化工进展 ›› 2022, Vol. 41 ›› Issue (S1): 247-259.DOI: 10.16085/j.issn.1000-6613.2021-2635
石轩1(), 杨东元2, 胡浩斌3, 王焦飞4, 张壮壮5, 贺建勋1, 代成义1(), 马晓迅1,3()
收稿日期:
2021-12-27
修回日期:
2022-03-30
出版日期:
2022-10-20
发布日期:
2022-11-10
通讯作者:
代成义,马晓迅
作者简介:
石轩(1995—),男,硕士研究生,研究方向为合成气催化转化。E-mail:1043790750@qq.com。
基金资助:
SHI Xuan1(), YANG Dongyuan2, HU Haobin3, WANG Jiaofei4, ZHANG Zhuangzhuang5, HE Jianxun1, DAI Chengyi1(), MA Xiaoxun1,3()
Received:
2021-12-27
Revised:
2022-03-30
Online:
2022-10-20
Published:
2022-11-10
Contact:
DAI Chengyi, MA Xiaoxun
摘要:
与传统的甲醇和苯烷基化反应相比,合成气和苯一步法制甲苯/二甲苯具有苯转化率高,催化剂稳定性好,经济性高等优点。本研究将系列Zn基的金属氧化物与H-ZSM-5分子筛组成双功能催化剂,实现了合成气与苯高效转化为甲苯/二甲苯,并筛选出最优的双功能催化剂为ZnAlCrO x &H-ZSM-5。原位红外实验发现,单独的合成气在催化剂上的转化较弱,但加入苯之后,苯与甲氧基等中间体的烷基化反应可以有效拉动合成气的转化。这表明,双功能催化剂中金属组分和分子筛组分间的协同作用拉动了该反应的高效进行。通过Zn、Mg、Ga等元素改性H-ZSM-5分子筛,使得分子筛B酸酸量与L酸酸量的比值降低,发现比值的降低有助于苯的转化。其中Zn改性后B酸与L酸的比值降低最为显著,苯转化率增加的也最多。调变反应温度、原料空速、合成气氢碳比可以控制苯的烷基化程度,调节苯烷基化各产物的选择性。ZnAlCrO x &H-ZSM-5双功能催化剂在压力3MPa、温度400℃的反应条件下,兼具高的苯转化率(90.6%)和甲苯/二甲苯选择性(74.3%),同时CO有效利用率为33.7%。
中图分类号:
石轩, 杨东元, 胡浩斌, 王焦飞, 张壮壮, 贺建勋, 代成义, 马晓迅. 苯与合成气在ZnAlCrO x &HZSM-5双功能催化剂上一步法制甲苯/二甲苯[J]. 化工进展, 2022, 41(S1): 247-259.
SHI Xuan, YANG Dongyuan, HU Haobin, WANG Jiaofei, ZHANG Zhuangzhuang, HE Jianxun, DAI Chengyi, MA Xiaoxun. One-step preparation of toluene/xylene from benzene and syngas over ZnAlCrO x &HZSM-5 bifunctional catalyst[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 247-259.
图5 合成气与甲醇做甲基化原料的对比[反应条件:①合成气:400℃,3MPa,H2/CO比例为5∶3,GHSV=4800mL/(gcat·h),苯的空速0.5h-1,催化剂为ZnAlCrO x &H-ZSM-5双功能催化剂;②甲醇:400℃,0.1MPa,苯的空速0.5h-1,甲醇/苯摩尔比为1.2,催化剂为H-ZSM-5分子筛]
催化剂 | 苯的转 化率/% | 选择性/% | 总选 择性① | |||
---|---|---|---|---|---|---|
甲苯 | 二甲苯 | 乙苯 | C9+芳烃 | |||
ZnAlCrO x &H-ZSM-5 | 90.6 | 22.3 | 52.0 | 2.1 | 23.6 | 74.3 |
ZnAl2O4&H-ZSM-5 | 70.5 | 38.8 | 41.7 | 3.6 | 16.0 | 80.5 |
ZnMn2O4&H-ZSM-5 | 44.8 | 60.9 | 24.6 | 9.5 | 5.0 | 85.5 |
表1 金属氧化物&HZSM-5催化剂上合成气与苯烷基化性能
催化剂 | 苯的转 化率/% | 选择性/% | 总选 择性① | |||
---|---|---|---|---|---|---|
甲苯 | 二甲苯 | 乙苯 | C9+芳烃 | |||
ZnAlCrO x &H-ZSM-5 | 90.6 | 22.3 | 52.0 | 2.1 | 23.6 | 74.3 |
ZnAl2O4&H-ZSM-5 | 70.5 | 38.8 | 41.7 | 3.6 | 16.0 | 80.5 |
ZnMn2O4&H-ZSM-5 | 44.8 | 60.9 | 24.6 | 9.5 | 5.0 | 85.5 |
催化剂 | 温度/℃ | 压力/MPa | 气体空速/mL·gcat-1·h-1 | 苯体积空速/h-1 | 苯转化率/% | 甲苯、二甲苯总选择性/% | 参考文献 |
---|---|---|---|---|---|---|---|
Pt/H-ZSM-5 | 500 | 3 | 12000 | 3 | 9.04 | 82.85 | [ |
Pt-11Ce/H-ZSM-5 | 500 | 3 | 12000 | 3 | 34.2 | 96.7 | [ |
Cu-Mn-Al2O3/ZSM-5 | 350 | 1.5 | 1885 | 1.25 | 16.7 | 84.5 | [ |
Zr/H[Zn]5ZSM-5 | 400 | 3.3 | 3600 | 1 | 31 | 89 | [ |
ZnAlCrO x &H-ZSM-5 | 400 | 3 | 4800 | 0.57 1.14 | 90.6 64.9 | 74.3 82.4 | 本文研究 |
表2 合成气与苯烷基化催化剂的性能比较
催化剂 | 温度/℃ | 压力/MPa | 气体空速/mL·gcat-1·h-1 | 苯体积空速/h-1 | 苯转化率/% | 甲苯、二甲苯总选择性/% | 参考文献 |
---|---|---|---|---|---|---|---|
Pt/H-ZSM-5 | 500 | 3 | 12000 | 3 | 9.04 | 82.85 | [ |
Pt-11Ce/H-ZSM-5 | 500 | 3 | 12000 | 3 | 34.2 | 96.7 | [ |
Cu-Mn-Al2O3/ZSM-5 | 350 | 1.5 | 1885 | 1.25 | 16.7 | 84.5 | [ |
Zr/H[Zn]5ZSM-5 | 400 | 3.3 | 3600 | 1 | 31 | 89 | [ |
ZnAlCrO x &H-ZSM-5 | 400 | 3 | 4800 | 0.57 1.14 | 90.6 64.9 | 74.3 82.4 | 本文研究 |
1 | 陈嵩嵩, 张国帅, 霍锋, 等. 煤基大宗化学品市场及产业发展趋势[J]. 化工进展, 2020, 39(12): 5009-5020. |
CHEN Songsong, ZHANG Guoshuai, HUO Feng, et al. Market and technology development trends of coal-based bulk chemicals[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5009-5020. | |
2 | 李文斌, 房克功, 赵璐, 等. 煤基合成气制低碳醇技术应用进展[C]//第四届能源转化化学与技术研讨会摘要集, 2021: 109. |
3 | 叶茂, 朱文良, 徐庶亮, 等. 关于煤化工与石油化工的协调发展[J]. 中国科学院院刊, 2019, 34(4): 417-425. |
YE Mao, ZHU Wenliang, XU Shuliang, et al. Coordinated development of coal chemical and petrochemical industries in China[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 417-425. | |
4 | SHEN Xinquan, KANG Jincan, NIU Wei, et al. Impact of hierarchical pore structure on the catalytic performances of MFI zeolites modified by ZnO for the conversion of methanol to aromatics[J]. Catalysis Science & Technology, 2017, 7(16): 3598-3612. |
5 | NIZIOLEK Alexander M, ONEL Onur, FLOUDAS Christodoulos A. Production of benzene, toluene, and xylenes from natural gas via methanol: Process synthesis and global optimization[J]. AIChE Journal, 2016, 62(5): 1531-1556. |
6 | 江甜, 刘华伟, 孔渝华. 甲醇芳构化制对二甲苯催化剂的研究进展[J]. 化工设计通讯, 2015, 41(6): 5-8. |
JIANG Tian, LIU Huawei, KONG Yuhua. Research progress of catalyst for paraxylene by aromatization of methanol[J]. Chemical Engineering Design Communications, 2015, 41(6): 5-8. | |
7 | 于政锡, 徐庶亮, 张涛, 等. 对二甲苯生产技术研究进展及发展趋势[J]. 化工进展, 2020, 39(12): 4984-4992. |
YU Zhengxi, XU Shuliang, ZHANG Tao, et al. Research progress and development trend in para-xylene production technology[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4984-4992. | |
8 | SUH Y W, MOON S H, RHEE H K. Active sites in Cu/ZnO/ZrO2 catalysts for methanol synthesis from CO/H2 [J]. Catalysis Today, 2000, 63(2/3/4): 447-452. |
9 | 孔令奇, NARKHEDE Nilesh, 刘瑞琴, 等. 插层结构水滑石前驱体制备Cu/ZnO/Al2O3催化剂及其甲醇合成催化性能[J]. 燃料化学学报, 2021, 49(4): 513-521. |
KONG Lingqi, NARKHEDE Nilesh, LIU Ruiqin, et al. Preparation of Cu/ZnO/Al2O3 catalyst by intercalated hydrotalcite precursor and its catalytic performance in methanol synthesis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(4): 513-521. | |
10 | CHEN H Y, LAU S P, CHEN L, et al. Synergism between Cu and Zn sites in Cu/Zn catalysts for methanol synthesis[J]. Applied Surface Science, 1999, 152(3): 193-199. |
11 | 杨盼盼, 孙琦, 张玉龙, 等. 甲醇合成中CO2作用的研究进展[J]. 化工进展, 2018, 37(S1): 94-101. |
YANG Panpan, SUN Qi, ZHANG Yulong, et al. Research progress of the role of CO2 in methanol synthesis[J]. Chemical Industry and Engineering Progress, 2018, 37(S1): 94-101. | |
12 | WANG Qingtao, HAN Wenwen, HU Hualei, et al. Influence of the post-treatment of HZSM-5 zeolite on catalytic performance for alkylation of benzene with methanol[J]. Chinese Journal of Chemical Engineering, 2017, 25(12): 1777-1783. |
13 | 李贵贤, 郭泳圻, 刘静静, 等. MgO改性HMCM-22分子筛催化苯与甲醇烷基化制甲苯[J]. 化工进展, 2019, 38(8): 3695-3700. |
LI Guixian, GUO Yongqi, LIU Jingjing, et al. Alkylation of benzene with methanol to toluene catalyzed by MgO modified HMCM-22 molecular sieve[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3695-3700. | |
14 | QIAN Ji, XIONG Guang, LIU Jiaxu, et al. A preliminary study on the role of the internal and external surfaces of nano-ZSM-5 zeolite in the alkylation of benzene with methanol[J]. Industrial & Engineering Chemistry Research, 2019, 58(21): 9006-9016. |
15 | 袁苹, 王浩, 薛彦峰, 等. 不同粒径ZSM-5分子筛在苯与甲醇烷基化反应中催化性能及反应条件优化[J]. 物理化学学报, 2016, 32(7): 1775-1784. |
YUAN Ping, WANG Hao, XUE Yanfeng, et al. Catalytic properties of different crystal sizes for ZSM-5 zeolites on the alkylation of benzene with methanol and optimization of the reaction conditions[J]. Acta Physico-Chimica Sinica, 2016, 32(7): 1775-1784. | |
16 | VAN DER MYNSBRUGGE Jeroen, VISUR Melina, OLSBYE Unni, et al. Methylation of benzene by methanol: Single-site kinetics over H-ZSM-5 and H-beta zeolite catalysts[J]. Journal of Catalysis, 2012, 292: 201-212. |
17 | SCHMIDT Franz, HOFFMANN Claudia, GIORDANINO Filippo, et al. Coke location in microporous and hierarchical ZSM-5 and the impact on the MTH reaction[J]. Journal of Catalysis, 2013, 307: 238-245. |
18 | QIAN Qingyun, Javier RUIZ-MARTÍNEZ, MOKHTAR Mohamed, et al. Single-catalyst particle spectroscopy of alcohol-to-olefins conversions: comparison between SAPO-34 and SSZ-13[J]. Catalysis Today, 2014, 226: 14-24. |
19 | 钟杰, 刘晓晖, 杨帆, 等. Pt/ZSM-5催化苯与合成气烷基化反应及工艺条件研究[J]. 石油炼制与化工, 2016, 47(5): 62-66. |
ZHONG Jie, LIU Xiaohui, YANG Fan, et al. Study on alkylation of benzene and syngas over Pt/ZSM-5 catalyst and process conditions[J]. Petroleum Processing and Petrochemicals, 2016, 47(5): 62-66. | |
20 | YANG Fan, ZHONG Jie, LIU Xiaohui, et al. A novel catalytic alkylation process of syngas with benzene over the cerium modified platinum supported on HZSM-5 zeolite[J]. Applied Energy, 2018, 226: 22-30. |
21 | ZHAO Xuebin, ZENG Feng, ZHAO Bin, et al. Alkylation activity of benzene with syngas over Cu-based catalysts[J]. China Petroleum Processing and Petrochemical Technology, 2015, 17(1): 31-38. |
22 | YU Bo, DING Chuanmin, WANG Junwen, et al. Dual effects of zinc species on active sites in bifunctional composite catalysts Zr/H[Zn]ZSM-5 for alkylation of benzene with syngas[J]. The Journal of Physical Chemistry C, 2019, 123(31): 18993-19004. |
23 | ZHAO Xiao, SHI Xuan, CHEN Zhongshun, et al. Efficient conversion of benzene and syngas to toluene and xylene over ZnO-ZrO2&H-ZSM-5 bifunctional catalysts[J]. Chinese Journal of Chemical Engineering, 2021. |
24 | JIAO Feng, LI Jinjing, PAN Xiulian, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068. |
25 | MAJHI Sachchit, DALAI Ajay K, PANT Kamal K. Methanol assisted methane conversion for higher hydrocarbon over bifunctional Zn-modified Mo/HZSM-5 catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2015, 398: 368-375. |
26 | LIU B S, ZHANG Y, LIU J F, et al. Characteristic and mechanism of methane dehydroaromatization over Zn-based/HZSM-5 catalysts under conditions of atmospheric pressure and supersonic jet expansion[J]. Journal of Physical Chemistry C, 2011, 115(34): 16954-16962. |
27 | SERRANO D P, AGUADO J, MORALES G, et al. Molecular and meso- and macroscopic properties of hierarchical nanocrystalline ZSM-5 zeolite prepared by seed silanization[J]. Chemistry of Materials, 2009, 21(4): 641-654. |
28 | MORES D, STAVITSKI E, KOX M H F, et al. Space- and time-resolved in situ spectroscopy on the coke formation in molecular sieves: methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2008, 14(36): 11320-11327. |
29 | LAVALLEY J C, SAUSSEY J, LAMOTTE J, et al. Infrared study of carbon monoxide hydrogenation over rhodium/ceria and rhodium/silica catalysts[J]. The Journal of Physical Chemistry, 1990, 94(15): 5941-5947. |
30 | SCHILD C, WOKAUN A, BAIKER A. On the mechanism of CO and CO2 hydrogenation reactions on zirconia-supported catalysts: a diffuse reflectance FTIR study: Part II. Surface species on copper/zirconia catalysts: Implications for methanoi synthesis selectivity[J]. Journal of Molecular Catalysis, 1990, 63(2): 243-254. |
31 | JACOBS G, KHALID S, PATTERSON P M, et al. Water-gas shift catalysis: Kinetic isotope effect identifies surface formates in rate limiting step for Pt/ceria catalysts[J]. Applied Catalysis A: General, 2004, 268(1/2): 255-266. |
32 | CHEN Kun, DUAN Xinping, FANG Huihuang, et al. Selective hydrogenation of CO2 to methanol catalyzed by Cu supported on rod-like La2O2CO3 [J]. Catalysis Science & Technology, 2018, 8(4): 1062-1069. |
33 | LI Wen, WANG Kuncan, HUANG Junjie, et al. M x O y -ZrO2 (M = Zn, Co, Cu) solid solutions derived from schiff base-bridged UiO-66 composites as high-performance catalysts for CO2 hydrogenation[J]. ACS Applied Materials & Interfaces, 2019, 11(36): 33263-33272. |
34 | YANG Ruiqin, FU Yilu, ZHANG Yi, et al. In situ DRIFT study of low-temperature methanol synthesis mechanism on Cu/ZnO catalysts from CO2-containing syngas using ethanol promoter[J]. Journal of Catalysis, 2004, 228(1): 23-35. |
35 | ZUO Jiachang, CHEN Weikun, LIU Jia, et al. Selective methylation of toluene using CO2 and H2 to para-xylene[J]. Science Advances, 2020, 6(34): 5433. |
36 | FISHER I A, BELL A T. In situ infrared study of methanol synthesis from H2/CO over Cu/SiO2and Cu/ZrO2/SiO2 [J]. Journal of Catalysis, 1998, 178(1): 153-173. |
37 | KURTZ Melanie, STRUNK Jennifer, HINRICHSEN Olaf, et al. Active sites on oxide surfaces: ZnO-catalyzed synthesis of methanol from CO and H2 [J]. Angewandte Chemie (International Ed in English), 2005, 44(18): 2790-2794. |
38 | GRABOW L C, MAVRIKAKIS M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation[J]. ACS Catalysis, 2011, 1(4): 365-384. |
39 | NI Youming, LIU Yong, CHEN Zhiyang, et al. Realizing and recognizing syngas-to-olefins reaction via a dual-bed catalyst[J]. ACS Catalysis, 2019, 9(2): 1026-1032. |
40 | SU Junjie, ZHOU Haibo, LIU Su, et al. Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrO x /AlPO-18 bifunctional catalysts[J]. Nature Communications, 2019, 10(1): 1297. |
41 | ZHOU Wei, KANG Jincan, CHENG Kang, et al. Direct conversion of syngas into methyl acetate, ethanol, and ethylene by relay catalysis via the intermediate dimethyl ether[J]. Angewandte Chemie (International Ed in English), 2018, 57(37): 12012-12016. |
42 | 樊金龙, 徐亚荣, 冯丽梅, 等. 镁改性ZSM-5催化剂的制备及其催化苯与甲醇烷基化反应性能[J]. 石油炼制与化工, 2021, 52(5): 61-66. |
FAN Jinlong, XU Yarong, FENG Limei, et al. Preparation of magnesium modified ZSM-5 catalyst and its catalytic performance for alkylation of benzene with methanol[J]. Petroleum Processing and Petrochemicals, 2021, 52(5): 61-66. | |
43 | 韩丽华, 刘平, 高俊华, 等. Si、P、Mg改性HZSM-5提高甲苯/甲醇烷基化中对二甲苯的选择性[J]. 天然气化工(C1化学与化工), 2019, 44(3): 1-6. |
HAN Lihua, LIU Ping, GAO Junhua, et al. Si, P and Mg-modified HZSM-5 catalyst for enhancing the Para-selectivity in toluene/methanol alkylation[J]. Natural Gas Chemical Industry, 2019, 44(3): 1-6. | |
44 | 佘励勤, 王多才, 李宣文, 等. 锌在ZnZSM-5沸石中的形态及其催化作用[J]. 物理化学学报, 1994, 10(3): 247-253. |
SHE Liqin, WANG Duocai, LI Xuanwen, et al. The states of zinc in ZnZSM-5 zeolites and their catalysis[J]. Acta Physico-Chimica Sinica, 1994, 10(3): 247-253. | |
45 | 刘丹, 陈星月, 时一鸣, 等. 甲醇制对二甲苯联产低碳烯烃改性ZSM-5催化剂在流化床中的反应性能[J]. 化工进展, 2020, 39(11): 4488-4496. |
LIU Dan, CHEN Xingyue, SHI Yiming, et al. Performance of modified ZSM-5 zeolite in fluidized bed for co-production of low-carbon olefins and p-xylene from methanol[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4488-4496. | |
46 | 赵岩, 马新会, 郑远馨, 等. 镁选择改性ZSM-5催化甲苯甲基化制对二甲苯[J]. 石油学报(石油加工), 2021, 37(3): 469-477. |
ZHAO Yan, MA Xinhui, ZHENG Yuanxin, et al. Selective toluene methylation to p-xylene catalyzed by ZSM-5 modified with magnesium compounds[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(3): 469-477. | |
47 | 刘汝玲, 朱华青, 吴志伟, 等. Ga改性ZSM-5分子筛催化丙烷芳构化性能研究[J]. 燃料化学学报, 2015, 43(8): 961-969. |
LIU Ruling, ZHU Huaqing, WU Zhiwei, et al. Aromatization of propane over Ga-modified ZSM-5 catalysts[J]. Journal of Fuel Chemistry and Technology, 2015, 43(8): 961-969. |
[1] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[2] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[3] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[4] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[5] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[6] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[7] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[8] | 汪嘉欣, 潘勇, 熊欣怡, 万晓月, 王建超. 甲苯一步催化硝化制备二硝基甲苯反应过程及危险性[J]. 化工进展, 2023, 42(7): 3420-3430. |
[9] | 王达锐, 孙洪敏, 薛明伟, 王一棪, 刘威, 杨为民. 微波法高效合成全结晶ZSM-5分子筛催化剂及其催化性能[J]. 化工进展, 2023, 42(7): 3582-3588. |
[10] | 任建鹏, 吴彩文, 刘慧君, 吴文娟. 木质素-聚苯胺复合材料的制备及对刚果红的吸附[J]. 化工进展, 2023, 42(6): 3087-3096. |
[11] | 吴和平, 曹宁, 徐圆圆, 曹云波, 李裕东, 杨强, 卢浩. 氢氟酸与烷基化油快速分离[J]. 化工进展, 2023, 42(6): 2845-2853. |
[12] | 王子健, 柯明, 宋昭峥, 李佳涵, 童燕兵, 孙巾茹. 分子筛催化汽油烷基化降苯技术研究进展[J]. 化工进展, 2023, 42(5): 2371-2389. |
[13] | 庞楠炯, 王晓玲, 廖学品, 石碧. 胶原纤维固化黑荆树单宁对硼同位素的分离[J]. 化工进展, 2023, 42(5): 2616-2625. |
[14] | 阮鹏, 杨润农, 林梓荣, 孙永明. 甲烷催化部分氧化制合成气催化剂的研究进展[J]. 化工进展, 2023, 42(4): 1832-1846. |
[15] | 田园, 娄舒洁, 孟闪茹, 闫敬如, 肖海成. 合成气制高碳醇钴基催化剂研究进展[J]. 化工进展, 2023, 42(4): 1869-1876. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |