化工进展 ›› 2022, Vol. 41 ›› Issue (6): 2826-2838.DOI: 10.16085/j.issn.1000-6613.2021-1566
收稿日期:
2021-07-23
修回日期:
2021-10-15
出版日期:
2022-06-10
发布日期:
2022-06-21
通讯作者:
卢会霞
作者简介:
马镓莉(1997—),女,硕士研究生,研究方向为水污染控制与资源化。E-mail:基金资助:
MA Jiali(), LU Huixia(), MIAO Xiaoxue
Received:
2021-07-23
Revised:
2021-10-15
Online:
2022-06-10
Published:
2022-06-21
Contact:
LU Huixia
摘要:
乳清废水有机负荷高,若直接排放将引起严重的环境污染,且造成蛋白质资源的浪费。因此,乳清废水资源化利用日益受到人们的关注。本文简要介绍了乳清蛋白组成、特性及其应用,归纳了近年来膜技术在乳清资源化利用方面的应用。首先介绍了压力驱动膜技术中超滤和荷电超滤在乳清蛋白分离和浓缩方面的应用,此后重点介绍了电驱动膜过程中电超滤(EUF)和电渗析耦合超滤体系(EDUF)在乳清蛋白以及活性肽分离回收领域的应用最新进展,并针对乳清蛋白分离过程中的膜污染现象进行了分析,提出膜污染过程的影响因素及控制措施,以期为乳清的资源化利用提供有益参考。最后指出了膜技术在单个乳清蛋白的分离回收方面以及工业化放大等方面仍存在一定局限性,并对此提出了解决方案及其未来的发展方向。
中图分类号:
马镓莉, 卢会霞, 苗晓雪. 基于膜技术分离纯化乳清蛋白的研究进展[J]. 化工进展, 2022, 41(6): 2826-2838.
MA Jiali, LU Huixia, MIAO Xiaoxue. Research progress on separation and purification of whey protein based on membrane technology[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2826-2838.
乳清蛋白 | 质量分数/% | 分子量/kDa | 等电点pI | 特性 |
---|---|---|---|---|
β-乳球蛋白(β-Lg) | 30.0~55.0 | 18.4 | 5.1~5.3 | 具有抗高血压、抗癌、乳化、增强食欲等作用 |
α-乳白蛋白(α-La) | 20.0~25.0 | 14.4 | 4.4~4.8 | 抗高血压、抗氧化活性和抗肥胖潜力;乳化、凝胶和泡沫特性;用于婴幼儿配方奶粉加工 |
牛血清白蛋白(BSA) | 5.0~10.0 | 66.5 | 4.7~5.0 | 参与脂质合成;具有抗癌和抗氧化活性;起泡、乳化和胶凝性能 |
乳铁蛋白(LF) | 1.0~2.0 | 78.0 | 7.0~9.0 | 抗肥胖潜力、抗炎抗病毒和抗菌活性,耐热变性;用于食品工业中的补充剂 |
免疫球蛋白(Ig) | 10.0 | 150.0~1000.0 | 5.5~8.3 | 抗胆固醇、抗菌和抗病毒特性;生产婴幼儿配方食品 |
乳过氧化物酶(Lp) | 0.5 | 79.0~89.0 | 9.5 | 具有抑菌、杀菌和抗真菌活性;可预防多种疾病,例如肺炎;用于保存食品,口腔护理或化妆品 |
糖巨肽(GMP) | 10.0~15.0 | <7.0 | 4.3~4.6 | 具有调节免疫和促生作用;有益于心血管、消化、免疫或神经系统;用于苯酮尿症患者的食品中 |
表1 乳清蛋白的组成及特性[3, 27-28]
乳清蛋白 | 质量分数/% | 分子量/kDa | 等电点pI | 特性 |
---|---|---|---|---|
β-乳球蛋白(β-Lg) | 30.0~55.0 | 18.4 | 5.1~5.3 | 具有抗高血压、抗癌、乳化、增强食欲等作用 |
α-乳白蛋白(α-La) | 20.0~25.0 | 14.4 | 4.4~4.8 | 抗高血压、抗氧化活性和抗肥胖潜力;乳化、凝胶和泡沫特性;用于婴幼儿配方奶粉加工 |
牛血清白蛋白(BSA) | 5.0~10.0 | 66.5 | 4.7~5.0 | 参与脂质合成;具有抗癌和抗氧化活性;起泡、乳化和胶凝性能 |
乳铁蛋白(LF) | 1.0~2.0 | 78.0 | 7.0~9.0 | 抗肥胖潜力、抗炎抗病毒和抗菌活性,耐热变性;用于食品工业中的补充剂 |
免疫球蛋白(Ig) | 10.0 | 150.0~1000.0 | 5.5~8.3 | 抗胆固醇、抗菌和抗病毒特性;生产婴幼儿配方食品 |
乳过氧化物酶(Lp) | 0.5 | 79.0~89.0 | 9.5 | 具有抑菌、杀菌和抗真菌活性;可预防多种疾病,例如肺炎;用于保存食品,口腔护理或化妆品 |
糖巨肽(GMP) | 10.0~15.0 | <7.0 | 4.3~4.6 | 具有调节免疫和促生作用;有益于心血管、消化、免疫或神经系统;用于苯酮尿症患者的食品中 |
1 | VOURCH M, BALANNEC B, CHAUFER B, et al. Treatment of dairy industry wastewater by reverse osmosis for water reuse[J]. Desalination, 2008, 219(1/2/3): 190-202. |
2 | CARVALHO F, PRAZERES A R, RIVAS J. Cheese whey wastewater: characterization and treatment[J]. Science of the Total Environment, 2013, 445/446: 385-396. |
3 | ARGENTA A B, SCHEER A D P. Membrane separation processes applied to whey: a review[J]. Food Reviews International, 2020, 36(5): 499-528. |
4 | 王文琼, 张兰威, 韩雪. 酪氨酸酶催化乳清蛋白聚合耦联超滤的效果研究[J]. 食品与发酵工业, 2017, 43(9): 40-45. |
WANG Wenqiong, ZHANG Lanwei, HAN Xue. Tyrosinase catalyze whey protein cross-linking coupling ultrafiltration[J]. Food and Fermentation Industries, 2017, 43(9): 40-45. | |
5 | 滕国新, 于瑞红. 不同处理参数对乳清的理化性质及超滤膜通量的影响[J]. 中国乳业, 2016(11): 60-68. |
TENG Guoxin, YU Ruihong. Effects of different treatment parameters on the physical and chemical properties of whey and the flux of ultrafiltration membrane[J]. China Dairy, 2016(11): 60-68. | |
6 | 王丁, 白建江, 田晶. 乳品加工废水纳滤处理膜的清洗技术进展[J]. 清洗世界, 2016, 32(6): 34-36, 44. |
WANG Ding, BAI Jianjiang, TIAN Jing. Membrane cleaning technology and research progress for nano- filtration of dairy wastewater[J]. Cleaning World, 2016, 32(6): 34-36, 44. | |
7 | VALTA K, DAMALA P, ANGELI E, et al. Current treatment technologies of cheese whey and wastewater by greek cheese manufacturing units and potential valorization opportunities[J]. Waste and Biomass Valorization, 2017, 8(5): 1649-1663. |
8 | ZHAO C H, ASHAOLU T J. Bioactivity and safety of whey peptides[J]. LWT, 2020, 134: 109935. |
9 | LIU L, ZHANG W, YU X D, et al. Process optimization for foam separation of yak whey protein by response surface methodology[J]. Separation Science and Technology, 2018, 53(14): 2327-2337. |
10 | EL-SAYED M M H, CHASE H A. Trends in whey protein fractionation[J]. Biotechnology Letters, 2011, 33(8): 1501-1511. |
11 | MACIEL K S, SANTOS L S, BONOMO R C F, et al. Purification of lactoferrin from sweet whey using ultrafiltration followed by expanded bed chromatography[J]. Separation and Purification Technology, 2020, 251: 117324. |
12 | AGUERO R, BRINGAS E, ROMÁN M F S, et al. Membrane processes for whey proteins separation and purification. A review[J]. Current Organic Chemistry, 2017, 21(17): 1740-1752. |
13 | PRAZERES A R, CARVALHO F, RIVAS J. Cheese whey management: a review[J]. Journal of Environmental Management, 2012, 110: 48-68. |
14 | SAXENA A, TRIPATHI B P, KUMAR M, et al. Membrane-based techniques for the separation and purification of proteins: an overview[J]. Advances in Colloid and Interface Science, 2009, 145(1/2): 1-22. |
15 | POULIOT Y. Membrane processes in dairy technology—From a simple idea to worldwide panacea[J]. International Dairy Journal, 2008, 18(7): 735-740. |
16 | 孙敏, 郭永泽, 李霜, 等. 乳清蛋白生物活性肽研究进展[J]. 基因组学与应用生物学, 2019, 38(12): 5428-5435. |
SUN Min, GUO Yongze, LI Shuang, et al. Review on bioactive peptides of whey protein[J]. Genomics and Applied Biology, 2019, 38(12): 5428-5435. | |
17 | ADDAI F P, LIN F, WANG T T, et al. Technical integrative approaches to cheese whey valorization towards sustainable environment[J]. Food & Function, 2020, 11(10): 8407-8423. |
18 | 王文琼, 张兰威, 易华西. 干酪乳清蛋白膜回收技术及膜污染问题研究进展[J]. 食品与发酵工业, 2017, 43(2): 265-273. |
WANG Wenqiong, ZHANG Lanwei, YI Huaxi. Cheese whey protein membrane recycling technology and membrane fouling problem[J]. Food and Fermentation Industries, 2017, 43(2): 265-273. | |
19 | RISNER D, SHAYEVITZ A, HAAPALA K, et al. Fermentation and distillation of cheese whey: carbon dioxide-equivalent emissions and water use in the production of whey spirits and white whiskey[J]. Journal of Dairy Science, 2018, 101(4): 2963-2973. |
20 | MANSOR E S, ALI E A, SHABAN A M. Tight ultrafiltration polyethersulfone membrane for cheese whey wastewater treatment[J]. Chemical Engineering Journal, 2021, 407: 127175. |
21 | SHRADDHA RC C R, NALAWADE T K A. Whey based beverage: its functionality, formulations, health benefits and applications[J]. Journal of Food Processing & Technology, 2015, 6(10): 1-8. |
22 | LAGRANGE V. 功能性乳制品和新型保健食品配料的乳清产品及其新组分[J]. 中国乳品工业, 1999, 27(4): 32-37. |
LAGRANGE V.Whey products and new components of functional dairy products and new health food ingredients [J]. China Dairy Industry, 1999, 27(4): 32-37. | |
23 | 蒋超. 干酪乳清中乳蛋白分离纯化的研究[D]. 大连: 大连工业大学, 2010. |
JIANG Chao. Study on separation and purification of milk protein in cheese whey[D]. Dalian: Dalian Polytechnic University, 2010. | |
24 | 陈婷. 基于超滤膜分离技术回收乳清蛋白工艺研究[D]. 兰州: 甘肃农业大学, 2011. |
CHEN Ting. Study of reclamation of whey protein based on technology of ultrafiltration membrane separation[D]. Lanzhou: Gansu Agricultural University, 2011. | |
25 | 宋晓青, 贾云虹, 凌森. 功能性乳清蛋白的分离纯化及产业化研究进展[J]. 中国奶牛, 2016(5): 42-45. |
SONG Xiaoqing, JIA Yunhong, LING Sen. Research progress on separation, purification and industrialization of functional whey protein [J]. China Dairy Cattle, 2016(5): 42-45. | |
26 | 杨雪. 干酪乳清蛋白浓缩工艺研究[D]. 乌鲁木齐: 新疆农业大学, 2014. |
YANG Xue. Study on the membrane concentration technology of cheese whey protein[D]. Urumqi: Xinjiang Agricultural University, 2014. | |
27 | ZYDNEY A L. Protein separations using membrane filtration: new opportunities for whey fractionation[J]. International Dairy Journal, 1998, 8(3): 243-250. |
28 | LECH M, NIESOBSKA A, TRUSEK-HOLOWNIA A. Dairy wastewater utilization: separation of whey proteins in membrane and chromatographic processes[J]. Desalination and Water Treatment, 2016, 57(48/49): 23326-23334. |
29 | BOTTOMLEY R C. Process for obtaining concentrates having a high.alpha.-lactalbumin content from whey: US5008376[P]. 1991-04-16. |
30 | MULLER A, DAUFIN G, CHAUFER B. Ultrafiltration modes of operation for the separation of α-lactalbumin from acid casein whey[J]. Journal of Membrane Science, 1999, 153(1): 9-21. |
31 | 孙颜君, 莫蓓红, 郑远荣, 等. 膜分离法制备高α-乳白蛋白质量分数的乳清蛋白浓缩物80[J]. 中国乳品工业, 2015, 43(1): 11-15. |
SUN Yanjun, MO Beihong, ZHENG Yuanrong, et al. Enrichment of α-lactalbumin from sweet whey protein with ultrafiltartion membranes[J]. China Dairy Industry, 2015, 43(1): 11-15. | |
32 | CHEANG B, ZYDNEY A L. Separation of alpha-lactalbumin and beta-lactoglobulin using membrane ultrafiltration[J]. Biotechnology and Bioengineering, 2003, 83(2): 201-209. |
33 | CHEANG B, ZYDNEY A L. A two-stage ultrafiltration process for fractionation of whey protein isolate[J]. Journal of Membrane Science, 2004, 231(1/2): 159-167. |
34 | ALMÉCIJA M C, IBÁÑEZ R, GUADIX A, et al. Effect of pH on the fractionation of whey proteins with a ceramic ultrafiltration membrane[J]. Journal of Membrane Science, 2007, 288(1/2): 28-35. |
35 | BALDASSO C, BARROS T C, TESSARO I C. Concentration and purification of whey proteins by ultrafiltration[J]. Desalination, 2011, 278(1/2/3): 381-386. |
36 | LIGHTFOOT E N, ROOT T W, O’DELL J L. Emergence of ideal membrane cascades for downstream processing[J]. Biotechnology Progress, 2008, 24(3): 599-605. |
37 | PORTER M C. Membrane filtration[M]//SCHWEITZER P A, 3nd ed. Handbook of Separation Techniques for Chemical Engineers. New York: McGraw-Hill, 1979: 80-84. |
38 | 范丽娟, 潘道东. 超滤法分离免疫牛初乳中的IgG[J]. 食品科学, 2007, 28(7): 242-244. |
FAN Lijuan, PAN Daodong. Seperation of IgG from immune bovine colostrum by ultrafiltration[J]. Food Science, 2007, 28(7): 242-244. | |
39 | PATIL N V, JANSSEN A E M, BOOM R M. Separation of whey proteins using cascaded ultrafiltration[J]. Separation Science and Technology, 2014, 49(15): 2280-2288. |
40 | BHUSHAN S, ETZEL M R. Charged ultrafiltration membranes increase the selectivity of whey protein separations[J]. Journal of Food Science, 2009, 74(3): E131-E139. |
41 | AANI S AL, MUSTAFA T N, HILAL N. Ultrafiltration membranes for wastewater and water process engineering: a comprehensive statistical review over the past decade[J]. Journal of Water Process Engineering, 2020, 35: 101241. |
42 | COWAN S, RITCHIE S. Modified polyethersulfone (PES) ultrafiltration membranes for enhanced filtration of whey proteins[J]. Separation Science and Technology, 2007, 42(11): 2405-2418. |
43 | ARUNKUMAR A, ETZEL M R. Fractionation of α-lactalbumin from β-lactoglobulin using positively charged tangential flow ultrafiltration membranes[J]. Separation and Purification Technology, 2013, 105: 121-128. |
44 | ARUNKUMAR A, ETZEL M R. Fractionation of α-lactalbumin and β-lactoglobulin from bovine milk serum using staged, positively charged, tangential flow ultrafiltration membranes[J]. Journal of Membrane Science, 2014, 454: 488-495. |
45 | VALIÑO V, ROMÁN M F SAN, IBAÑEZ R, et al. Improved separation of bovine serum albumin and lactoferrin mixtures using charged ultrafiltration membranes[J]. Separation and Purification Technology, 2014, 125: 163-169. |
46 | NDIAYE N, POULIOT Y, SAUCIER L, et al. Electroseparation of bovine lactoferrin from model and whey solutions[J]. Separation and Purification Technology, 2010, 74(1): 93-99. |
47 | ARUNKUMAR A, ETZEL M. Fractionation of glycomacropeptide from whey using positively charged ultrafiltration membranes[J]. Foods, 2018, 7(10): 166. |
48 | ARUNKUMAR A, ETZEL M R. Negatively charged tangential flow ultrafiltration membranes for whey protein concentration[J]. Journal of Membrane Science, 2015, 475: 340-348. |
49 | ARUNKUMAR A, MOLITOR M S, ETZEL M R. Comparison of flat-sheet and spiral-wound negatively-charged wide-pore ultrafiltration membranes for whey protein concentration[J]. International Dairy Journal, 2016, 56: 129-133. |
50 | CHEN G Q, SONG W J, QI B K, et al. Separation of human serum albumin and polyethylene glycol by electro-ultrafiltration[J]. Biochemical Engineering Journal, 2016, 109: 127-136. |
51 | SONG W J, SU Y, CHEN X R, et al. Rapid concentration of protein solution by a crossflow electro-ultrafiltration process[J]. Separation and Purification Technology, 2010, 73(2): 310-318. |
52 | SARKAR B, DASGUPTA S, DE S. Electric field enhanced fractionation of protein mixture using ultrafiltration[J]. Journal of Membrane Science, 2009, 341(1/2): 11-20. |
53 | BRISSON G, BRITTEN M, POULIOT Y. Electrically-enhanced crossflow microfiltration for separation of lactoferrin from whey protein mixtures[J]. Journal of Membrane Science, 2007, 297(1/2): 206-216. |
54 | ZUMBUSCH P V, KULCKE W, BRUNNER G. Use of alternating electrical fields as anti-fouling strategy in ultrafiltration of biological suspensions - Introduction of a new experimental procedure for crossflow filtration[J]. Journal of Membrane Science, 1998, 142(1): 75-86. |
55 | OUSSEDIK S, BELHOCINE D, GRIB H, et al. Enhanced ultrafiltration of bovine serum albumin with pulsed electric field and fluidized activated alumina[J]. Desalination, 2000, 127(1): 59-68. |
56 | SUN L Q, CHEN Q B, LU H X, et al. Electrodialysis with porous membrane for bioproduct separation: Technology, features, and progress[J]. Food Research International, 2020, 137: 109343. |
57 | 苏慧超, 张田明, 吴云奇, 等. 电渗析-超滤耦合技术研究进展[J]. 化工进展, 2020, 39(S2): 1-7. |
SU Huichao, ZHANG Tianming, WU Yunqi, et al. Development of electrodialysis with ultrafiltration membrane technology[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 1-7. | |
58 | CHEN G Q, SONG W J, QI B K, et al. Separation of protein mixtures by an integrated electro-ultrafiltration-electrodialysis process[J]. Separation and Purification Technology, 2015, 147: 32-43. |
59 | GALIER S, ROUX-DE BALMANN H. Study of biomolecules separation in an electrophoretic membrane contactor[J]. Journal of Membrane Science, 2004, 241(1): 79-87. |
60 | WANG Q Y, CHEN G Q, KENTISH S E. Isolation of lactoferrin and immunoglobulins from dairy whey by an electrodialysis with filtration membrane process[J]. Separation and Purification Technology, 2020, 233: 115987. |
61 | DENG H N, CHEN G Q, GRAS S L, et al. The effect of restriction membranes on mass transfer in an electrodialysis with filtration membrane process[J]. Journal of Membrane Science, 2017, 526: 429-436. |
62 | GALIER S, DE BALMANN H R. The electrophoretic membrane contactor: a mass-transfer-based methodology applied to the separation of whey proteins[J]. Separation and Purification Technology, 2011, 77(2): 237-244. |
63 | DLASK O, VÁCLAVÍKOVÁ N. Electrodialysis with ultrafiltration membranes for peptide separation[J]. Chemical Papers, 2018, 72(2): 261-271. |
64 | ROBLET C, DOYEN A, AMIOT J, et al. Enhancement of glucose uptake in muscular cell by soybean charged peptides isolated by electrodialysis with ultrafiltration membranes (EDUF): activation of the AMPK pathway[J]. Food Chemistry, 2014, 147: 124-130. |
65 | HE R, GIRGIH A T, ROZOY E, et al. Selective separation and concentration of antihypertensive peptides from rapeseed protein hydrolysate by electrodialysis with ultrafiltration membranes[J]. Food Chemistry, 2016, 197: 1008-1014. |
66 | ROBLET C, AKHTAR M J, MIKHAYLIN S, et al. Enhancement of glucose uptake in muscular cell by peptide fractions separated by electrodialysis with filtration membrane from salmon frame protein hydrolysate[J]. Journal of Functional Foods, 2016, 22: 337-346. |
67 | DOYEN A, BEAULIEU L, SAUCIER L, et al. Demonstration of in vitro anticancer properties of peptide fractions from a snow crab by-products hydrolysate after separation by electrodialysis with ultrafiltration membranes[J]. Separation and Purification Technology, 2011, 78(3): 321-329. |
68 | FIRDAOUS L, DHULSTER P, AMIOT J, et al. Concentration and selective separation of bioactive peptides from an alfalfa white protein hydrolysate by electrodialysis with ultrafiltration membranes[J]. Journal of Membrane Science, 2009, 329(1/2): 60-67. |
69 | ARRUTIA F, RUBIO R, RIERA F A. Production and membrane fractionation of bioactive peptides from a whey protein concentrate[J]. Journal of Food Engineering, 2016, 184: 1-9. |
70 | BAZINET L, COSSEC C, GAUDREAU H, et al. Production of a phenolic antioxidant enriched cranberry juice by electrodialysis with filtration membrane[J]. Journal of Agricultural and Food Chemistry, 2009, 57(21): 10245-10251. |
71 | POULIN J F, AMIOT J, BAZINET L. Simultaneous separation of acid and basic bioactive peptides by electrodialysis with ultrafiltration membrane[J]. Journal of Biotechnology, 2006, 123(3): 314-328. |
72 | POULIN J F, AMIOT J, BAZINET L. Improved peptide fractionation by electrodialysis with ultrafiltration membrane: influence of ultrafiltration membrane stacking and electrical field strength[J]. Journal of Membrane Science, 2007, 299(1/2): 83-90. |
73 | POULIN J F, AMIOT J, BAZINET L. Impact of feed solution flow rate on Peptide fractionation by electrodialysis with ultrafiltration membrane[J]. Journal of Agricultural and Food Chemistry, 2008, 56(6): 2007-2011. |
74 | DOYEN A, HUSSON E, BAZINET L. Use of an electrodialytic reactor for the simultaneous β-lactoglobulin enzymatic hydrolysis and fractionation of generated bioactive peptides[J]. Food Chemistry, 2013, 136(3/4): 1193-1202. |
75 | DULLIUS A, GOETTERT M I, DE SOUZA C F V. Whey protein hydrolysates as a source of bioactive peptides for functional foods - Biotechnological facilitation of industrial scale-up[J]. Journal of Functional Foods, 2018, 42: 58-74. |
76 | 沈浥, 卢蓉蓉, 陈卫, 等. 乳清蛋白抗氧化肽的制备及酶解产物特性[J]. 食品与发酵工业, 2009, 35(7): 68-73. |
SHEN Yi, LU Rongrong, CHEN Wei, et al. Preparation of antioxidant peptides from whey protein and the properties of enzymatic hydrolysate[J]. Food and Fermentation Industries, 2009, 35(7): 68-73. | |
77 | 许新月, 李昶, 崔文玉, 等. 复合酶解蛋白质工艺在食品工业中的应用及研究进展[J]. 食品工业, 2020, 41(12): 264-267. |
XU Xinyue, LI Chang, CUI Wenyu, et al. Application and research progress of complex enzymolysis technology in food industry[J]. The Food Industry, 2020, 41(12): 264-267. | |
78 | KADEL S, DAIGLE G, THIBODEAU J, et al. How physicochemical properties of filtration membranes impact peptide migration and selectivity during electrodialysis with filtration membranes: development of predictive statistical models and understanding of mechanisms involved[J]. Journal of Membrane Science, 2021, 619: 118175. |
79 | PERSICO M, DAIGLE G, KADEL S, et al. Predictive models for determination of peptide fouling based on the physicochemical characteristics of filtration membranes[J]. Separation and Purification Technology, 2020, 240: 116602. |
80 | TOLKACH A, KULOZIK U. Transport of whey proteins through 0.1 mm ceramic membrane: phenomena, modelling and consequences for concentration or diafiltration processes[J]. Desalination, 2006, 199(1/2/3): 340-341. |
81 | NORAZMAN N, WU W, LI H, et al. Evaluation of chemical cleaning of UF membranes fouled with whey protein isolates via analysis of residual protein components on membranes surface[J]. Separation and Purification Technology, 2013, 103: 241-250. |
82 | BARBA D, BEOLCHINI F, CIFONI D, et al. Whey protein concentrate production in a pilot scale two-stage diafiltration process[J]. Separation Science and Technology, 2001, 36(4): 587-603. |
83 | 王文琼. 蛋白聚合酶催化耦联超滤回收乳清蛋白及膜污染机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
WANG Wenqiong. Cheese whey protein recovery by polymerase catalysis coupling with ultrafiltration and membrane fouling mechanism research[D]. Harbin: Harbin Institute of Technology, 2017. | |
84 | WANG W Q, ZHANG L W, HAN X, et al. Cheese whey protein recovery by ultrafiltration through transglutaminase (TG) catalysis whey protein cross-linking[J]. Food Chemistry, 2017, 215: 31-40. |
85 | TOLKACH A, KULOZIK U. Fractionation of whey proteins and caseinomacropeptide by means of enzymatic crosslinking and membrane separation techniques[J]. Journal of Food Engineering, 2005, 67(1/2): 13-20. |
86 | BOURCIER D, FÉRAUD J P, COLSON D, et al. Influence of particle size and shape properties on cake resistance and compressibility during pressure filtration[J]. Chemical Engineering Science, 2016, 144: 176-187. |
87 | KUMAR M, LAWLER J. Preparation and characterization of negatively charged organic-inorganic hybrid ultrafiltration membranes for protein separation[J]. Separation and Purification Technology, 2014, 130: 112-123. |
88 | DAMAR I, CINAR K, GULEC H A. Concentration of whey proteins by ultrafiltration: comparative evaluation of process effectiveness based on physicochemical properties of membranes[J]. International Dairy Journal, 2020, 111: 104823. |
89 | YOGARATHINAM L T, GANGASALAM A, ISMAIL A F, et al. Concentration of whey protein from cheese whey effluent using ultrafiltration by combination of hydrophilic metal oxides and hydrophobic polymer[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(9): 2576-2591. |
90 | ERDEM İ, ÇIFTÇIOĞLU M, HARSA Ş. Separation of whey components by using ceramic composite membranes[J]. Desalination, 2006, 189(1/2/3): 87-91. |
91 | HINKOVA A, ZIDOVA P, POUR V, et al. Potential of membrane separation processes in cheese whey fractionation and separation[J]. Procedia Engineering, 2012, 42: 1425-1436. |
92 | WANG W Q, WA Y C, ZHANG X F, et al. Whey protein membrane processing methods and membrane fouling mechanism analysis[J]. Food Chemistry, 2019, 289: 468-481. |
93 | QUEZADA C, ESTAY H, CASSANO A, et al. Prediction of permeate flux in ultrafiltration processes: a review of modeling approaches[J]. Membranes, 2021, 11(5): 368. |
94 | CORBATÓN-BÁGUENA M J, ÁLVAREZ-BLANCO S, VINCENT-VELA M C. Ultrafiltration of whey: membrane performance and modelling using a combined pore blocking-cake formation model[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(7): 1891-1900. |
95 | RUDOLPH G, VIRTANEN T, FERRANDO M, et al. A review of in situ real-time monitoring techniques for membrane fouling in the biotechnology, biorefinery and food sectors[J]. Journal of Membrane Science, 2019, 588: 117221. |
[1] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[2] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[3] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[4] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[5] | 贺美晋. 分子管理在炼油领域分离技术中的应用和发展趋势[J]. 化工进展, 2023, 42(S1): 260-266. |
[6] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[7] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[8] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[9] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[10] | 徐杰, 夏隆博, 罗平, 邹栋, 仲兆祥. 面向膜蒸馏过程的全疏膜制备及其应用进展[J]. 化工进展, 2023, 42(8): 3943-3955. |
[11] | 周龙大, 赵立新, 徐保蕊, 张爽, 刘琳. 电场-旋流耦合强化多相介质分离研究进展[J]. 化工进展, 2023, 42(7): 3443-3456. |
[12] | 陆诗建, 刘苗苗, 杨菲, 张俊杰, 陈思铭, 刘玲, 康国俊, 李清方. 改良型CO2湿壁塔内气液两相流动规律及传质特性[J]. 化工进展, 2023, 42(7): 3457-3467. |
[13] | 冯江涵, 宋钫. 阴离子交换膜电解池的研究进展[J]. 化工进展, 2023, 42(7): 3501-3509. |
[14] | 陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610. |
[15] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |