1 |
ZHANG Yaning, KE Cunfeng, FU Wenming, et al. Simulation of microwave-assisted gasification of biomass: a review[J]. Renewable Energy, 2020, 154: 488-496.
|
2 |
邵珠山, 魏玮, 陈文文, 等. 微波加热岩石与混凝土的研究进展与工程应用[J]. 工程力学, 2020, 37(5): 140-155.
|
|
SHAO Zhushan, WEI Wei, CHEN Wenwen, et al. Research progress and industrial applications of microwave heating processing on rock and concrete[J]. Engineering Mechanics, 2020, 37(5): 140-155.
|
3 |
WEI Wei, SHAO Zhushan, QIAO Rujia, et al. Recent development of microwave applications for concrete treatment[J]. Construction and Building Materials, 2021, 269: 121224.
|
4 |
TAO Yuan, YAN Bowen, FAN Daming, et al. Structural changes of starch subjected to microwave heating: a review from the perspective of dielectric properties[J]. Trends in Food Science & Technology, 2020, 99: 593-607.
|
5 |
ZAKER A, CHEN Z, WANG X L, et al. Microwave-assisted pyrolysis of sewage sludge: a review[J]. Fuel Processing Technology, 2019, 187: 84-104.
|
6 |
GULISANO F, GALLEGO J. Microwave heating of asphalt paving materials: principles, current status and next steps[J]. Construction and Building Materials, 2021, 278: 121993.
|
7 |
刘慧. 陶瓷纤维用于实验电炉的保温研究[D]. 济南: 济南大学, 2015.
|
|
LIU Hui. Study on the thermal insulation of ceramic fibers used in experimental furnace[D]. Jinan: University of Jinan, 2015.
|
8 |
白永珍, 尚小标, 刘美红, 等. 微波加热用透波材料的研究进展[J]. 化工进展, 2022, 41(1): 253-263.
|
|
BAI Yongzhen, SHANG Xiaobiao, LIU Meihong, et al. Research progress of wave-transmitting materials for microwave heating[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 253-263.
|
9 |
SHANG Xiaobiao, ZHAI Di, LIU Meihong, et al. Dielectric properties and electromagnetic wave transmission performance of aluminium silicate fibreboard at 915MHz and 2450MHz[J]. Ceramics International, 2021, 47(6): 7539-7557.
|
10 |
肖利平, 尚小标, 刘美红, 等. 高铝型硅酸铝纤维板介电特性和透波性能[J]. 硅酸盐学报, 2021, 49(12): 2621-2628.
|
|
XIAO Liping, SHANG Xiaobiao, LIU Meihong, et al. Dielectric properties and electromagnetic wave transmission performance of high-Al aluminum silicate fiberboard[J]. Journal of the Chinese Ceramic Society, 2021, 49(12): 2621-2628.
|
11 |
ZHAI Di, ZHANG Fucheng, WEI Cong, et al. Dielectric properties and electromagnetic wave transmission performance of polycrystalline mullite fiberboard at 2.45 GHz[J]. Ceramics International, 2020, 46(6): 7362-7373.
|
12 |
崔之开. 陶瓷纤维[M]. 北京: 化学工业出版社, 2004.
|
|
CUI Zhikai. Ceramic fiber[M]. Beijing: Chemical Industry Press, 2004.
|
13 |
许磊. 微波加热金属铜粉及熔渗烧结钨铜复合材料特性研究[D]. 昆明: 昆明理工大学, 2016.
|
|
XU Lei. Study on the characteristics of microwave heating metal copper powder and infiltration sintering tungsten copper composites[D]. Kunming: Kunming University of Science and Technology, 2016.
|
14 |
YAHALOM A, PINHASI Y, SHIFMAN E, et al. Transmission through single and multiple layers in the 3~10 GHz band and the implications for communications of frequency varying material dielectric constants[J]. WSEAS Transactions on Communications, 2010, 9(12): 759-772.
|
15 |
LOWE M J S. Matrix techniques for modeling ultrasonic waves in multilayered media[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1995, 42(4): 525-542.
|
16 |
SHANG Xiaobiao, ZHAI Di, ZHANG Fucheng, et al. Electromagnetic waves transmission performance of alumina refractory ceramics in 2.45 GHz microwave heating[J]. Ceramics International, 2019, 45(17): 23493-23500.
|
17 |
倪锋, 何煜民, 魏世忠, 等. 基于一维稳态传热的纯金属热型连铸模型化分析[J]. 铸造设备与工艺, 2009(5): 32-37.
|
|
NI Feng, HE Yumin, WEI Shizhong, et al. Modeling analysis of pure metal continuous casting with heated mould based on one-dimensional steady-state heat-transfer[J]. Foundry Equipment and Technology, 2009(5): 32-37.
|
18 |
MENG B, PENG J H, LIU Y H, et al. Preparation and its properties of cordierite-mullite refractory material used in microwave metallurgy[J]. Material Science and Technology, 2011, 19(3): 32-36.
|
19 |
YOSHIKAWA N, KAWAHIRA K, SAITO Y, et al. Estimation of microwave penetration distance and complex permittivity of graphite by measurement of permittivity and direct current conductivity of graphite powder mixtures[J]. Journal of Applied Physics, 2015, 117(8): 084105.
|
20 |
罗庆. 传热学[M]. 2版. 重庆: 重庆大学出版社, 2019.
|
|
LUO Qing. Heat transfer[M]. 2nded. Chongqing: Chongqing University Press, 2019.
|
21 |
王宁. 连续式石墨化炉动态电热耦合的数值模拟与优化研究[D]. 沈阳: 东北大学, 2017.
|
|
WANG Ning. Numerical simulation and optimization of dynamic electrothermal coupling of continuous graphitization furnace[D]. Shenyang: Northeastern University, 2017.
|
22 |
李广超, 尚小标, 张富程, 等. 微波干燥玉米淀粉的动态吸波性能分析[J]. 化学工程, 2021, 49(10): 48-53.
|
|
LI Guangchao, SHANG Xiaobiao, ZHANG Fucheng, et al. Analysis of dynamic microwave absorption properties of microwave drying corn starch[J]. Chemical Engineering (China), 2021, 49(10): 48-53.
|
23 |
OMRAN M, FABRITIUS T, CHEN Guo, et al. Microwave absorption properties of steelmaking dusts: Effects of temperature on the dielectric constant (ε') and loss factor (ε'') at 1064MHz and 2423MHz[J]. RSC Advances, 2019, 9(12): 6859-6870.
|
24 |
SHANG Xiaobiao, ZHANG Fucheng, ZHAI Di, et al. Microwave transmission performance of mullite refractory ceramics over wide temperature range at 915MHz and 2450MHz[J]. Materials Chemistry and Physics, 2021, 258: 123898.
|
25 |
TAKANO K, TANAKA Y, MORENO G, et al. Energy loss of terahertz electromagnetic waves by nano-sized connections in near-self-complementary metallic checkerboard patterns[J]. Journal of Applied Physics, 2017, 122(6): 063101.
|
26 |
魏聪, 尚小标, 张富程, 等. 微波化学反应用聚四氟乙烯容器的透波性能[J]. 化工进展, 2021, 40(7): 3862-3869.
|
|
WEI Cong, SHANG Xiaobiao, ZHANG Fucheng, et al. Transmission properties of polytetrafluoroethylene container for microwave chemical reaction[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3862-3869.
|