化工进展 ›› 2023, Vol. 42 ›› Issue (3): 1540-1550.DOI: 10.16085/j.issn.1000-6613.2022-2305
陈崇明1(), 曾四鸣1, 罗小娜2, 宋国升1, 韩忠阁1, 郁金星3(), 孙楠楠2
收稿日期:
2022-12-11
修回日期:
2023-02-09
出版日期:
2023-03-15
发布日期:
2023-04-10
通讯作者:
郁金星
作者简介:
陈崇明(1983—),男,高级工程师,研究方向为烟气污染物治理技术。E-mail:dyy_chencm@163.com。
基金资助:
CHEN Chongming1(), ZENG Siming1, LUO Xiaona2, SONG Guosheng1, HAN Zhongge1, YU Jinxing3(), SUN Nannan2
Received:
2022-12-11
Revised:
2023-02-09
Online:
2023-03-15
Published:
2023-04-10
Contact:
YU Jinxing
摘要:
面向降低碳捕集技术成本的重大需求,针对高性能吸附剂开发这一关键问题,以廉价的苯为原料,基于Friedel-Crafts烷基化反应,以二甲醇缩甲醛为交联剂合成了聚合物材料,将其作为前体制备了一种新的碳载钾基CO2吸附剂。通过固体核磁、红外光谱、电子显微镜、X射线粉末衍射、N2物理吸附等表征手段,发现所合成的聚合物前体具有超交联多孔结构,通过表面氧化改性的方法可实现多种含氧官能团的修饰,这些含氧官能团具有锚定钾离子的作用,因此可通过离子交换的方式实现表面的钾改性。经过进一步的高温炭化后,可获取全新的碳载钾基CO2吸附剂。该类吸附剂上的含钾位点具有较好的分散性,能够与CO2发生可逆化学反应,其在模拟烟气下的CO2吸附量达到了1.63mmol/g,且循环稳定性良好,具有一定的应用潜力。
中图分类号:
陈崇明, 曾四鸣, 罗小娜, 宋国升, 韩忠阁, 郁金星, 孙楠楠. 基于超交联聚合物前体的碳载钾基CO2吸附剂制备和性能[J]. 化工进展, 2023, 42(3): 1540-1550.
CHEN Chongming, ZENG Siming, LUO Xiaona, SONG Guosheng, HAN Zhongge, YU Jinxing, SUN Nannan. Preparation and performance of carbon supported potassium-based CO2 adsorbent derived from hyper-cross linked polymers[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1540-1550.
样品 | 比表面积/m2·g-1 | 微孔比表面积/m2·g-1 | 总孔容/cm3·g-1 | 微孔孔容/cm3·g-1 | 平均孔径/nm | 钾质量分数/% |
---|---|---|---|---|---|---|
HCP | 1186 | 268 | 1.634 | 0.123 | 0.63 | — |
HCP-Ox | 519 | 243 | 0.391 | 0.102 | 0.61 | — |
HCP-K | 8 | 7 | 0.016 | 0.003 | 0.96 | 6.54 |
HCP-K650 | 16 | 23 | 0.012 | 0.008 | 0.96 | 14.42 |
HCP-K750 | 70 | 68 | 0.033 | 0.026 | 0.60 | 18.22 |
HCP-K850 | 46 | 41 | 0.030 | 0.016 | 0.73 | 21.31 |
表1 吸附的孔道结构参数和钾含量
样品 | 比表面积/m2·g-1 | 微孔比表面积/m2·g-1 | 总孔容/cm3·g-1 | 微孔孔容/cm3·g-1 | 平均孔径/nm | 钾质量分数/% |
---|---|---|---|---|---|---|
HCP | 1186 | 268 | 1.634 | 0.123 | 0.63 | — |
HCP-Ox | 519 | 243 | 0.391 | 0.102 | 0.61 | — |
HCP-K | 8 | 7 | 0.016 | 0.003 | 0.96 | 6.54 |
HCP-K650 | 16 | 23 | 0.012 | 0.008 | 0.96 | 14.42 |
HCP-K750 | 70 | 68 | 0.033 | 0.026 | 0.60 | 18.22 |
HCP-K850 | 46 | 41 | 0.030 | 0.016 | 0.73 | 21.31 |
样品 | 40℃下CO2的吸附量/mmol·g-1 | |
---|---|---|
体积分数15% CO2/N2 | 纯CO2 | |
HCP | 0.83 | 3.33 |
HCP-Ox | 0.92 | 3.59 |
HCP-K | 1.13 | 3.82 |
HCP-K650 | 6.14 | 13.03 |
HCP-K750 | 8.89 | 13.14 |
HCP-K850 | 7.38 | 12.60 |
表2 样品CO2吸附量的热重测试结果
样品 | 40℃下CO2的吸附量/mmol·g-1 | |
---|---|---|
体积分数15% CO2/N2 | 纯CO2 | |
HCP | 0.83 | 3.33 |
HCP-Ox | 0.92 | 3.59 |
HCP-K | 1.13 | 3.82 |
HCP-K650 | 6.14 | 13.03 |
HCP-K750 | 8.89 | 13.14 |
HCP-K850 | 7.38 | 12.60 |
样品 | 温度/℃ | CO2分压/bar | 吸附量/mmol·g-1 | 测试方法 | 参考文献 |
---|---|---|---|---|---|
SNS-20 | 50 | 0.15 | 1.15 | 吸附等温线 | [ |
SAC | 40 | 0.15 | 0.85 | 吸附等温线 | [ |
p-2-973-1.5 | 50 | 0.15 | 1.20 | 吸附等温线 | [ |
C@MF-700 | 50 | 0.15 | 1.30 | 吸附等温线 | [ |
NC-1-500 | 35 | 0.15 | 1.10 | 热重分析 | [ |
RN-450-3 | 25 | 0.10 | 0.94 | 穿透曲线 | [ |
PGC-K | 27 | 0.17 | 1.10 | 穿透曲线 | [ |
ClCTF-1-650 | 25 | 0.10 | 0.68 | 穿透曲线 | [ |
NGC-650-4 | 25 | 0.10 | 0.84 | 穿透曲线 | [ |
3D-MPCFW-11-18 | 45 | 0.15 | 1.05 | 吸附等温线 | [ |
OTS-1-550 | 25 | 0.20 | 1.51 | 穿透曲线 | [ |
CTS-NaNH2(1:1)-700 | 40 | 0.15 | 0.60 | 吸附等温线 | [ |
KNC-1-800 | 40 | 0.15 | 1.12 | 吸附等温线 | [ |
ACDES 9 | 45 | 0.10 | 0.49 | 穿透曲线 | [ |
PSK-2-650 | 40 | 0.15 | 1.01 | 穿透曲线 | [ |
HCP-K750 | 40 | 0.15 | 2.02 | 热重分析 | 本文 |
HCP-K750 | 40 | 0.15 | 1.63 | 穿透曲线 | 本文 |
表3 模拟烟气条件下碳基材料CO2吸附性能比较
样品 | 温度/℃ | CO2分压/bar | 吸附量/mmol·g-1 | 测试方法 | 参考文献 |
---|---|---|---|---|---|
SNS-20 | 50 | 0.15 | 1.15 | 吸附等温线 | [ |
SAC | 40 | 0.15 | 0.85 | 吸附等温线 | [ |
p-2-973-1.5 | 50 | 0.15 | 1.20 | 吸附等温线 | [ |
C@MF-700 | 50 | 0.15 | 1.30 | 吸附等温线 | [ |
NC-1-500 | 35 | 0.15 | 1.10 | 热重分析 | [ |
RN-450-3 | 25 | 0.10 | 0.94 | 穿透曲线 | [ |
PGC-K | 27 | 0.17 | 1.10 | 穿透曲线 | [ |
ClCTF-1-650 | 25 | 0.10 | 0.68 | 穿透曲线 | [ |
NGC-650-4 | 25 | 0.10 | 0.84 | 穿透曲线 | [ |
3D-MPCFW-11-18 | 45 | 0.15 | 1.05 | 吸附等温线 | [ |
OTS-1-550 | 25 | 0.20 | 1.51 | 穿透曲线 | [ |
CTS-NaNH2(1:1)-700 | 40 | 0.15 | 0.60 | 吸附等温线 | [ |
KNC-1-800 | 40 | 0.15 | 1.12 | 吸附等温线 | [ |
ACDES 9 | 45 | 0.10 | 0.49 | 穿透曲线 | [ |
PSK-2-650 | 40 | 0.15 | 1.01 | 穿透曲线 | [ |
HCP-K750 | 40 | 0.15 | 2.02 | 热重分析 | 本文 |
HCP-K750 | 40 | 0.15 | 1.63 | 穿透曲线 | 本文 |
模式 | 烟气状态 | 是否预处理 | 循环数 | 进气流速 /mL·min-1 | 吸附量 /mmol·g-1 |
---|---|---|---|---|---|
模式A | 干燥烟气 | 否 | 1 | 100 | 0.37 |
2 | 100 | 0.38 | |||
3 | 50 | 0.48 | |||
模式B | 潮湿烟气 | 否 | 4 | 100 | 0.37 |
5 | 100 | 0.53 | |||
6 | 100 | 0.56 | |||
模式C | 潮湿烟气 | 是 | 7 | 100 | 1.53 |
8 | 100 | 1.56 | |||
9 | 100 | 1.57 | |||
10 | 100 | 1.60 | |||
11 | 100 | 1.63 |
表4 固定床上HCP-K750的CO2吸附量测试结果
模式 | 烟气状态 | 是否预处理 | 循环数 | 进气流速 /mL·min-1 | 吸附量 /mmol·g-1 |
---|---|---|---|---|---|
模式A | 干燥烟气 | 否 | 1 | 100 | 0.37 |
2 | 100 | 0.38 | |||
3 | 50 | 0.48 | |||
模式B | 潮湿烟气 | 否 | 4 | 100 | 0.37 |
5 | 100 | 0.53 | |||
6 | 100 | 0.56 | |||
模式C | 潮湿烟气 | 是 | 7 | 100 | 1.53 |
8 | 100 | 1.56 | |||
9 | 100 | 1.57 | |||
10 | 100 | 1.60 | |||
11 | 100 | 1.63 |
22 | DAWSON Robert, COOPER Andrew I, ADAMS Dave J. Nanoporous organic polymer networks[J]. Progress in Polymer Science, 2012, 37(4): 530-563. |
23 | 谭良骁, 谭必恩. 超交联微孔聚合物研究进展[J]. 化学学报, 2015, 73(6): 530-540. |
TAN Liangxiao, TAN Bien. Research progress in hypercrosslinked microporous organic polymers[J]. Acta Chimica Sinica, 2015, 73(6): 530-540. | |
24 | JIA Zhifang, WANG Kewei, TAN Bien, et al. Hollow hyper-cross-linked nanospheres with acid and base sites as efficient and water-stable catalysts for one-pot tandem reactions[J]. ACS Catalysis, 2017, 7(5): 3693-3702. |
25 | KARIMI Mohsen, SILVA José A C, GONÇALVES Carmem N d P, et al. CO2 capture in chemically and thermally modified activated carbons using breakthrough measurements: Experimental and modeling study[J]. Industrial & Engineering Chemistry Research, 2018, 57(32): 11154-11166. |
26 | WOODWARD Robert T, STEVENS Lee A, Dawson Robert, et al. Swellable, water- and acid-tolerant polymer sponges for chemoselective carbon dioxide capture[J]. Journal of the American Chemical Society, 2014, 136(25): 9028-9035. |
27 | LI Buyi, GONG Ruini, WANG Wei, et al. A new strategy to microporous polymers: Knitting rigid aromatic building blocks by external cross-linker[J]. Macromolecules, 2011, 44(8): 2410-2414. |
28 | SHENG Yujie, CHEN Qibin, MAHURIN Shannon M, et al. Fibers with hyper-crosslinked functional porous frameworks[J]. Macromolecular Rapid Communications, 2018, 39(8): e1700767. |
29 | TSYURUPA M P, BORISOV Yu A, BLINNIKOVA Z K, et al. On the origin of absorbance band around 1700cm-1 in FTIR spectra of hypercrosslinked polystyrene[J]. Protection of Metals and Physical Chemistry of Surfaces, 2014, 50(1): 59-63. |
30 | 朴海燕, 任秀丽, 孟龙月, 等. ZnCl2活化制备N掺杂多孔碳材料及其CO2吸附性能研究[J]. 材料导报, 2015, 29(S1): 310-312. |
PIAO Haiyan, REN Xiuli, MENG Longyue, et al. Preparation of N-doped porous carbons by ZnCl2 activation and their performance for carbon dioxide adsorption[J]. Materials Review, 2015, 29(S1): 310-312. | |
31 | THOMMES Matthias, KANEKO Katsumi, NEIMARK Alexander V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069. |
32 | LUDWINOWICZ Jowita, JARONIEC Mietek. Potassium salt-assisted synthesis of highly microporous carbon spheres for CO2 adsorption[J]. Carbon, 2015, 82: 297-303. |
33 | CUI Xili, YANG Qiwei, XIONG Yijun, et al. Preparation of ordered N-doped mesoporous carbon materials via a polymer-ionic liquid assembly[J]. Chemical Communications, 2017, 53(36): 4915-4918. |
34 | KIM Yun Kon, KIM Gi Mihn, LEE Jae W. Highly porous N-doped carbons impregnated with sodium for efficient CO2 capture[J]. Journal of Materials Chemistry A, 2015, 3(20): 10919-10927. |
35 | LI Li, WANG Xuefei, ZHONG Junjun, et al. Nitrogen-enriched porous polyacrylonitrile-based carbon fibers for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2018, 57(34): 11608-11616. |
36 | PAN Ying, ZHAO Yuxin, MU Shanjun, et al. Cation exchanged MOF-derived nitrogen-doped porous carbons for CO2 capture and supercapacitor electrode materials[J]. Journal of Materials Chemistry A, 2017, 5(20): 9544-9552. |
37 | WANG Chaohai, KIM Jeonghun, TANG Jing, et al. New strategies for novel MOF-derived carbon materials based on nanoarchitectures[J]. Chem., 2020, 6(1): 19-40. |
38 | WANG Baodeng, ZHU Chenming, ZHANG Zhongzheng, et al. Facile, low-cost, and sustainable preparation of hierarchical porous carbons from ion exchange resin: An improved potassium activation strategy[J]. Fuel, 2016, 179: 274-280. |
39 | Young-Jung HEO, PARK Soo-Jin. H2O2/steam activation as an eco-friendly and efficient top-down approach to enhancing porosity on carbonaceous materials: The effect of inevitable oxygen functionalities on CO2 capture[J]. Green Chemistry, 2018, 20(22): 5224-5234. |
40 | DENG Shubo, WEI Haoran, CHEN Tao, et al. Superior CO2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures[J]. Chemical Engineering Journal, 2014, 253: 46-54. |
41 | LIU Lei, XIE Zhenghu, DENG Qingfang, et al. One-pot carbonization enrichment of nitrogen in microporous carbon spheres for efficient CO2 capture[J]. Journal of Materials Chemistry A, 2017, 5(1): 418-425. |
42 | REN Xiaomin, LI He, CHEN Jian, et al. N-doped porous carbons with exceptionally high CO2 selectivity for CO2 capture[J]. Carbon, 2017, 114: 473-481. |
43 | WANG Liwei, RAO Linli, XIA Binbin, et al. Highly efficient CO2 adsorption by nitrogen-doped porous carbons synthesized with low-temperature sodium amide activation[J]. Carbon, 2018, 130: 31-40. |
44 | GUO Liping, HU Qingtao, ZHANG Peng, et al. Polyacrylonitrile-derived sponge-like micro/macroporous carbon for selective CO2 separation[J]. Chemistry, 2018, 24(33): 8369-8374. |
45 | YAO Ke xin, CHEN Yanli, LU Yue, et al. Ultramicroporous carbon with extremely narrow pore distribution and very high nitrogen doping for efficient methane mixture gases upgrading[J]. Carbon, 2017, 122: 258-265. |
46 | YUE Limin, RAO Linli, WANG Linlin, et al. Efficient CO2 adsorption on nitrogen-doped porous carbons derived from d-glucose[J]. Energy & Fuels, 2018, 32(6): 6955-6963. |
47 | LI Yao, WANG Xin, CAO Minhua. Three-dimensional porous carbon frameworks derived from mangosteen peel waste as promising materials for CO2 capture and supercapacitors[J]. Journal of CO2 Utilization, 2018, 27: 204-216. |
48 | ZHANG Yan, ZHANG Peixin, YU Weikang, et al. Facile and controllable preparation of ultramicroporous biomass-derived carbons and application on selective adsorption of gas-mixtures[J]. Industrial & Engineering Chemistry Research, 2018, 57(42): 14191-14201. |
49 | YANG Chunliang, ZHAO Tianxiang, PAN Hongyan, et al. Facile preparation of N-doped porous carbon from chitosan and NaNH2 for CO2 adsorption and conversion[J]. Chemical Engineering Journal, 2022, 432: 134347. |
50 | LIU Baogen, SHI Rui, MA Xiancheng, et al. High yield nitrogen-doped carbon monolith with rich ultramicropores prepared by in situ activation for high performance of selective CO2 capture[J]. Carbon, 2021, 181: 270-279. |
51 | HUSSIN Farihahusnah, AROUA Mohamed Kheireddine, YUSOFF Rozita. Adsorption of CO2 on palm shell based activated carbon modified by deep eutectic solvent: Breakthrough adsorption study[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105333. |
52 | ZHANG Yan, WEI Ziqi, LIU Xing, et al. Synthesis of palm sheath derived-porous carbon for selective CO2 adsorption[J]. RSC Advances, 2022, 12(14): 8592-8599. |
53 | MEIS Niels N A H, FREY Anne Mette, BITTER Johannes H, et al. Carbon nanofiber-supported K2CO3 as an efficient low-temperature regenerable CO2 sorbent for post-combustion capture[J]. Industrial & Engineering Chemistry Research, 2013, 52(36): 12812-12818. |
54 | DUTCHER Bryce, FAN Maohong, LEONARD Brian. Use of multifunctional nanoporous TiO(OH)2 for catalytic NaHCO3 decomposition-eventually for Na2CO3/NaHCO3 based CO2 separation technology[J]. Separation and Purification Technology, 2011, 80(2): 364-374. |
55 | GUO Yafei, ZHAO Chuanwen, LI Changhai. Thermogravimetric analysis of carbonation behaviors of several potassium-based sorbents in low concentration CO2 [J]. Journal of Thermal Analysis and Calorimetry, 2015, 119(1): 441-451. |
56 | LEE Soo Chool, CHOI Bo Yun, Chong Kul RYU, et al. The effect of water on the activation and the CO2 capture capacities of alkali metal-based sorbents[J]. Korean Journal of Chemical Engineering, 2006, 23(3): 374-379. |
1 | 黄晶. 中国碳捕集利用与封存技术评估报告[M]. 北京: 科学出版社, 2021. |
HUANG Jing. National assessment report on development of carbon capture utilization and strorage technology in China[M]. Beijing: Science Press, 2021. | |
2 | 张贤, 李凯, 马乔, 等. 碳中和目标下CCUS技术发展定位与展望[J]. 中国人口·资源与环境, 2021, 31(9): 29-33. |
ZHANG Xian, LI Kai, MA Qiao, et al. Orientation and prospect of CCUS development under carbon neutrality target[J]. China Population, Resources and Environment, 2021, 31(9): 29-33. | |
3 | Global CCS Institute. Global status of CCS 2022[R]. 2022. |
4 | Mai BUI, ADJIMAN Claire S, BARDOW André, et al. Carbon capture and storage (CCS): The way forward[J]. Energy & Environmental Science, 2018, 11(5): 1062-1176. |
5 | CHAI Slyvester Yew Wang, Lock Hei NGU, Bing Shen HOW. Review of carbon capture absorbents for CO2 utilization[J]. Greenhouse Gases: Science and Technology, 2022, 12(3): 394-427. |
6 | 郭真良, 卞晓律, 杜宇搏, 等. 集成二氧化碳捕集与甲烷化转化研究进展[J]. 燃料化学学报, 2023, 51(3): 293-303. |
GUO Zhenliang, BIAN Xiaolv, DU Yubo, et al. Recent advances in integrated carbon dioxide capture and methanation technology[J]. Journal of Fuel Chemistry and Technology, 2023, 51(3): 293-303. | |
7 | KARIMI Mohsen, SHIRZAD Mohammad, SILVA José A C, et al. Biomass/Biochar carbon materials for CO2 capture and sequestration by cyclic adsorption processes: A review and prospects for future directions[J]. Journal of CO2 Utilization, 2022, 57: 101890. |
8 | KUMAR Santosh, SRIVASTAVA Rohit, Joonseok KOH. Utilization of zeolites as CO2 capturing agents: Advances and future perspectives[J]. Journal of CO2 Utilization, 2020, 41: 101251. |
9 | 符乐, 杨阳, 徐文青, 等. 新型相变有机胺吸收捕集CO2技术研究进展[J/OL]. 化工进展, . |
FU Le, YANG Yang, XU Wenqing, et al. Research progress in CO2 capture technology using novel biphasicorganic amine absorbent[J/OL]. Chemical Industry and Engineering Progress, . | |
10 | 耿一琪, 郭彦霞, 樊飙, 等. CaO基吸附剂捕集CO2及其抗烧结改性研究进展[J]. 燃料化学学报, 2021, 49(7): 998-1013. |
GENG Yiqi, GUO Yanxia, FAN Biao, et al. Research progress of calcium-based adsorbents for CO2 capture and anti-sintering modification[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 998-1013. | |
11 | ZHAO Chuanwen, CHEN Xiaoping, ANTHONY Edward J, et al. Capturing CO2 in flue gas from fossil fuel-fired power plants using dry regenerable alkali metal-based sorbent[J]. Progress in Energy and Combustion Science, 2013, 39(6): 515-534. |
12 | 鲁雪婷, 蒲彦锋, 李磊, 等. 氨基修饰的金属有机框架Cu3(BTC)2的制备及其CO2吸附性能研究[J]. 燃料化学学报, 2019, 47(3): 338-343. |
LU Xueting, PU Yanfeng, LI Lei, et al. Preparation of metal-organic frameworks Cu3(BTC)2 with amino-functionalization for CO2 adsorption[J]. Journal of Fuel Chemistry and Technology, 2019, 47(3): 338-343. | |
13 | OZDEMIR John, MOSLEH Imann, ABOLHASSANI Mojtaba, et al. Covalent organic frameworks for the capture, fixation, or reduction of CO2 [J]. Frontiers in Energy Research, 2019, 7: 77. |
14 | ZHAO Chuanwen, GUO Yafei, LI Changhai, et al. Removal of low concentration CO2 at ambient temperature using several potassium-based sorbents[J]. Applied Energy, 2014, 124: 241-247. |
15 | LEE Soo Chool, CHOI Bo Yun, LEE Tae Jin, et al. CO2 absorption and regeneration of alkali metal-based solid sorbents[J]. Catalysis Today, 2006, 111(3/4): 385-390. |
16 | LEE Soo Chool, KWON Yong Mok, CHAE Ho Jin, et al. Improving regeneration properties of potassium-based alumina sorbents for carbon dioxide capture from flue gas[J]. Fuel, 2013, 104: 882-885. |
17 | LI Lei, ZHANG Bingsheng, WANG Feng, et al. Study of the novel KMgAl sorbents for CO2 capture[J]. Energy & Fuels, 2013, 27(9): 5388-5396. |
18 | LUO Hongchao, CHIOYAMA Hideyuki, Stephan THÜRMER, et al. Kinetics and structural changes in CO2 Capture of K2CO3 under a moist condition[J]. Energy & Fuels, 2015, 29(7): 4472-4478. |
19 | GUO Baihe, WANG Yanlin, GUO Jingnan, et al. Experiment and kinetic model study on modified potassium-based CO2 adsorbent[J]. Chemical Engineering Journal, 2020, 399: 125849. |
20 | WANG Peng, SUN Jian, GUO Yafei, et al. Structurally improved, urea-templated, K2CO3-based sorbent pellets for CO2 capture[J]. Chemical Engineering Journal, 2019, 374: 20-28. |
21 | YI Chang-Keun, Sung-Ho JO, SEO Yongwon, et al. Continuous operation of the potassium-based dry sorbent CO2 capture process with two fluidized-bed reactors[J]. International Journal of Greenhouse Gas Control, 2007, 1(1): 31-36. |
57 | SHIGEMOTO Naoya, YANAGIHARA Tetsu, SUGIYAMA Shigeru, et al. Material balance and energy consumption for CO2 recovery from moist flue gas employing K2CO3-on-activated carbon and its evaluation for practical adaptation[J]. Energy & Fuels, 2006, 20(2): 721-726. |
58 | ZHAO Chuanwen, GUO Yafei, LI Changhai, et al. Carbonation behavior of K2CO3/AC in low reaction temperature and CO2 concentration[J]. Chemical Engineering Journal, 2014, 254: 524-530. |
[1] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[2] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[3] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[4] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[5] | 张杰, 王放放, 夏忠林, 赵光金, 马双忱. “双碳”目标下SF6排放现状、减排手段分析及未来展望[J]. 化工进展, 2023, 42(S1): 447-460. |
[6] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[7] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[8] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[9] | 舒斌, 陈建宏, 熊健, 吴其荣, 喻江涛, 杨平. 碳中和目标下推动绿色甲醇发展的必要性分析[J]. 化工进展, 2023, 42(9): 4471-4478. |
[10] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[11] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[12] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[13] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[14] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[15] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |