, GOMEZ LOPEZ A, AGAR D W. Performance improvement of vacuum swing adsorption processes for CO2 removal with integrated phase change material[J]. International Journal of Greenhouse Gas Control, 2016, 47: 364-375. |
50 | BAHAMON Daniel, OGUNGBENRO Adetola E, KHALEEL Maryam, et al. Performance of activated carbons derived from date seeds in CO2 swing adsorption determined by combining experimental and molecular simulation data[J]. Industrial & Engineering Chemistry Research, 2020, 59(15): 7161-7173. |
51 | QUEREJETA N, GARCÍA S, ÁLVAREZ-GUTIÉRREZ N, et al. Measuring heat capacity of activated carbons for CO2 capture[J]. Journal of CO2 Utilization, 2019, 33: 148-156. |
52 | UDDIN Kutub, ISLAM Md Amirul, MITRA Sourav, et al. Specific heat capacities of carbon-based adsorbents for adsorption heat pump application[J]. Applied Thermal Engineering, 2018, 129: 117-126. |
53 | GUO Bo, CHANG Liping, XIE Kechang. Adsorption of carbon dioxide on activated carbon[J]. Journal of Natural Gas Chemistry, 2006, 15(3): 223-229. |
54 | 姚晨牧, 冯丽, 安亚雄, 等. 碳材料的分子模型及模拟方法在吸附中应用的研究进展[J]. 天然气化工(C1化学与化工), 2021, 46(S1): 1-9. |
YAO Chenmu, FENG Li, AN Yaxiong, et al. Research progress of molecular model and simulation method of carbon materials in adsorption application[J]. Natural Gas Chemical Industry, 2021, 46(S1): 1-9. | |
55 | TENNEY C M, LASTOSKIE C M. Molecular simulation of carbon dioxide adsorption in chemically and structurally heterogeneous porous carbons[J]. Environmental Progress, 2006, 25(4): 343-354. |
56 | MADDOX M, ULBERG D, GUBBINS K E. Molecular simulation of simple fluids and water in porous carbons[J]. Fluid Phase Equilibria, 1995, 104: 145-158. |
57 | BILLEMONT Pierre, COASNE Benoit, DE WEIRELD Guy. Adsorption of carbon dioxide, methane, and their mixtures in porous carbons: Effect of surface chemistry, water content, and pore disorder[J]. Langmuir, 2013, 29(10): 3328-3338. |
58 | LIU Lang, NICHOLSON David, BHATIA Suresh K. Adsorption of CH4 and CH4/CO2 mixtures in carbon nanotubes and disordered carbons: A molecular simulation study[J]. Chemical Engineering Science, 2015, 121: 268-278. |
59 | ZHANG Junfang, LIU Keyu, CLENNELL M B, et al. Molecular simulation of CO2-CH4 competitive adsorption and induced coal swelling[J]. Fuel, 2015, 160: 309-317. |
60 | PALMER Jeremy C, MOORE Joshua D, ROUSSEL Thomas J, et al. Adsorptive behavior of CO2, CH4 and their mixtures in carbon nanospace: A molecular simulation study[J]. Physical Chemistry Chemical Physics, 2011, 13(9): 3985-3996. |
61 | MICHALEC Lukáš, Martin LÍSAL. Molecular simulation of shale gas adsorption onto overmature type Ⅱ model kerogen with control microporosity[J]. Molecular Physics, 2017, 115(9/10/11/12): 1086-1103. |
62 | WANG Sen, JAVADPOUR Farzam, FENG Qihong. Fast mass transport of oil and supercritical carbon dioxide through organic nanopores in shale[J]. Fuel, 2016, 181: 741-758. |
63 | SIZOVA Anastasia A, SIZOV Vladimir V, BRODSKAYA Elena N. Adsorption of CO2/CH4 and CO2/N2 mixtures in SBA-15 and CMK-5 in the presence of water: A computer simulation study[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 474: 76-84. |
64 | DANG Yong, ZHAO Lianming, LU Xiaoqing, et al. Molecular simulation of CO2/CH4 adsorption in brown coal: Effect of oxygen-, nitrogen-, and sulfur-containing functional groups[J]. Applied Surface Science, 2017, 423: 33-42. |
65 | LU Xiaoqing, JIN Dongliang, WEI Shuxian, et al. Competitive adsorption of a binary CO2-CH4 mixture in nanoporous carbons: Effects of edge-functionalization[J]. Nanoscale, 2015, 7(3): 1002-1012. |
66 | WANG Yanxia, HU Xiude, HAO Jian, et al. Nitrogen and oxygen codoped porous carbon with superior CO2 adsorption performance: A combined experimental and DFT calculation study[J]. Industrial & Engineering Chemistry Research, 2019, 58(29): 13390-13400. |
67 | WU Dawei, YANG Yingju, LIU Jing, et al. Plasma-modified N/O-doped porous carbon for CO2 capture: An experimental and theoretical study[J]. Energy & Fuels, 2020, 34(5): 6077-6084. |
68 | CHEN Hongyu, GUO Yang, DU Yankun, et al. The synergistic effects of surface functional groups and pore sizes on CO2 adsorption by GCMC and DFT simulations[J]. Chemical Engineering Journal, 2021, 415: 128824. |
69 | LIU Zilong, LI Xue, SHI Di, et al. Superior selective CO2 adsorption and separation over N2 and CH4 of porous carbon nitride nanosheets: Insights from GCMC and DFT simulations[J]. Langmuir, 2023, 39(18): 6613-6622. |
70 | WU Dawei, LIU Jing, YANG Yingju, et al. Nitrogen/oxygen co-doped porous carbon derived from biomass for low-pressure CO2 capture[J]. Industrial & Engineering Chemistry Research, 2020, 59(31): 14055-14063. |
71 | MA Xiancheng, LI Liqing, ZENG Zheng, et al. Experimental and theoretical demonstration of the relative effects of O-doping and N-doping in porous carbons for CO2 capture[J]. Applied Surface Science, 2019, 481: 1139-1147. |
72 | LI Xiaofang, YIN Yingying, CHANG Xiao, et al. Doping-induced enhancement of CO2 adsorption on negatively charged C3N nanosheet: Insights from DFT calculations[J]. Chemical Engineering Journal, 2020, 387: 123403. |
73 | DARVISHNEJAD Mohammad Hossein, Adel REISI-VANANI. Synergetic effects of metals in graphyne 2D carbon structure for high promotion of CO2 capturing[J]. Chemical Engineering Journal, 2021, 406: 126749. |
74 | MA Xiancheng, SU Changqing, LIU Baogen, et al. Heteroatom-doped porous carbons exhibit superior CO2 capture and CO2/N2 selectivity: Understanding the contribution of functional groups and pore structure[J]. Separation and Purification Technology, 2021, 259: 118065. |
75 | SATHISHKUMAR Nadaraj, WU Shiuan-Yau, CHEN Hsin-Tsung. Charge-modulated/electric-field controlled reversible CO2/H2 capture and storage on metal-free N-doped penta-graphene[J]. Chemical Engineering Journal, 2020, 391: 123577. |
76 | 周逸寰, 解强, 周红阳, 等. 基于分子模拟的多孔炭材料结构模型构建方法研究进展[J]. 化工进展, 2024, 43(3): 1535-1551. |
ZHOU Yihuan, XIE Qiang, ZHOU Hongyang, et al. Modeling of porous carbon materials based on molecular simulation: State-of-the art[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1535-1551. | |
77 | LI Jiali, Kaizhuo LIM, YANG Haitao, et al. AI applications through the whole life cycle of material discovery[J]. Matter, 2020, 3(2): 393-432. |
78 | 张子杭, 许丹, 胡艳军, 等. 机器学习在有机固废全链条处置中的应用进展[J]. 能源环境保护, 2023, 37(1): 184-193. |
ZHANG Zihang, XU Dan, HU Yanjun, et al. Application progress of machine learning in whole chain disposal of organic solid waste[J]. Energy Environmental Protection, 2023, 37(1): 184-193. | |
79 | WANG Song, ZHANG Zihao, DAI Sheng, et al. Insights into CO2/N2 selectivity in porous carbons from deep learning[J]. ACS Materials Letters, 2019, 1(5): 558-563. |
80 | WANG Song, LI Yi, DAI Sheng, et al. Prediction by convolutional neural networks of CO2/N2 selectivity in porous carbons from N2 adsorption isotherm at 77K[J]. Angewandte Chemie International Edition, 2020, 59(44): 19645-19648. |
81 | ZHOU Liang. Prediction of CO2 adsorption on different activated carbons by hybrid group method of data-handling networks and LSSVM[J]. Energy Sources A: Recovery, Utilization, and Environmental Effects, 2019, 41(16): 1960-1971. |
82 | ZHANG Zihao, SCHOTT Jennifer A, LIU Miaomiao, et al. Prediction of carbon dioxide adsorption via deep learning[J]. Angewandte Chemie International Edition, 2019, 58(1): 259-263. |
83 | BARKI Hadjer, KHAOUANE Latifa, HANINI Salah. Modelling of adsorption of methane, nitrogen, carbon dioxide, their binary mixtures, and their ternary mixture on activated carbons using artificial neural network[J]. Kemija u Industriji, 2019, 68(7/8): 289-302. |
84 | ZHU Xinzhe, TSANG Daniel C W, WANG Lei, et al. Machine learning exploration of the critical factors for CO2 adsorption capacity on porous carbon materials at different pressures[J]. Journal of Cleaner Production, 2020, 273: 122915. |
85 | GHALANDARI Vahab, HASHEMIPOUR Hassan, BAGHERI Hamidreza. Experimental and modeling investigation of adsorption equilibrium of CH4, CO2, and N2 on activated carbon and prediction of multi-component adsorption equilibrium[J]. Fluid Phase Equilibria, 2020, 508: 112433. |
86 | LI Jie, PAN Lanjia, SUVARNA Manu, et al. Fuel properties of hydrochar and pyrochar: Prediction and exploration with machine learning[J]. Applied Energy, 2020, 269: 115166. |
87 | HOSSEIN Mashhadimoslem, MILAD Vafaeinia, MOBIN Safarzadeh, et al. Development of predictive models for activated carbon synthesis from different biomass for CO2 adsorption using artificial neural networks[J]. Industrial & Engineering Chemistry Research, 2021, 60(38): 13950-13966. |
88 | Mashhadimoslem Hossein, Ghaemi Ahad. Machine learning analysis and prediction of N2, N2O, and O2 adsorption on activated carbon and carbon molecular sieve[J]. Environmental Science and Pollution Research, 2023, 30(2): 4166-4186. |
89 | Somayeh Kolbadinejad, Hossein Mashhadimoslem, Ahad Ghaemi, et al. Deep learning analysis of Ar, Xe, Kr, and O2 adsorption on Activated Carbon and Zeolites using ANN approach[J]. Chemical Engineering and Processing:Process Intensification, 2022, 170: 108662. |
90 | PALLE Kishor, VUNGUTURI Shanthi, GAYATRI Sambhani Naga, et al. The prediction of CO2 adsorption on rice husk activated carbons via deep learning neural network[J]. MRS Communications, 2022, 12(4): 434-440. |
91 | 陈一飞, 张晓晴, 谭康豪, 等. 基于机器学习的多孔生物炭吸附CO2性能预测[J]. 土木与环境工程学报(中英文). DOI:10.11835/j.issn.2096-6717.2023.060 . |
CHEN Yifei, ZHANG Xiaoqing, TAN Kanghao, et al. Prediction of CO2 adsorption performance in porous biochar based on machine learning[J]. Journal of Civil and Environmental Engineering. DOI:10.11835/j.issn.2096-6717.2023.060 . | |
92 | MA Xiancheng, XU Wenjun, SU Rongkui, et al. Insights into CO2 capture in porous carbons from machine learning, experiments and molecular simulation[J]. Separation and Purification Technology, 2023, 306: 122521. |
93 | 王璐, 张磊, 都健. 机器学习高效筛选用于CO2/N2选择性吸附分离的沸石材料[J]. 化工进展, 2023, 42(1): 148-158. |
WANG Lu, ZHANG Lei, DU Jian. Efficient screening of zeolite materials for selective adsorption and separation of CO2/N2 by machine learning[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 148-158. | |
94 | 姜明星, 王斯坦, 许端平. 基于机器学习的金属有机框架吸附水中重金属性能预测[J]. 中国环境科学, 2023, 43(5): 2319-2327. |
JIANG Mingxing, WANG Sitan, XU Duanping. Prediction of adsorption performance of MOFs for heavy metals in water based on machine learning[J]. China Environmental Science, 2023, 43(5): 2319-2327. | |
95 | 李炜, 梁添贵, 林元创, 等. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637. |
LI Wei, LIANG Tiangui, LIN Yuanchuang, et al. Machine learning accelerated high-throughput computational screening of metal-organic frameworks[J]. Progress in Chemistry, 2022, 34(12): 2619-2637. | |
96 | 杨潇. 用于化学战剂捕获的MOF吸附剂高通量分子模拟研究[D]. 广州: 广州大学, 2023. |
YANG Xiao. Study on high throughput molecular simulation of MOF adsorbent for chemical warfare agent capture[D]. Guangzhou: Guangzhou University, 2023. | |
97 | FANOURGAKIS George S, GKAGKAS Konstantinos, TYLIANAKIS Emmanuel, et al. A universal machine learning algorithm for large-scale screening of materials[J]. Journal of the American Chemical Society, 2020, 142(8): 3814-3822. |
98 | BORBOUDAKIS Giorgos, STERGIANNAKOS Taxiarchis, FRYSALI Maria, et al. Chemically intuited, large-scale screening of MOFs by machine learning techniques[J]. NPJ Computational Materials, 2017, 3: 40. |
99 | DU Zhenyu, DENG Shuai, ZHAO Li, et al. A high-throughput computational screening of potential adsorbents for a thermal compression CO2 Brayton cycle[J]. Sustainable Energy & Fuels, 2021, 5(5): 1415-1428. |
100 | LI Wei, XIA Xiaoxiao, LI Song. Screening of covalent-organic frameworks for adsorption heat pumps[J]. ACS Applied Materials & Interfaces, 2020, 12(2): 3265-3273. |
101 | 翟一杰, 张天祚, 申晓旭, 等. 生命周期评价方法研究进展[J]. 资源科学, 2021, 43(3): 446-455. |
ZHAI Yijie, ZHANG Tianzuo, SHEN Xiaoxu, et al. Development of life cycle assessment method[J]. Resources Science, 2021, 43(3): 446-455. | |
102 | 刘蔚, 毛开伟, 张廷军, 等. 生命周期评价体系的开发及其在生物质资源化领域的应用进展[J]. 环境工程, 2019, 37: 384-388. |
LIU Wei, MAO Kaiwei, ZHANG Tingjun, et al. Development of life cycle assessment and application in biomass resource recovery[J]. Environmental Engineering, 2019, 37:384-388. | |
103 | ARENA Noemi, LEE Jacquetta, CLIFT Roland. Life cycle assessment of activated carbon production from coconut shells[J]. Journal of Cleaner Production, 2016, 125: 68-77. |
104 | Darithsa LOYA-GONZÁLEZ, Margarita LOREDO-CANCINO, Eduardo SOTO-REGALADO, et al. Optimal activated carbon production from corn pericarp: A life cycle assessment approach[J]. Journal of Cleaner Production, 2019, 219: 316-325. |
105 | LEFEBVRE David, WILLIAMS Adrian, KIRK Guy J D, et al. An anticipatory life cycle assessment of the use of biochar from sugarcane residues as a greenhouse gas removal technology[J]. Journal of Cleaner Production, 2021, 312: 127764. |
106 | SEPÚLVEDA-CERVANTES Cynthia V, Eduardo SOTO-REGALADO, Pasiano RIVAS-GARCÍA, et al. Technical-environmental optimisation of the activated carbon production of an agroindustrial waste by means response surface and life cycle assessment[J]. Waste Management & Research: the Journal for a Sustainable Circular Economy, 2018, 36(2): 121-130. |
107 | 刘阳, 靳晨生, 张海亚, 等. 秸秆生物炭的固碳减排潜力及其环境影响[J]. 中国环境科学, 2024, 44(1): 396-403. |
LIU Yang, JIN Chensheng, ZHANG Haiya, et al. Carbon sequestration and emission reduction potential of straw biochar and its environmental impacts[J]. China Environmental Science, 2024, 44(1): 396-403. | |
108 | STRUHS Ethan, MIRKOUEI Amin, YOU Yaqi, et al. Techno-economic and environmental assessments for nutrient-rich biochar production from cattle manure: A case study in Idaho, USA[J]. Applied Energy, 2020, 279: 115782. |
109 | ZHU Xiefei, LABIANCA Claudia, HE Mingjing, et al. Life-cycle assessment of pyrolysis processes for sustainable production of biochar from agro-residues[J]. Bioresource Technology, 2022, 360: 127601. |
110 | LI Xianyue, WANG Rongchen, SHAO Chenyang, et al. Biochar and hydrochar from agricultural residues for soil conditioning: Life cycle assessment and microbially mediated C and N cycles[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(11): 3574-3583. |
111 | HEIDARI Ava, KHAKI Eshagh, YOUNESI Habibollah, et al. Evaluation of fast and slow pyrolysis methods for bio-oil and activated carbon production from eucalyptus wastes using a life cycle assessment approach[J]. Journal of Cleaner Production, 2019, 241: 118394. |
112 | HERSH BENJAMIN, MIRKOUEI AMIN. Life cycle assessment of pyrolysis-derived biochar from organic wastes and advanced feedstocks[C]//Proceedings of ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, August 18-21, 2019, Anaheim, California, USA. 2019 |
113 | RAJABI HAMEDANI Sara, KUPPENS Tom, MALINA Robert, et al. Life cycle assessment and environmental valuation of biochar production: Two case studies in Belgium[J]. Energies, 2019, 12(11): 2166. |
114 | PIEROBON Francesca, EASTIN Ivan L, GANGULY Indroneil. Life cycle assessment of residual lignocellulosic biomass-based jet fuel with activated carbon and lignosulfonate as co-products[J]. Biotechnology for Biofuels, 2018, 11(1): 139. |
115 | YUAN Xiangzhou, WANG Junyao, DENG Shuai, et al. Sustainable food waste management: Synthesizing engineered biochar for CO2 capture[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(39): 13026-13036. |
116 | WANG Junyao, YUAN Xiangzhou, DENG Shuai, et al. Waste polyethylene terephthalate (PET) plastics-derived activated carbon for CO2 capture: A route to a closed carbon loop[J]. Green Chemistry, 2020, 22(20): 6836-6845. |
117 | DUTTA Baishali, RAGHAVAN Vijaya. A life cycle assessment of environmental and economic balance of biochar systems in Quebec[J]. International Journal of Energy and Environmental Engineering, 2014, 5(2): 106. |
118 | PUETTMANN Maureen, SAHOO Kamalakanta, WILSON Kelpie, et al. Life cycle assessment of biochar produced from forest residues using portable systems[J]. Journal of Cleaner Production, 2020, 250: 119564. |
119 | HAMMOND Jim, SHACKLEY Simon, SOHI Saran, et al. Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK[J]. Energy Policy, 2011, 39(5): 2646-2655. |
120 | TADELE Debela, ROY Poritosh, DEFERSHA Fantahun, et al. Life Cycle Assessment of renewable filler material (biochar) produced from perennial grass (Miscanthus) [J]. Aims Energy, 2019, 7(4): 430-440. |
121 | ROBERTS Kelli G, GLOY Brent A, JOSEPH Stephen, et al. Life cycle assessment of biochar systems: Estimating the energetic, economic, and climate change potential[J]. Environmental Science & Technology, 2010, 44(2): 827-833. |
122 | PAPAGEORGIOU Asterios, AZZI Elias S, ENELL Anja, et al. Biochar produced from wood waste for soil remediation in Sweden: Carbon sequestration and other environmental impacts[J]. The Science of the Total Environment, 2021, 776: 145953. |
123 | HJAILA K, BACCAR R, SARRÀ M, et al. Environmental impact associated with activated carbon preparation from olive-waste cake via life cycle assessment[J]. Journal of Environmental Management, 2013, 130: 242-247. |
[1] | 李美萱, 成建凤, 黄国勇, 徐盛明, 郁丰善, 翁雅青, 曹才放, 温嘉玮, 王俊莲, 王春霞, 顾斌涛, 张袁华, 刘斌, 王才平, 潘剑明, 徐泽良, 王翀, 王珂. 高电压镍锰酸锂正极材料的合成与电化学机理[J]. 化工进展, 2024, 43(9): 5086-5094. |
[2] | 王禹程, 郭雄, 栾昕奇, 周健, 李想, 幸林广, 周雪芸, 刘颖, 汪德勇, 吴雪娟, 潘琦, 刘建新, 赵祯霞, 赵钟兴. 维生素U生产工艺优化及其热分解机理[J]. 化工进展, 2024, 43(9): 5157-5167. |
[3] | 谢娟, 贺文, 赵勖丞, 李帅辉, 卢真真, 丁哲宇. 分子动力学模拟在沥青体系中的应用研究进展[J]. 化工进展, 2024, 43(8): 4432-4449. |
[4] | 怀立业, 仲兆平, 杨宇轩. 脱硫石膏转化α-半水石膏的特征及机理:实验与模拟[J]. 化工进展, 2024, 43(8): 4694-4703. |
[5] | 宋兴飞, 贾鑫, 安萍, 韩振南, 许光文. 热化学反应工程科学与技术发展与展望[J]. 化工进展, 2024, 43(7): 3513-3533. |
[6] | 张子杭, 王树荣. 生物质热解转化与产物低碳利用研究进展[J]. 化工进展, 2024, 43(7): 3692-3708. |
[7] | 刘克峰, 刘陶然, 蔡勇, 胡雪生, 董卫刚, 周华群, 高飞. 二氧化碳捕集技术研究和工程示范进展[J]. 化工进展, 2024, 43(6): 2901-2914. |
[8] | 智远, 马吉亮, 陈晓平, 刘道银, 梁财. 流化床喷雾浸渍制备负载型钠基CO2吸附剂脱碳性能[J]. 化工进展, 2024, 43(6): 2961-2967. |
[9] | 苗诒贺, 王耀祖, 刘雨杭, 朱炫灿, 李佳, 于立军. 添加剂改性固态胺吸附剂用于碳捕集的研究进展[J]. 化工进展, 2024, 43(5): 2739-2759. |
[10] | 解仲凯, 施伟东. 电荷极化光催化剂光转化二氧化碳制多碳化学品的研究进展[J]. 化工进展, 2024, 43(5): 2714-2722. |
[11] | 武西宁, 张宁, 秦佳敏, 徐龙, 魏朝阳, 马晓迅. 低冷量下强化CO2吸收的甲醇基纳米流体性能[J]. 化工进展, 2024, 43(5): 2811-2822. |
[12] | 李晶莹, 马龙飞, 张红娟, 潘一搏, 卢山, 徐龙, 马晓迅. 生命周期评价方法在医药领域的应用现状与研究进展[J]. 化工进展, 2024, 43(5): 2851-2861. |
[13] | 李晶莹, 马龙飞, 潘一搏, 卢山, 张红娟, 徐龙, 马晓迅. 焦炉煤气脱碳法及甲烷化法制液化天然气的生命周期环境影响分析[J]. 化工进展, 2024, 43(5): 2872-2879. |
[14] | 高凡翔, 刘阳, 张贵泉, 秦锋, 姚建涛, 金辉, 师进文. 燃煤烟气湿法协同脱硫脱碳技术研究进展[J]. 化工进展, 2024, 43(5): 2324-2342. |
[15] | 韩伟, 韩恒文, 程薇, 汤玮健. 碳中和目标驱动下生物质燃料技术研究进展[J]. 化工进展, 2024, 43(5): 2463-2474. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |