化工进展 ›› 2023, Vol. 42 ›› Issue (3): 1562-1571.DOI: 10.16085/j.issn.1000-6613.2022-0996
收稿日期:
2022-05-30
修回日期:
2022-06-15
出版日期:
2023-03-15
发布日期:
2023-04-10
通讯作者:
达志坚
作者简介:
李光文(1986—),男,博士,研究方向为润滑油。E-mail:liguangwen.ripp@sinopec.com。
LI Guangwen(), HUA Qucheng, HUANG Zuoxin, DA Zhijian()
Received:
2022-05-30
Revised:
2022-06-15
Online:
2023-03-15
Published:
2023-04-10
Contact:
DA Zhijian
摘要:
黏温性能是润滑油的一项关键指标,在润滑油中添加黏度指数改进剂,可改善油品的黏温性能,使其低温下保持良好流动性,高温下保持适当黏度。随着国际上对节能减排的日益严苛,低黏度节能型润滑油开始引起润滑油厂商的重视,聚甲基丙烯酸酯(PMA)又重新焕发活力,引起了人们的重视。PMA类黏度指数改进剂在润滑油配方中需求逐渐增多。虽然PMA类黏度指数改进剂具有低的黏度、高的黏度指数、优异的低温性能,但是存在着热稳定性和剪切稳定性差的问题。为了改善PMA的性能,需要引入不同的烯烃单体和甲基丙烯酸烷基酯共聚。本文介绍了国内外PMA类黏度指数改进剂的研究状况,并以不同功能的烯烃单体为分类依据进行总结,分析了不同烯烃单体对PMA类黏度指数改进剂性能的影响。通过引入含极性官能团单体、烷基烯烃单体、芳基烯烃单体、植物基烯烃单体等方法,赋予PMA分散性能、剪切稳定性能、抗磨性能、减摩性能、生物降解性能。
中图分类号:
李光文, 华渠成, 黄作鑫, 达志坚. 聚甲基丙烯酸酯类黏度指数改进剂的研究进展[J]. 化工进展, 2023, 42(3): 1562-1571.
LI Guangwen, HUA Qucheng, HUANG Zuoxin, DA Zhijian. Progress on polymethacrylate as viscosity index improvers for lube oil[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1562-1571.
1 | 黄之杰, 费逸伟. 国产粘度指数改进剂的使用性能与发展[J]. 润滑油, 2003, 18(5): 1-6. |
HUANG Zhijie, FEI Yiwei. The service ability and development of domestic viscosity index improvers[J]. Lubricating Oil, 2003, 18(5): 1-6. | |
2 | 陈甜, 陈炳耀, 杨善杰. 粘度指数改进剂发展及应用[J]. 轻工科技, 2018, 34(2): 27-28. |
CHEN Tian, CHEN Bingyao, YANG Shanjie. Development and application of viscosity index improver[J]. Light Industry Science and Technology, 2018, 34(2): 27-28. | |
3 | 崔维怡, 崔华, 王秀芝, 等. 润滑油粘度指数改进剂的使用性能与发展[J]. 弹性体, 2006, 16(3): 69-72. |
CUI Weiyi, CUI Hua, WANG Xiuzhi, et al. Service ability and development of viscosity index improver[J]. China Elastomerics, 2006, 16(3): 69-72. | |
4 | 许金山, 雷凌. 不同类型黏度指数改进剂对低黏度节能型发动机油性能的影响[J]. 石油商技, 2017, 35(6): 20-27. |
XU Jinshan, LEI Ling. Effect of different types of viscosity index modifiers on the performance of low viscosity energy-saving engine oil [J]. Petroleum Products Application Research, 2017, 35(6): 20-27. | |
5 | 黄东升, 赵治宇, 徐晶晶, 等. 燃油经济性对自动传动液组成的影响[J]. 润滑油, 2018, 33(5):16-18. |
HUANG Dongsheng, ZHAO Zhiyu, XU Jingjing, et al. The influence of fuel economy on the composition of automatic transmission fluid[J]. Lubricating Oil, 2018, 33(5): 16-18, 23. | |
6 | SELBY T W. The non-Newtonian characteristics of lubricating oils[J]. A S L E Transactions, 1958, 1(1): 68-81. |
7 | COVITCH Michael J, TRICKETT Kieran J. How polymers behave as viscosity index improvers in lubricating oils[J]. Advances in Chemical Engineering and Science, 2015, 5(2): 134-151. |
8 | MARTINI Ashlie, RAMASAMY Uma Shantini, Michelle LEN. Review of viscosity modifier lubricant additives[J]. Tribology Letters, 2018, 66(2): 1-14. |
9 | 莱斯利·鲁德尼克. 润滑剂添加剂化学及应用[M]. 2版. 北京: 中国石化出版社, 2016: 281-282. |
RUDNIK Leslie R. Lubricant additives chemtstry and appilcation[M]. 2nd ed. Beijing: China Petrochemical Press, 2016: 281-282. | |
10 | 费建奇. PMAs的结构与性能及其制备工艺[J]. 润滑油, 2011, 26(6): 24-28, 35. |
FEI Jianqi. The structure, properties and preparation of PMAs[J]. Lubricating Oil, 2011, 26(6): 24-28, 35. | |
11 | PATTERSON Reid A, KABB Christopher P, NICKERSON David M, et al. Compositionally driven viscometric behaviors of poly (alkyl methacrylates) in lubricating oils [J]. Advances in Chemical Engineering and Science, 2022, 12(2): 65-86. |
12 | 刘建新. 分散抗氧型乙丙共聚物粘度指数改进剂的制备及其应用[D]. 大连: 大连理工大学, 2007. |
LIU Jianxin. Preparation and application of a dispersing antioxiding viscosity index improver[D]. Dalian: Dalian University of Technology, 2007. | |
13 | KAZANTSEV O A, SAMODUROVA S I, KAMORIN D M, et al. Investigation of the properties of novel nitrogen-containing poly(meth)acrylate oil thickening agents[J]. Petroleum Chemistry, 2014, 54(6):473-476. |
14 | SIVOKHIN A P, KAZANTSEV O A, SHIRSHIN K V, et al. Additives for petroleum products, based on copolymers of higher alkyl (meth)acrylates and N-alkylacrylamides[J]. International Polymer Science and Technology, 2016, 43(10): 11-16. |
15 | ŠOLJIĆ JERBIĆ Ivana, PARLOV VUKOVIĆ Jelena, Ante JUKIĆ. Production and application properties of dispersive viscosity index improvers[J]. Industrial & Engineering Chemistry Research, 2012, 51(37): 11914-11923. |
16 | FARAGUNA Fabio, KRAGULJAC Kornelije, Elvira VIDOVIĆ, et al. Crystallization and pour point of solutions of the dispersant poly(styrene-co-methacrylate) viscosity modifiers in lubricating base oil[J]. Tribology Transactions, 2017, 60(6): 1063-1069. |
17 | MÜLLERM, TOPOLOVEC-MIKLOZIC K, DARDIN A, et al. The design of boundary film-forming PMA viscosity modifiers[J]. Tribology Transactions, 2006, 49(2): 225-232. |
18 | FAN J, MÜLLER M, STÖHR T, et al. Reduction of friction by functionalised viscosity index improvers[J]. Tribology Letters, 2007, 28(3): 287-298. |
19 | Michael MÜLLER, FAN Jingyan, SPIKES Hugh. Influence of polymethacrylate viscosity index improvers on friction and wear of lubricant formulations[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2007: 580-588. |
20 | MURAKI M, YAMASHINA T. Shear behaviour of polyalkylmethacrylate solutions under thin film lubrication[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2011, 225(6): 479-485. |
21 | CAMPBELL Kristen B, ERCK Robert, SWITA Marie, et al. Multifunctional tunable polymethacrylates for enhanced shear stability and wear prevention[J]. ACS Applied Polymer Materials, 2020, 2(7): 2839-2848. |
22 | AKHMEDOV A I, AKCHURINA T K, LEVSHINA A M, et al. Thermal stability of copolymers of decyl methacrylate with styrene[J]. Chemistry and Technology of Fuels and Oils, 1984, 20(4):211-213. |
23 | UPADHYAY M, GHOSH P. Viscometric and wear performance of methacrylate-based lubricants[J]. Petroleum science and technology, 2014, 32(23): 2755-2762. |
24 | SAHA Debasish Kumar, GHOSH Pranab. Synthesis, characterization and performance evaluation of long chain methacrylate-octene copolymer for lubricant formulation[J]. Journal of Macromolecular Science, 2019, 56(11): 1050-1059. |
25 | AKHMEDOV A I, BUNIYAT-ZADE I A. Copolymers of butyl methacrylate with C6—C16 α-olefins as “viscosity additives”* for ester oils[J]. Chemistry and Technology of Fuels and Oils, 1997, 33(2): 113-115. |
26 | 施莫塞克 K, 舒勒 K, 萨沃吉 M T,等. 基于聚烯烃主链和甲基丙烯酸酯侧链的接枝共聚物: CN 109071736A [P]. 2018-12-21. |
SCHIMDSSK K, SCHOLLER K, SAVOJI M T, et al. Graft copolymers based on polyolefin backbone and methacrylate side chains: CN109071736A[P]. 2018-12-21. | |
27 | SEMENYCHEVA L L, GERAS’KINA E V, KAZANTSEV O A, et al. Influence of the molecular weight on the properties of alkyl methacrylate-vinyl butyl ether copolymers as thickening additives to petroleum oils[J]. Russian Journal of Applied Chemistry, 2014, 87(2): 224-229. |
28 | GHOSH Pranab, HOQUE Mainul, KARMAKAR Gobinda, et al. Dodecyl methacrylate and vinyl acetate copolymers as viscosity modifier and pour point depressant for lubricating oil[J]. International Journal of Industrial Chemistry, 2017, 8(2): 197-205. |
29 | JUKIC Ante, VIDOVIC Elvira, JANOVIC Zvonimir. Alkyl methacrylate and styrene terpolymers as lubricating oil viscosity index improvers[J]. Chemistry and Technology of Fuels and Oils, 2007, 43(5): 386-394. |
30 | Ante JUKIĆ, Marko ROGOŠIĆ, Elvira VIDOVIĆ. Thermal stability of lubricating oil additives based on styrene and n-alkyl methacrylate terpolymers[J]. Polymer-Plastics Technology and Engineering, 2009, 49(1): 74-77. |
31 | Elvira VIDOVIĆ, Karla SARIĆ, Zvonimir JANOVIĆ. Copolymerization of styrene with dodecyl methacrylate and octadecyl methacrylate[J]. Croatica Chemica Acta, 2002, 75(3): 769-782. |
32 | 魏观为, 肖奇, 张东恒, 等. 活性自由基引发星形PMA黏度指数改进剂合成及其剪切稳定性研究[J]. 润滑油, 2011, 26(S1):16-21. |
WEI Guanwei, XIAO Qi, ZHANG Dongheng, et al. Synthesis through living radical polymerization and shear stability of a starshaped polymethacrylate copolymer as a viscosity index improver[J]. Lubricating Oil, 2011, 26(S1): 16-21. | |
33 | MA Yang, YANG Hongmei, CHEN Zhihao, et al. Highly branched polymethacrylates prepared efficiently: brancher-directed topology and application performance[J]. Polymer Chemistry, 2021, 12(45): 6606-6615. |
34 | 丁丽芹, 李孟阁, 念利利,等. 植物油制备润滑油添加剂的研究进展[J]. 石油学报(石油加工), 2019, 35(2): 414-420. |
DING Liqin, LI Mengge, NIAN Lili, et al. Research progress on preparation of lubricant additives from vegetable oils[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(2): 414-420. | |
35 | 曹静思, 石啸. 可生物降解齿轮油添加剂的发展和研究现状[J]. 石油商技, 2019, 37(1): 40-47. |
CAO Jingsi, SHI Xiao. Development and research status of biodegradable gear oil additives[J]. Petroleum Products Application Research, 2019, 37(1): 40-47. | |
36 | 丁丽芹, 冯豪, 念利利, 等. 植物油基润滑油基础油及添加剂的合成研究进展[J]. 合成化学, 2020, 28(10): 924-931. |
DING Liqin, FENG Hao, NIAN Lili, et al. Research progress on synthesis of lubricating base oil and additives based on vegetable oil[J]. Chinese Journal of Synthetic Chemistry, 2020, 28(10): 924-931. | |
37 | KARMAKAR Gobinda, GHOSH Pranab. Atom transfer radical polymerization of soybean oil and its evaluation as a biodegradable multifunctional additive in the formulation of eco-friendly lubricant[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 775-781. |
38 | TALUKDAR Sujit, GHOSH Pranab. Biodegradable vegetable oil polymer as a multifunctional lubricating oil additive[J]. Journal of Macromolecular Science, 2020, 57(4): 244-249. |
39 | AGARWAL Priyanka, CHAUDHARY Sapna, PORWAL Jyoti, et al. Evaluation of renewable feedstock-derived copolymers of stearyl methacrylate-co-triglyceride as multifunctional green additives in lubricant[J]. Polymer Bulletin, 2022, 79(4): 2133-2148. |
[1] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[2] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[3] | 韩恒文, 韩伟, 李明丰. 烯烃水合反应工艺与催化剂研究进展[J]. 化工进展, 2023, 42(7): 3489-3500. |
[4] | 李玲, 马超峰, 卢春山, 于万金, 石能富, 金佳敏, 张建君, 刘武灿, 李小年. 新型含氟替代品1,1,2-三氟乙烯的合成工艺与催化剂研究进展[J]. 化工进展, 2023, 42(4): 1822-1831. |
[5] | 黄起中, 刘冰, 马红鹏, 吕文杰. 基于新型微通道分离技术的甲醇制烯烃废水处理[J]. 化工进展, 2023, 42(2): 669-676. |
[6] | 黄格省, 师晓玉, 丁文娟, 王春娇, 慕彦君, 侯雨璇. 光伏电池封装胶膜材料发展现状与前景分析[J]. 化工进展, 2023, 42(10): 5037-5046. |
[7] | 刘美佳, 王刚, 张忠东, 何盛宝, 高金森. 石蜡基原油直接催化裂解制低碳烯烃新型炼化工艺的开发[J]. 化工进展, 2023, 42(10): 5191-5199. |
[8] | 胡文德, 王仰东, 王传明. 合成气直接催化转化制低碳烯烃研究进展[J]. 化工进展, 2022, 41(9): 4754-4766. |
[9] | 吴玉帅, 尤晴, 董旭杰, 朱子麒, 王旭, 陈汇勇, 马晓迅. 杂原子掺杂beta分子筛的烯烃环氧化催化性能[J]. 化工进展, 2022, 41(8): 4192-4203. |
[10] | 张鹏, 孟凡会, 杨贵楠, 李忠. 金属氧化物在OX-ZEO催化剂中催化CO x 加氢制低碳烯烃研究进展[J]. 化工进展, 2022, 41(8): 4159-4172. |
[11] | 余世勤, 赵鑫鹏, 郑艳, 严亮, 贾建洪, 余海斌. 官能化聚烯烃的进展和应用[J]. 化工进展, 2022, 41(5): 2487-2503. |
[12] | 倪清, 来锦波, 彭东岳, 管翠诗, 龙军. 离子液体萃取分离烃类化合物的研究进展[J]. 化工进展, 2022, 41(2): 619-627. |
[13] | 张雅群, 朱佩, 熊进苏, 孙丽娟, 叶文莹, 孙婧元. 国内外聚烯烃流化床技术专利分析[J]. 化工进展, 2022, 41(10): 5155-5168. |
[14] | 毕文菲, 代成义, 李雪梅, 贺建勋, 赵彬然, 马晓迅. 等离子体与Cu-Pd/S-1催化剂协同催化甲烷转化制低碳烯烃[J]. 化工进展, 2022, 41(1): 227-236. |
[15] | 安怀清, 周吉彬, 张今令, 张涛, 叶茂, 刘中民. 再生时间对甲醇制烯烃催化剂水蒸气再生过程的影响[J]. 化工进展, 2022, 41(1): 221-226. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |