化工进展 ›› 2023, Vol. 42 ›› Issue (3): 1527-1539.DOI: 10.16085/j.issn.1000-6613.2022-0851
收稿日期:
2022-05-09
修回日期:
2022-07-03
出版日期:
2023-03-15
发布日期:
2023-04-10
通讯作者:
邢献军
作者简介:
邢献军(1964—),男,博士,教授,博士生导师,研究方向为生物质能转化。E-mail:xxianjun@hfut.edu.cn。
基金资助:
XING Xianjun1,2,3,4(), LUO Tian1, BU Yuzheng1, MA Peiyong4
Received:
2022-05-09
Revised:
2022-07-03
Online:
2023-03-15
Published:
2023-04-10
Contact:
XING Xianjun
摘要:
以核桃壳为原料、磷酸(H3PO4)为活化剂,制备核桃壳基活性炭(PBC),并对其吸附Cr(Ⅵ)性能进行探究。分别使用SEM、TEM、BET、FTIR、Raman、XPS等表征探究PBC的理化特性。研究溶液pH、活性炭用量和初始浓度对吸附性能的影响,研究PBC在不同吸附时间下吸附Cr(Ⅵ)动力学行为,分析吸附机理。结果表明,在磷酸浸渍比为1∶1,热解温度为400℃时,制备的核桃壳基活性炭具有良好的吸附性能。对较低浓度的Cr(Ⅵ)溶液 (≤50mg/L)吸附率达到100%,吸附动力学和等温线分别符合拟二级动力学模型和Langmuir模型,吸附过程中化学吸附占主导地位,并且热力学分析表明吸附过程是自发的吸热过程。
中图分类号:
邢献军, 罗甜, 卜玉蒸, 马培勇. H3PO4活化核桃壳制备活性炭及在Cr(Ⅵ)吸附中的应用[J]. 化工进展, 2023, 42(3): 1527-1539.
XING Xianjun, LUO Tian, BU Yuzheng, MA Peiyong. Preparation of biochar from walnut shells activated by H3PO4 and its application in Cr(Ⅵ) adsorption[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1527-1539.
样品名 | 总比表面积 /m2·g-1 | 总孔容 /cm3·g-1 | 微孔孔容 /cm3·g-1 | 介孔孔容 /cm3·g-1 |
---|---|---|---|---|
PBC1-400 | 1312 | 1.04 | 0.09 | 0.95 |
PBC1.78-400 | 2303 | 1.64 | 0.02 | 1.01 |
PBC2-400 | 1246 | 0.98 | 0.06 | 0.9 |
PBC1-500 | 1027 | 0.74 | 0.03 | 0.71 |
PBC1-600 | 1014 | 0.73 | 0.04 | 0.69 |
表1 活性炭样品的孔结构参数
样品名 | 总比表面积 /m2·g-1 | 总孔容 /cm3·g-1 | 微孔孔容 /cm3·g-1 | 介孔孔容 /cm3·g-1 |
---|---|---|---|---|
PBC1-400 | 1312 | 1.04 | 0.09 | 0.95 |
PBC1.78-400 | 2303 | 1.64 | 0.02 | 1.01 |
PBC2-400 | 1246 | 0.98 | 0.06 | 0.9 |
PBC1-500 | 1027 | 0.74 | 0.03 | 0.71 |
PBC1-600 | 1014 | 0.73 | 0.04 | 0.69 |
元素 | PBC1-400 | PBC1-400-Cr | |||
---|---|---|---|---|---|
结合能 /eV | 相对原子分数 /% | 结合能 /eV | 相对原子分数 /% | ||
C 1s | |||||
C | 284.8 | 53.7 | 284.7 | 64.7 | |
C—O | 285.8 | 16.7 | 285.4 | 11.3 | |
C | 288 | 4.8 | 286.6 | 27.3 | |
O | 288.9 | 24.8 | 289.2 | 6.8 | |
O 1s | |||||
C | 531.4 | 27.1 | 531.8 | 60.6 | |
C—O/C—O—P | 533.4 | 55.7 | 532.9 | 19.9 | |
P—O—P/—OH | 535.3 | 17.2 | — | — | |
Cr—O | — | — | 530.9 | 19.5 | |
P 2p | |||||
磷酸盐 | 133.8 | 47.5 | 133.3 | 70 | |
偏磷酸盐 | 134.6 | 41.4 | 134.1 | 30 | |
P2O5 | 136.5 | 11.1 | — | — | |
Cr 2p 1/2 | |||||
Cr(Ⅲ) | — | — | 587.5 | 62.9 | |
Cr(Ⅵ) | — | — | 588.28 | 37.1 | |
Cr 2p 3/2 | |||||
Cr(Ⅲ) | — | — | 577.8 | 63.7 | |
Cr(Ⅵ) | — | — | 578.85 | 36.3 |
表2 C、O、P、Cr的相对原子分数
元素 | PBC1-400 | PBC1-400-Cr | |||
---|---|---|---|---|---|
结合能 /eV | 相对原子分数 /% | 结合能 /eV | 相对原子分数 /% | ||
C 1s | |||||
C | 284.8 | 53.7 | 284.7 | 64.7 | |
C—O | 285.8 | 16.7 | 285.4 | 11.3 | |
C | 288 | 4.8 | 286.6 | 27.3 | |
O | 288.9 | 24.8 | 289.2 | 6.8 | |
O 1s | |||||
C | 531.4 | 27.1 | 531.8 | 60.6 | |
C—O/C—O—P | 533.4 | 55.7 | 532.9 | 19.9 | |
P—O—P/—OH | 535.3 | 17.2 | — | — | |
Cr—O | — | — | 530.9 | 19.5 | |
P 2p | |||||
磷酸盐 | 133.8 | 47.5 | 133.3 | 70 | |
偏磷酸盐 | 134.6 | 41.4 | 134.1 | 30 | |
P2O5 | 136.5 | 11.1 | — | — | |
Cr 2p 1/2 | |||||
Cr(Ⅲ) | — | — | 587.5 | 62.9 | |
Cr(Ⅵ) | — | — | 588.28 | 37.1 | |
Cr 2p 3/2 | |||||
Cr(Ⅲ) | — | — | 577.8 | 63.7 | |
Cr(Ⅵ) | — | — | 578.85 | 36.3 |
C0 /mg·L-1 | qe,exp /mg·g-1 | 拟一级动力学模型 | 拟二级动力学模型 | Elovich模型 | 颗粒内扩散模型 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
qe,cal /mg·g-1 | k1 /min-1 | R2 | qe,cal /mg·g-1 | k2 /g·mg-1·min-1 | R2 | A /mg·g-1·min-1 | B /g·mg-1 | R2 | C /mg·g-1 | kid /mg·g-1·min-1/2 | R2 | |||||
20 | 10 | 9.8 | 0.314 | 0.943 | 10.1 | 0.0574 | 0.986 | 6.057 | 0.706 | 0.918 | 6.82 | 0.149 | 0.301 | |||
30 | 15 | 14.6 | 0.165 | 0.933 | 15 | 0.018 | 0.973 | 6.923 | 1.419 | 0.914 | 9.035 | 0.275 | 0.397 | |||
40 | 20 | 19 | 0.309 | 0.911 | 19.6 | 0.027 | 0.97 | 11.242 | 1.496 | 0.951 | 12.869 | 0.322 | 0.373 | |||
50 | 25 | 24.2 | 0.185 | 0.948 | 25 | 0.011 | 0.981 | 11.468 | 2.356 | 0.913 | 14.96 | 0.458 | 0.4 | |||
60 | 30 | 28.6 | 0.188 | 0.939 | 29.6 | 0.009 | 0.985 | 13.285 | 2.846 | 0.937 | 17.268 | 0.561 | 0.438 | |||
80 | 39.95 | 35.5 | 0.101 | 0.937 | 37.48 | 0.0039 | 0.982 | 10.744 | 4.608 | 0.941 | 18.327 | 0.85 | 0.484 |
表3 在不同C0下Cr(Ⅵ)吸附的拟一级动力学、拟二级动力学、Elovich和颗粒内扩散模型
C0 /mg·L-1 | qe,exp /mg·g-1 | 拟一级动力学模型 | 拟二级动力学模型 | Elovich模型 | 颗粒内扩散模型 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
qe,cal /mg·g-1 | k1 /min-1 | R2 | qe,cal /mg·g-1 | k2 /g·mg-1·min-1 | R2 | A /mg·g-1·min-1 | B /g·mg-1 | R2 | C /mg·g-1 | kid /mg·g-1·min-1/2 | R2 | |||||
20 | 10 | 9.8 | 0.314 | 0.943 | 10.1 | 0.0574 | 0.986 | 6.057 | 0.706 | 0.918 | 6.82 | 0.149 | 0.301 | |||
30 | 15 | 14.6 | 0.165 | 0.933 | 15 | 0.018 | 0.973 | 6.923 | 1.419 | 0.914 | 9.035 | 0.275 | 0.397 | |||
40 | 20 | 19 | 0.309 | 0.911 | 19.6 | 0.027 | 0.97 | 11.242 | 1.496 | 0.951 | 12.869 | 0.322 | 0.373 | |||
50 | 25 | 24.2 | 0.185 | 0.948 | 25 | 0.011 | 0.981 | 11.468 | 2.356 | 0.913 | 14.96 | 0.458 | 0.4 | |||
60 | 30 | 28.6 | 0.188 | 0.939 | 29.6 | 0.009 | 0.985 | 13.285 | 2.846 | 0.937 | 17.268 | 0.561 | 0.438 | |||
80 | 39.95 | 35.5 | 0.101 | 0.937 | 37.48 | 0.0039 | 0.982 | 10.744 | 4.608 | 0.941 | 18.327 | 0.85 | 0.484 |
T/℃ | qe,exp/mg·g-1 | Langmuir | Freundlich | ||||||
---|---|---|---|---|---|---|---|---|---|
KL/L·mg-1 | qmax/mg·g-1 | RL | R2 | KF/mg1-n ·L n ·g-1 | 1/n | R2 | |||
25 | 50.33 | 0.483 | 49.597 | 0.005~0.1 | 0.975 | 32.610 | 0.082 | 0.950 | |
35 | 56.2 | 1.193 | 55.133 | 0.002~0.05 | 0.953 | 37.428 | 0.079 | 0.985 | |
45 | 60 | 0.161 | 62.043 | 0.02~0.3 | 0.993 | 41.845 | 0.070 | 0.945 |
表4 Langmuir和Freundlich吸附等温模型数据
T/℃ | qe,exp/mg·g-1 | Langmuir | Freundlich | ||||||
---|---|---|---|---|---|---|---|---|---|
KL/L·mg-1 | qmax/mg·g-1 | RL | R2 | KF/mg1-n ·L n ·g-1 | 1/n | R2 | |||
25 | 50.33 | 0.483 | 49.597 | 0.005~0.1 | 0.975 | 32.610 | 0.082 | 0.950 | |
35 | 56.2 | 1.193 | 55.133 | 0.002~0.05 | 0.953 | 37.428 | 0.079 | 0.985 | |
45 | 60 | 0.161 | 62.043 | 0.02~0.3 | 0.993 | 41.845 | 0.070 | 0.945 |
吸附剂 | 温度/℃ | pH | 吸附剂投入量/g·L-1 | 初始浓度C0/mg·L-1 | 吸附量qmax/mg·g-1 |
---|---|---|---|---|---|
聚硫橡胶改性活性炭[ | 22 | 4 | 3 | 20 | 8.9 |
改性污泥[ | 30 | 3 | 10 | 50 | 26.3 |
球磨炭[ | 22 | 7 | 50 | 1000 | 28.9 |
TA改性炭[ | 22 | 5 | 0.8 | 20 | 31.0 |
铁负载炭[ | 25 | 3.3 | 1 | 50 | 53.4 |
小麦秸秆生物炭[ | 25 | 2 | — | 600 | 24.6 |
核桃壳基活性炭(本文) | 45 | 2 | 2 | 300 | 62.0 |
表5 Cr(VI)在各种材料上的吸附容量比较
吸附剂 | 温度/℃ | pH | 吸附剂投入量/g·L-1 | 初始浓度C0/mg·L-1 | 吸附量qmax/mg·g-1 |
---|---|---|---|---|---|
聚硫橡胶改性活性炭[ | 22 | 4 | 3 | 20 | 8.9 |
改性污泥[ | 30 | 3 | 10 | 50 | 26.3 |
球磨炭[ | 22 | 7 | 50 | 1000 | 28.9 |
TA改性炭[ | 22 | 5 | 0.8 | 20 | 31.0 |
铁负载炭[ | 25 | 3.3 | 1 | 50 | 53.4 |
小麦秸秆生物炭[ | 25 | 2 | — | 600 | 24.6 |
核桃壳基活性炭(本文) | 45 | 2 | 2 | 300 | 62.0 |
活性炭 | ∆H⊖/kJ·mol-1 | ∆S⊖/J·mol-1·K-1 | ∆G⊖/kJ·mol-1 | ||
---|---|---|---|---|---|
25℃ | 35℃ | 45℃ | |||
PBC1-400 | 68.52 | 33.84 | -15.38 | -18.14 | -13.44 |
表6 不同温度下Cr(VI)吸附的热力学数据
活性炭 | ∆H⊖/kJ·mol-1 | ∆S⊖/J·mol-1·K-1 | ∆G⊖/kJ·mol-1 | ||
---|---|---|---|---|---|
25℃ | 35℃ | 45℃ | |||
PBC1-400 | 68.52 | 33.84 | -15.38 | -18.14 | -13.44 |
1 | BUAISHA M, BALKU S, YAMAN Ş Ö. Heavy metal removal investigation in conventional activated sludge systems[J]. Civil Engineering Journal, 2020, 6(3): 470-477. |
2 | KANG Li, YANG Hanpei, WANG Lina, et al. Facile integration of FeS and titanate nanotubes for efficient removal of total Cr from aqueous solution: Synergy in simultaneous reduction of Cr(VI) and adsorption of Cr(III)[J]. Journal of Hazardous Materials, 2020, 398: 122834. |
3 | ALVARADO L, TORRES I R, CHEN A C. Integration of ion exchange and electrodeionization as a new approach for the continuous treatment of hexavalent chromium wastewater[J]. Separation and Purification Technology, 2013, 105: 55-62. |
4 | ZHANG Jishi, ZHENG Pengwei. A preliminary investigation of the mechanism of hexavalent chromium removal by corn-bran residue and derived chars[J]. RSC Advances, 2015, 5(23): 17768-17774. |
5 | LIU Wujun, ZENG Fanxin, JIANG Hong, et al. Preparation of high adsorption capacity bio-chars from waste biomass[J]. Bioresource Technology, 2011, 102(17): 8247-8252. |
6 | XIAO Xin, CHEN Baoliang, CHEN Zaiming, et al. Insight into multiple and multilevel structures of biochars and their potential environmental applications: A critical review[J]. Environmental Science & Technology, 2018, 52(9): 5027-5047. |
7 | LUO Mingke, LIN Hai, LI Bing, et al. A novel modification of lignin on corncob-based biochar to enhance removal of cadmium from water[J]. Bioresource Technology, 2018, 259: 312-318. |
8 | XU Shuang, YU Weiguang, LIU Sen, et al. Adsorption of hexavalent chromium using banana pseudostem biochar and its mechanism[J]. Sustainability, 2018, 10(11): 4250. |
9 | ENNIYA I, RGHIOUI L, JOURANI A. Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels[J]. Sustainable Chemistry and Pharmacy, 2018, 7: 9-16. |
10 | NJOKU V O, HAMEED B H. Preparation and characterization of activated carbon from corncob by chemical activation with H3PO4 for 2,4-dichlorophenoxyacetic acid adsorption[J]. Chemical Engineering Journal, 2011, 173(2): 391-399. |
11 | RIVERA-UTRILLA J, SÁNCHEZ-POLO M, GÓMEZ-SERRANO V, et al. Activated carbon modifications to enhance its water treatment applications. an overview[J]. Journal of Hazardous Materials, 2011, 187(1/2/3): 1-23. |
12 | GUPTA G K, RAM M, BALA R, et al. Pyrolysis of chemically treated corncob for biochar production and its application in Cr(VI) removal[J]. Environmental Progress & Sustainable Energy, 2018, 37(5): 1606-1617. |
13 | LYUBCHIK S B, BENOIT R, BÉGUIN F. Influence of chemical modification of anthracite on the porosity of the resulting activated carbons[J]. Carbon, 2002, 40(8): 1287-1294. |
14 | HAN Qiaoning, WANG Jing, GOODMAN Bernard A, et al. High adsorption of methylene blue by activated carbon prepared from phosphoric acid treated eucalyptus residue[J]. Powder Technology, 2020, 366: 239-248. |
15 | ZHANG Huiyan, YUE Xiupeng, LI Fei, et al. Preparation of rice straw-derived biochar for efficient cadmium removal by modification of oxygen-containing functional groups[J]. Science of the Total Environment, 2018, 631/632: 795-802. |
16 | CAO Jiashun, LIN Junxiong, FANG Fang, et al. A new absorbent by modifying walnut shell for the removal of anionic dye: Kinetic and thermodynamic studies[J]. Bioresource Technology, 2014, 163: 199-205. |
17 | DOVI E, ARYEE A A, KANI A N, et al. Functionalization of walnut shell by grafting amine groups to enhance the adsorption of Congo red from water in batch and fixed-bed column modes[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 106301. |
18 | ZHAO Nan, ZHAO Chuanfang, Yizhong LYU, et al. Adsorption and coadsorption mechanisms of Cr(VI) and organic contaminants on H3PO4 treated biochar[J]. Chemosphere, 2017, 186: 422-429. |
19 | GEORGIEVA V G, GONSALVESH L, TAVLIEVA M P. Thermodynamics and kinetics of the removal of nickel(II) ions from aqueous solutions by biochar adsorbent made from agro-waste walnut shells[J]. Journal of Molecular Liquids, 2020, 312: 112788. |
20 | FANG Yi, YANG Ke, ZHANG Yipeng, et al. Highly surface activated carbon to remove Cr(VI) from aqueous solution with adsorbent recycling[J]. Environmental Research, 2021, 197: 111151. |
21 | HAYASHI J, KAZEHAYA A, MUROYAMA K, et al. Preparation of activated carbon from lignin by chemical activation[J]. Carbon, 2000, 38(13): 1873-1878. |
22 | BANERJEE M, BASU R K, DAS S K. Cr(VI) adsorption by a green adsorbent walnut shell: adsorption studies, regeneration studies, scale-up design and economic feasibility[J]. Process Safety and Environmental Protection, 2018, 116: 693-702. |
23 | SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619. |
24 | THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069. |
25 | MYGLOVETS M, PODDUBNAYA O I, SEVASTYANOVA O, et al. Preparation of carbon adsorbents from lignosulfonate by phosphoric acid activation for the adsorption of metal ions[J]. Carbon, 2014, 80: 771-783. |
26 | 王鲁元, 金春江, 陈惠敏, 等. 一步热解活化法制备纳米木质素基多孔炭材料[J]. 化工进展, 2022, 41(5): 2582-2592. |
WANG Luyuan, JIN Chunjiang, CHEN Huimin, et al. Preparation of nano-lignin-based porous carbon materials by one-step pyrolysis activation method[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2582-2592. | |
27 | SOCRATES G. Infrared characteristic group frequencies[M]. 2nd ed. New York: Wiley, 1994. |
28 | CORBRJDGE D E C. Infra-red analysis of phosphorus compounds[J]. Journal of Applied Chemistry, 2007, 6(10): 456-465. |
29 | ZHOU Xiang, LIU Xiaohao, QI Fenglei, et al. Efficient preparation of P-doped carbon with ultra-high mesoporous ratio from furfural residue for dye removal[J]. Separation and Purification Technology, 2022, 292: 120954. |
30 | SUN Xiaoming, LI Yadong. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J]. Angewandte Chemie International Edition, 2004, 43(5): 597-601. |
31 | MENG Huan, FAN Ke, Jingxiang LOW, et al. Electrochemically reduced graphene oxide on silicon nanowire arrays for enhanced photoelectrochemical hydrogen evolution[J]. Dalton Transactions, 2016, 45(35): 13717-13725. |
32 | SHEN Xuqian, XIAO Fan, ZHAO Hongying, et al. In situ formed PdFe nanoalloy and carbon defects in cathode for synergic reduction-oxidation of chlorinated pollutants in electro-Fenton process[J]. Environmental Science & Technology, 2020, 54(7): 4564-4572. |
33 | SADEZKY A, MUCKENHUBER H, GROTHE H, et al. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information[J]. Carbon, 2005, 43(8): 1731-1742. |
34 | Honghong LYU, TANG Jingchun, HUANG Yao, et al. Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite[J]. Chemical Engineering Journal, 2017, 322: 516-524. |
35 | GENOVESE M, JIANG J H, LIAN K, et al. High capacitive performance of exfoliated biochar nanosheets from biomass waste corn cob[J]. Journal of Materials Chemistry A, 2015, 3(6): 2903-2913. |
36 | ZHONG Mengqi, CHEN Si, WANG Teng, et al. Co-pyrolysis of polyester and cotton via thermogravimetric analysis and adsorption mechanism of Cr(VI) removal by carbon in aqueous solution[J]. Journal of Molecular Liquids, 2022, 354: 118902. |
37 | JIA Xiuxiu, ZHANG Yunqiu, HE Zhuang, et al. Mesopore-rich badam-shell biochar for efficient adsorption of Cr(VI) from aqueous solution[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105634. |
38 | SHI Shunquan, YANG Jiakuan, LIANG Sha, et al. Enhanced Cr(VI) removal from acidic solutions using biochar modified by Fe3O4@SiO2-NH2 particles[J]. Science of the Total Environment, 2018, 628/629: 499-508. |
39 | 周春地, 阳婷, 闵熙泽, 等. 零价铁、铜改性生物炭及其对Cr(Ⅵ)吸附性能的影响[J]. 化工进展, 2020, 39(10): 4275-4282. |
ZHOU Chundi, YANG Ting, MIN Xize, et al. Influence of zero valent iron and copper modified biochar on Cr(Ⅵ) adsorption[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4275-4282. | |
40 | SONG Li, JING Shichao, QIU Yixing, et al. Efficient removal of Cr(Ⅲ)-carboxyl complex from neutral and high-salinity wastewater by nitrogen doped biomass-based composites[J]. Chinese Chemical Letters. 2023, 34: 107180. |
41 | DOVI E, ARYEE A A, KANI A N, et al. High-capacity amino-functionalized walnut shell for efficient removal of toxic hexavalent chromium ions in batch and column mode[J]. Journal of Environmental Chemical Engineering, 2023, 10(2): 107180. |
42 | GUPTA G K, MONDAL M K. Mechanism of Cr(VI) uptake onto sagwan sawdust derived biochar and statistical optimization via response surface methodology[J]. Biomass Conversion and Biorefinery, 2020: 1-17. |
43 | LIU Na, ZHANG Yuting, XU Chao, et al. Removal mechanisms of aqueous Cr(VI) using apple wood biochar: A spectroscopic study[J]. Journal of Hazardous Materials, 2020, 384: 121371. |
44 | WANG Fayuan, WANG Hui, MA Jianwei. Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent — Bamboo charcoal[J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 300-306. |
45 | DENG Hui, YANG Le, TAO Guanghui, et al. Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation — Application in methylene blue adsorption from aqueous solution[J]. Journal of Hazardous Materials, 2009, 166(2/3): 1514-1521. |
46 | MORTAZAVIAN S, SABER A, HONG J, et al. Synthesis, characterization, and kinetic study of activated carbon modified by polysulfide rubber coating for aqueous hexavalent chromium removal[J]. Journal of Industrial and Engineering Chemistry, 2019, 69: 196-210. |
47 | KYZAS G Z, KOSTOGLOU M. Green adsorbents for wastewaters: A critical review[J]. Materials, 2014, 7(1): 333-364. |
48 | LIU Hai, LIANG Shuang, GAO Jinhong, et al. Enhancement of Cr(VI) removal by modifying activated carbon developed from Zizania caduciflora with tartaric acid during phosphoric acid activation[J]. Chemical Engineering Journal, 2014, 246: 168-174. |
49 | LI Z Z, KATSUMI T, INUI T, et al. Woods charred at low temperatures and their modification for the adsorption of Cr(VI) ions from aqueous solution[J]. Adsorption Science & Technology, 2010, 28(5): 419-435. |
50 | TYTŁAK A, OLESZCZUK P, DOBROWOLSKI R. Sorption and desorption of Cr(VI) ions from water by biochars in different environmental conditions[J]. Environmental Science and Pollution Research, 2015, 22(8): 5985-5994. |
51 | ZENG Huiting, ZENG Honghu, ZHANG Hua, et al. Efficient adsorption of Cr(VI) from aqueous environments by phosphoric acid activated eucalyptus biochar[J]. Journal of Cleaner Production, 2021, 286: 124964. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[3] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[4] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[5] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[6] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[7] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[8] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[9] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
[10] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[11] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[12] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
[13] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[14] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[15] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |