1 |
JIAO Kui, XUAN Jin, DU Qing, et al. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595(7867): 361-369.
|
2 |
GAO Weitao, HU Zunyan, HUANG Haiyan, et al. All-condition economy evaluation method for fuel cell systems: System efficiency contour map[J]. eTransportation, 2021, 9: 100127.
|
3 |
高帷韬, 雷一杰, 张勋, 等. 质子交换膜燃料电池研究进展[J]. 化工进展, 2022, 41(3): 1539-1555.
|
|
GAO Weitao, LEI Yijie, ZHANG Xun, et al. An overview of proton exchange membrane fuel cell[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1539-1555.
|
4 |
梁茜, 王诚, 雷一杰, 等. 金属有机框架材料在质子交换膜燃料电池中的潜在应用[J]. 化学进展, 2018, 30(11): 1770-1783.
|
|
LIANG Xi, WANG Cheng, LEI Yijie, et al. Potential applications of metal organic framework-based materials for proton exchange membrane fuel cells[J]. Progress in Chemistry, 2018, 30(11): 1770-1783.
|
5 |
HICKNER M A, GHASSEMI H, KIM Y S, et al. Alternative polymer systems for proton exchange membranes (PEMs)[J]. Chemical Reviews, 2004, 104(10): 4587-4611.
|
6 |
KARIMI M B, MOHAMMADI F, HOOSHYARI K. Recent approaches to improve Nafion performance for fuel cell applications: A review[J]. International Journal of Hydrogen Energy, 2019, 44(54): 28919-28938.
|
7 |
吴魁, 解东来. 高温质子交换膜研究进展[J]. 化工进展, 2012, 31(10): 2202-2206, 2220.
|
|
WU Kui, XIE Donglai. Research progress in high temperature proton exchange membranes[J]. Chemical Industry and Engineering Progress, 2012, 31(10): 2202-2206, 2220.
|
8 |
伍斌. MOFs基质子交换膜的制备及性能研究[D]. 合肥: 中国科学技术大学, 2015.
|
|
WU Bin. The preparation and charactrizations of MOFs based proton exchange membranes[D]. Hefei: University of Science and Technology of China, 2015.
|
33 |
GUI Daxiang, DAI Xing, TAO Zetian, et al. Unique proton transportation pathway in a robust inorganic coordination polymer leading to intrinsically high and sustainable anhydrous proton conductivity[J]. Journal of the American Chemical Society, 2018, 140(19): 6146-6155.
|
34 |
WU Bin, LIN Xiaocheng, GE Liang, et al. A novel route for preparing highly proton conductive membrane materials with metal-organic frameworks[J]. Chemical Communications, 2013, 49(2): 143-145.
|
35 |
WU Bin, LIANG Ge, LIN Xiaocheng, et al. Immobilization of N-(3-aminopropyl)-imidazole through MOFs in proton conductive membrane for elevated temperature anhydrous applications[J]. Journal of Membrane Science, 2014, 458: 86-95.
|
36 |
BAI Zhongxiong, LIU Shucheng, CHEN Ping, et al. Enhanced proton conduction of imidazole localized in one-dimensional Ni-metal-organic framework nanofibers[J]. Nanotechnology, 2020, 31(12): 125702.
|
37 |
DOU Yibo, ZHANG Wenjing, KAISER Andreas. Electrospinning of metal-organic frameworks for energy and environmental applications[J]. Advanced Science, 2020, 7(3): 1902590.
|
38 |
SUN Lian, GU Quanchao, WANG Honglei, et al. Anhydrous proton conductivity of electrospun phosphoric acid-doped PVP-PVDF nanofibers and composite membranes containing MOF fillers[J]. RSC Advances, 2021, 11(47): 29527-29536.
|
39 |
WANG Shubo, LIN Yuan, YANG Jian, et al. UiO-66-NH2 functionalized cellulose nanofibers embedded in sulfonated polysulfone as proton exchange membrane[J]. International Journal of Hydrogen Energy, 2021, 46(36): 19106-19115.
|
40 |
DAI Xiu, LI Xu, WANG Xinlong. Morphology controlled porous poly(lactic acid)/zeolitic imidazolate framework-8 fibrous membranes with superior PM2.5 capture capacity[J]. Chemical Engineering Journal, 2018, 338: 82-91.
|
9 |
AGMON Noam. The grotthuss mechanism[J]. Chemical Physics Letters, 1995, 244(5/6): 456-462.
|
10 |
KREUER K D, RABENAU A, WEPPNER W. Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors[J]. Angewandte Chemie International Edition in English, 1982, 21(3): 208-209.
|
11 |
LIM D W, KITAGAWA H. Proton transport in metal-organic frameworks[J]. Chemical Reviews, 2020, 120(16): 8416-8467.
|
12 |
LEE J, LIM D W, DEKURA S, et al. MOP × MOF: Collaborative combination of metal-organic polyhedra and metal-organic framework for proton conductivity[J]. ACS Applied Materials & Interfaces, 2019, 11(13): 12639-12646.
|
13 |
PHANG W J, LEE W R, YOO K, et al. pH-dependent proton conducting behavior in a metal-organic framework material[J]. Angewandte Chemie, 2014, 126(32): 8523-8527.
|
14 |
WEI Yongsheng, HU Xiaopeng, HAN Zhen, et al. Unique proton dynamics in an efficient MOF-based proton conductor[J]. Journal of the American Chemical Society, 2017, 139(9): 3505-3512.
|
15 |
NGUYEN N T T, FURUKAWA H, GÁNDARA F, et al. Three-dimensional metal-catecholate frameworks and their ultrahigh proton conductivity[J]. Journal of the American Chemical Society, 2015, 137(49): 15394-15397.
|
16 |
NAGARKAR S S, UNNI S M, SHARMA A, et al. Two-in-one: inherent anhydrous and water-assisted high proton conduction in a 3D metal-organic framework[J]. Angewandte Chemie International Edition, 2014, 53(10): 2638-2642.
|
17 |
SHIGEMATSU Akihito, YAMADA Teppei, KITAGAWA Hiroshi. Wide control of proton conductivity in porous coordination polymers[J]. Journal of the American Chemical Society, 2011, 133(7): 2034-2036.
|
18 |
ROUGHT Peter, MARSH Christopher, PILI Simona, et al. Modulating proton diffusion and conductivity in metal-organic frameworks by incorporation of accessible free carboxylic acid groups[J]. Chemical Science, 2019, 10(5): 1492-1499.
|
19 |
YANG Fan, XU Gang, DOU Yibo, et al. A flexible metal-organic framework with a high density of sulfonic acid sites for proton conduction[J]. Nature Energy, 2017, 2(11): 877-883.
|
20 |
JEONG N C, SAMANTA B, LEE C Y, et al. Coordination-chemistry control of proton conductivity in the iconic metal-organic framework material HKUST-1[J]. Journal of the American Chemical Society, 2012, 134(1): 51-54.
|
21 |
ZHANG Fengming, DONG Longzhang, QIN Junsheng, et al. Effect of imidazole arrangements on proton-conductivity in metal-organic frameworks[J]. Journal of the American Chemical Society, 2017, 139(17): 6183-6189.
|
22 |
BUREEKAEW Sareeya, HORIKE Satoshi, HIGUCHI Masakazu, et al. One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity[J]. Nature Materials, 2009, 8(10): 831-836.
|
23 |
TAYLOR J M, KOMATSU T, DEKURA S, et al. The role of a three dimensionally ordered defect sublattice on the acidity of a sulfonated metal-organic framework[J]. Journal of the American Chemical Society, 2015, 137(35): 11498-11506.
|
24 |
TAYLOR J M, DEKURA S, IKEDA R, et al. Defect control to enhance proton conductivity in a metal-organic framework[J]. Chemistry of Materials, 2015, 27(7): 2286-2289.
|
25 |
LI Xiaomin, DONG Longzhang, LI Shunli, et al. Synergistic conductivity effect in a proton sources-coupled metal-organic framework[J]. ACS Energy Letters, 2017, 2(10): 2313-2318.
|
26 |
PATEL H A, MANSOR N, GADIPELLI S, et al. Superacidity in nafion/MOF hybrid membranes retains water at low humidity to enhance proton conduction for fuel cells[J]. ACS Applied Materials & Interfaces, 2016, 8(45): 30687-30691.
|
27 |
DONNADIO Anna, NARDUCCI Riccardo, CASCIOLA Mario, et al. Mixed membrane matrices based on nafion/UiO-66/SO3H-UiO-66 nano-MOFs: revealing the effect of crystal size, sulfonation, and filler loading on the mechanical and conductivity properties[J]. ACS Applied Materials & Interfaces, 2017, 9(48): 42239-42246.
|
28 |
KIM H J, TALUKDAR K, CHOI S J. Tuning of nafion® by HKUST-1 as coordination network to enhance proton conductivity for fuel cell applications[J]. Journal of Nanoparticle Research, 2016, 18(2): 1-6.
|
29 |
EREN E O, ÖZKAN N, DEVRIM Y. Preparation of polybenzimidazole/ZIF-8 and polybenzimidazole/UiO-66 composite membranes with enhanced proton conductivity[J]. International Journal of Hydrogen Energy, 2022, 47(45): 19690-19701.
|
30 |
ZHANG Jin, BAI Huijuan, REN Qiu, et al. Extra water- and acid-stable MOF-801 with high proton conductivity and its composite membrane for proton-exchange membrane[J]. ACS Applied Materials & Interfaces, 2018, 10(34): 28656-28663.
|
31 |
LIANG Xiaoqiang, ZHANG Feng, FENG Wei, et al. From metal-organic framework (MOF) to MOF-polymer composite membrane: Enhancement of low-humidity proton conductivity[J]. Chemical Science, 2013, 4(3): 983-992.
|
32 |
LUO Hongbin, WANG Mei, LIU Shaoxian, et al. Proton conductance of a superior water-stable metal-organic framework and its composite membrane with poly(vinylidene fluoride)[J]. Inorganic Chemistry, 2017, 56(7): 4169-4175.
|