化工进展 ›› 2022, Vol. 41 ›› Issue (2): 951-963.DOI: 10.16085/j.issn.1000-6613.2021-0420
陈诗雨1,2(), 许志成1, 杨婧3, 徐浩1,2(), 延卫1,2
收稿日期:
2021-03-02
修回日期:
2021-05-11
出版日期:
2022-02-05
发布日期:
2022-02-23
通讯作者:
徐浩
作者简介:
陈诗雨(1997—),女,硕士研究生,研究方向为微生物燃料电池。E-mail:基金资助:
CHEN Shiyu1,2(), XU Zhicheng1, YANG Jing3, XU Hao1,2(), YAN Wei1,2
Received:
2021-03-02
Revised:
2021-05-11
Online:
2022-02-05
Published:
2022-02-23
Contact:
XU Hao
摘要:
随着全球工业化进程加快,水污染和能源短缺问题日益严重。微生物燃料电池(MFC)作为一种新型微生物电化学工艺,可以在降解有机物的同时产电,具有清洁、节能、经济等优势,引起人们的广泛关注,成为水处理领域的研究前沿。本文首先介绍了MFC原理和电子传递机制,分析影响其处理性能的关键因素(阳极材料、阴极材料、接种微生物、反应器构型和系统运行参数);然后回顾了近年来MFC在废水(生活废水、农业废水和工业废水)处理领域的应用,并拓展性地阐述了MFC与其他技术(电芬顿、光催化、人工湿地系统和微生物电解池)的耦合应用;最后指出MFC存在的问题,并提出未来可行的发展方向,包括深度挖掘机理、优化接种微生物种群、改进装置材料与构型、改善进水模式与运行参数和研究新的耦合系统等。
中图分类号:
陈诗雨, 许志成, 杨婧, 徐浩, 延卫. 微生物燃料电池在废水处理中的研究进展[J]. 化工进展, 2022, 41(2): 951-963.
CHEN Shiyu, XU Zhicheng, YANG Jing, XU Hao, YAN Wei. Research progress of microbial fuel cell in wastewater treatment[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 951-963.
MFC构型 | 优点 | 缺点 |
---|---|---|
单室型 | 内阻小、输出功率高 | 氧气易扩散至阳极 |
双室型 | 操作简单,稳定性高 | 传质阻力较大,产电密度较低 |
平板式 | 两极间距小、内阻小,输出功率高 | 氧气易渗透至阳极 |
升流式 | 实现连续进料,增大废水处理容量 | 操作不稳定 |
堆栈式 | 增大废水处理容量,提高输出功率,增加COD去除率 | 电压、电极反转,操作不稳定 |
表1 反应器构型
MFC构型 | 优点 | 缺点 |
---|---|---|
单室型 | 内阻小、输出功率高 | 氧气易扩散至阳极 |
双室型 | 操作简单,稳定性高 | 传质阻力较大,产电密度较低 |
平板式 | 两极间距小、内阻小,输出功率高 | 氧气易渗透至阳极 |
升流式 | 实现连续进料,增大废水处理容量 | 操作不稳定 |
堆栈式 | 增大废水处理容量,提高输出功率,增加COD去除率 | 电压、电极反转,操作不稳定 |
MFC类型 | 废水类型 | COD去除率/% | 最大输出功率密度 | 参考文献 |
---|---|---|---|---|
平板空气阴极型 | 生活废水∶乙酸=1∶4 | 51.5 | 187W/m3 | [ |
100%生活废水 | 37.4 | 60W/m3 | ||
单室型 | 生活废水∶橄榄加工废水=14∶1 | 60 | 124.6mW/m2 | [ |
单室型 | 生活废水(COD浓度为1650mg/L) | 68 | (170.5±1.5)mW/m2 | [ |
单阴极单室型 | 生活废水(COD浓度为400~500mg/L) | 69.0±0.4 | 300mW/m2 | [ |
双阴极单室型 | 64.8±1.7 | 209mW/m2 | ||
平板型 | 生活废水(COD浓度为1000mg/L) | 79 | (43±1)mW/m2 | [ |
表2 MFC处理生活废水效果
MFC类型 | 废水类型 | COD去除率/% | 最大输出功率密度 | 参考文献 |
---|---|---|---|---|
平板空气阴极型 | 生活废水∶乙酸=1∶4 | 51.5 | 187W/m3 | [ |
100%生活废水 | 37.4 | 60W/m3 | ||
单室型 | 生活废水∶橄榄加工废水=14∶1 | 60 | 124.6mW/m2 | [ |
单室型 | 生活废水(COD浓度为1650mg/L) | 68 | (170.5±1.5)mW/m2 | [ |
单阴极单室型 | 生活废水(COD浓度为400~500mg/L) | 69.0±0.4 | 300mW/m2 | [ |
双阴极单室型 | 64.8±1.7 | 209mW/m2 | ||
平板型 | 生活废水(COD浓度为1000mg/L) | 79 | (43±1)mW/m2 | [ |
MFC类型 | 废水类型 | COD去除率/% | 最大输出功率密度/mW·m-2 | 参考文献 |
---|---|---|---|---|
厌氧流化床型 | 畜禽原水(COD浓度为4189~8432mg/L) | 74.5~88.1 | 74.9 | [ |
双室型 | 添加有磺胺类抗生素的猪场废水 | >95 | — | [ |
管式空气阴极型 | 猪场废水(COD浓度为5845mg/L) | 83.8 | 175.7 | [ |
表3 MFC处理养猪场废水效果
MFC类型 | 废水类型 | COD去除率/% | 最大输出功率密度/mW·m-2 | 参考文献 |
---|---|---|---|---|
厌氧流化床型 | 畜禽原水(COD浓度为4189~8432mg/L) | 74.5~88.1 | 74.9 | [ |
双室型 | 添加有磺胺类抗生素的猪场废水 | >95 | — | [ |
管式空气阴极型 | 猪场废水(COD浓度为5845mg/L) | 83.8 | 175.7 | [ |
MFC类型 | 偶氮染料 | 脱色效果 | COD去除率/% | 文献 |
---|---|---|---|---|
升流式单室型 | 酸性橙7(75mg/L) | 阴极室脱色率96% 阳极室脱色率75.7% | 阴极室:82.26±3.8 阳极室:64.4±6.7 | [ |
单室无膜型 | 橙黄G(80mg/L) | 脱色率65.1% | 82 | [ |
单室型 | 刚果红(300mg/L) | 脱色率86%; 脱色速率(16.1±0.9)mg/(L?h) | — | [ |
双室型 | 甲基橙2(100mg/L) | 脱色率96.3% | — | [ |
表4 MFC降解不同偶氮染料废水效果
MFC类型 | 偶氮染料 | 脱色效果 | COD去除率/% | 文献 |
---|---|---|---|---|
升流式单室型 | 酸性橙7(75mg/L) | 阴极室脱色率96% 阳极室脱色率75.7% | 阴极室:82.26±3.8 阳极室:64.4±6.7 | [ |
单室无膜型 | 橙黄G(80mg/L) | 脱色率65.1% | 82 | [ |
单室型 | 刚果红(300mg/L) | 脱色率86%; 脱色速率(16.1±0.9)mg/(L?h) | — | [ |
双室型 | 甲基橙2(100mg/L) | 脱色率96.3% | — | [ |
1 | POTTER M C. Electrical effects accompanying the decomposition of organic compounds[J]. Proceedings of the Royal Society of London Series B: Containing Papers of a Biological Character, 1911, 84(571): 260-276. |
2 | LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel cells: methodology and technology[J]. Environmental Science & Technology, 2006, 40(17): 5181-5192. |
3 | DU Z, LI H, GU T. A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy[J]. Biotechnology Advances, 2007, 25(5): 464-482. |
4 | LOVLEY D R. The microbe electric: conversion of organic matter to electricity[J]. Current Opinion in Biotechnology, 2008, 19(6): 564-571. |
5 | CHEN H, SIMOSKA O, LIM K, et al. Fundamentals, applications, and future directions of bioelectrocatalysis[J]. Chemical Reviews, 2020, 120(23): 12903-12993. |
6 | 张吉强. 微生物燃料电池同步脱氮产电性能及机理研究[D]. 杭州: 浙江大学, 2014. |
ZHANG Jiqiang. Simultaneous nitreogen removal and electricity generation in microbial fuel cell and its mechanism[D]. Hangzhou: Zhejiang University, 2014. | |
7 | WATANABE K, MANEFIELD M, LEE M, et al. Electron shuttles in biotechnology[J]. Current Opinion in Biotechnology, 2009, 20(6): 633-641. |
8 | AELTERMAN P, RABAEY K, PHAM H T, et al. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells[J]. Environmental Science & Technology, 2006, 40(10): 3388-3394. |
9 | LI M, ZHOU M H, TIAN X Y, et al. Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity[J]. Biotechnology Advances, 2018, 36(4): 1316-1327. |
10 | HINDATU Y, ANNUAR M S M, GUMEL A M. Mini-review: anode modification for improved performance of microbial fuel cell[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 236-248. |
11 | ZHONG D J, LIU Y Q, LIAO X R, et al. Facile preparation of binder-free NiO/MnO2-carbon felt anode to enhance electricity generation and dye wastewater degradation performances of microbial fuel cell[J]. International Journal of Hydrogen Energy, 2018, 43(51): 23014-23026. |
12 | MOHAMED H O, OBAID M, POO K M, et al. Fe/Fe2O3 nanoparticles as anode catalyst for exclusive power generation and degradation of organic compounds using microbial fuel cell[J]. Chemical Engineering Journal, 2018, 349: 800-807. |
13 | NAINA MOHAMED S, THOMAS N, TAMILMANI J, et al. Bioelectricity generation using iron(II) molybdate nanocatalyst coated anode during treatment of sugar wastewater in microbial fuel cell[J]. Fuel, 2020, 277: 118119. |
14 | 梁鹏, 范明志, 曹效鑫, 等. 碳纳米管阳极微生物燃料电池产电特性的研究[J]. 环境科学, 2008, 29(8): 2356-2360. |
LIANG Peng, FAN Mingzhi, CAO Xiaoxin, et al. Electricity generation by the microbial fuel cells using carbon nanotube as the anode[J]. Environmental Science, 2008, 29(8): 2356-2360. | |
15 | XU P, ZHENG D Y, XIE Z Y, et al. The degradation of ibuprofen in a novel microbial fuel cell with PANi@CNTs/SS bio-anode and CuInS2 photocatalytic cathode: property, efficiency and mechanism[J]. Journal of Cleaner Production, 2020, 265: 121872. |
16 | WANG Y Y, WEN Q, CHEN Y, et al. Conductive polypyrrole-carboxymethyl cellulose-titanium nitride/carbon brush hydrogels as bioanodes for enhanced energy output in microbial fuel cells[J]. Energy, 2020, 204: 117942. |
17 | SUN Y, DAI Y, DUAN Y Q, et al. Biofouling inhibition on nano-silver/ferrous sulfide/partly-graphitized carbon cathode with enhanced catalytic activity and durability for microbial fuel cells[J]. Carbon, 2017, 119: 394-402. |
18 | XIN S S, SHEN J G, LIU G C, et al. Electricity generation and microbial community of single-chamber microbial fuel cells in response to Cu2O nanoparticles/reduced graphene oxide as cathode catalyst[J]. Chemical Engineering Journal, 2020, 380: 122446. |
19 | JIANG L T, CHEN J F, HAN D Q, et al. Potential of core-shell NiFe layered double hydroxide@Co3O4 nanostructures as cathode catalysts for oxygen reduction reaction in microbial fuel cells[J]. Journal of Power Sources, 2020, 453: 227877. |
20 | LIU X W, SUN X F, HUANG Y X, et al. Nano-structured manganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbial fuel cell fed with a synthetic wastewater[J]. Water Research, 2010, 44(18): 5298-5305. |
21 | 白立俊, 王许云, 何海波, 等. M-N-C阴极催化剂的制备及其在微生物燃料电池中的应用[J]. 化工学报, 2014, 65(4): 1267-1272. |
BAI Lijun, WANG Xuyun, HE Haibo, et al. Preparation and characterization of M-N-C as cathode catalysts for microbial fuel cell[J]. CIESC Journal, 2014, 65(4): 1267-1272. | |
22 | GAJDA I, GREENMAN J, SANTORO C, et al. Improved power and long term performance of microbial fuel cell with Fe-N-C catalyst in air-breathing cathode[J]. Energy, 2018, 144: 1073-1079. |
23 | HE W, WEI J H, HUANG T, et al. Enhanced electricity production in single-chamber MFCs with air cathodes decorated by Fe-N-C catalysts derived from 5H-dibenz [b, f] azepine-5-carboxamide (Carbamazepine)[J]. International Journal of Hydrogen Energy, 2020, 45(35): 17525-17532. |
24 | 刘诗彧, 王荣昌, 马翠香, 等. 氧化石墨烯与聚苯胺修饰阴极的微生物燃料电池电化学性能[J]. 中国环境科学, 2019, 39(9): 3866-3871. |
LIU Shiyu, WANG Rongchang, MA Cuixiang, et al. Electrochemical performance of microbial fuel cell with graphene oxide and polyaniline modified cathode[J]. China Environmental Science, 2019, 39(9): 3866-3871. | |
25 | TIAN X Y, ZHOU M H, LI M, et al. Nitrogen-doped activated carbon as metal-free oxygen reduction catalyst for cost-effective rolling-pressed air-cathode in microbial fuel cells[J]. Fuel, 2018, 223: 422-430. |
26 | 黄霞, 梁鹏, 曹效鑫, 等. 无介体微生物燃料电池的研究进展[J]. 中国给水排水, 2007, 23(4): 1-6. |
HUANG Xia, LIANG Peng, CAO Xiaoxin, et al. Progress in research of mediator-less microbial fuel cells[J]. China Water & Wastewater, 2007, 23(4): 1-6. | |
27 | YAN Y Q, WANG X. Ecological responses to substrates in electroactive biofilm: a review[J]. Science China Technological Sciences, 2019, 62(10): 1657-1669. |
28 | YAN X J, LEE H S, LI N, et al. The micro-niche of exoelectrogens influences bioelectricity generation in bioelectrochemical systems[J]. Renewable and Sustainable Energy Reviews, 2020, 134: 110184. |
29 | 郭璇. 微生物燃料电池技术处理炼油废水同步产电及系统内协同作用与代谢特征研究[D]. 北京: 中国石油大学(北京), 2014. |
GUO Xuan. Study on simultaneous biotreatment and electricity generation of refinery wastewater using microbial fuel cell and the microbial synergistic effect and metabolic characteristics in the system[D]. Beijing: China University of Petroleum, 2014. | |
30 | MIN B, LOGAN B E. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell[J]. Environmental Science & Technology, 2004, 38(21): 5809-5814. |
31 | 贾辉, 丁志威, 王捷, 等. 基于MFC的UASB厌氧消化过程生物传感器特性研究[J]. 高校化学工程学报, 2015, 29(5): 1154-1160. |
JIA Hui, DING Zhiwei, WANG Jie, et al. Study on MFC based UASB anaerobic digestion biosensors[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(5): 1154-1160. | |
32 | KADIVARIAN M, DADKHAH A A, NASR ESFAHANY M. Oily wastewater treatment by a continuous flow microbial fuel cell and packages of cells with serial and parallel flow connections[J]. Bioelectrochemistry, 2020, 134: 107535. |
33 | WANG Y P, ZHANG H L, LI W W, et al. Improving electricity generation and substrate removal of a MFC-SBR system through optimization of COD loading distribution[J]. Biochemical Engineering Journal, 2014, 85: 15-20. |
34 | WANG X O, TIAN Y M, LIU H, et al. Effects of influent COD/TN ratio on nitrogen removal in integrated constructed wetland-microbial fuel cell systems[J]. Bioresource Technology, 2019, 271: 492-495. |
35 | 祝洪波. 连续流生物阴极微生物燃料电池处理猪场废水研究[D]. 南昌: 南昌大学, 2015. |
ZHU Hongbo. Study on treating swine wastewater by continuous flow microbial fuel cell with biological cathodes[D]. Nanchang: Nanchang University, 2015. | |
36 | PALANISAMY G, JUNG H Y, SADHASIVAM T, et al. A comprehensive review on microbial fuel cell technologies: processes, utilization, and advanced developments in electrodes and membranes[J]. Journal of Cleaner Production, 2019, 221: 598-621. |
37 | 李博文, 赵霞, 谢华, 等. 微生物电化学系统在水处理中的研究进展[J]. 应用化工, 2020, 49(5): 1278-1283. |
LI Bowen, ZHAO Xia, XIE Hua, et al. Research progress of microbial electrochemical system in water treatment[J]. Applied Chemical Industry, 2020, 49(5): 1278-1283. | |
38 | AFTAB S, SHAH A, NISAR J, et al. Marketability prospects of microbial fuel cells for sustainable energy generation[J]. Energy & Fuels, 2020, 34(8): 9108-9136. |
39 | HE L, DU P, CHEN Y Z, et al. Advances in microbial fuel cells for wastewater treatment[J]. Renewable and Sustainable Energy Reviews, 2017, 71: 388-403. |
40 | PARK Y, PARK S, NGUYEN V K, et al. Effect of gradual transition of substrate on performance of flat-panel air-cathode microbial fuel cells to treat domestic wastewater[J]. Bioresource Technology, 2017, 226: 158-163. |
41 | SCIARRIA T P, TENCA A, D’EPIFANIO A, et al. Using olive mill wastewater to improve performance in producing electricity from domestic wastewater by using single-chamber microbial fuel cell[J]. Bioresource Technology, 2013, 147: 246-253. |
42 | SONAWANE J M, MARSILI E, CHANDRA GHOSH P. Treatment of domestic and distillery wastewater in high surface microbial fuel cells[J]. International Journal of Hydrogen Energy, 2014, 39(36): 21819-21827. |
43 | KIM K Y, YANG W L, LOGAN B E. Impact of electrode configurations on retention time and domestic wastewater treatment efficiency using microbial fuel cells[J]. Water Research, 2015, 80: 41-46. |
44 | KOFFI N J, OKABE S. Domestic wastewater treatment and energy harvesting by serpentine up-flow MFCs equipped with PVDF-based activated carbon air-cathodes and a low voltage booster[J]. Chemical Engineering Journal, 2020, 380: 122443. |
45 | 王建军, 刘杨, 杨长军, 等. 厌氧流化床净化畜禽废水与产电性能[J]. 农业工程学报, 2012, 28(10): 214-218. |
WANG Jianjun, LIU Yang, YANG Changjun, et al. Research on livestock wastewater treatment and producing electricity using anaerobic fluidized bed[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(10): 214-218. | |
46 | CHENG D L, NGO H H, GUO W S, et al. Performance of microbial fuel cell for treating swine wastewater containing sulfonamide antibiotics[J]. Bioresource Technology, 2020, 311: 123588. |
47 | ZHUANG L, ZHENG Y, ZHOU S G, et al. Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment[J]. Bioresource Technology, 2012, 106: 82-88. |
48 | LOGROÑO W, PÉREZ M, URQUIZO G, et al. Single chamber microbial fuel cell (SCMFC) with a cathodic microalgal biofilm: a preliminary assessment of the generation of bioelectricity and biodegradation of real dye textile wastewater[J]. Chemosphere, 2017, 176: 378-388. |
49 | THUNG W E, ONG S A, HO L N, et al. A highly efficient single chambered up-flow membrane-less microbial fuel cell for treatment of azo dye Acid Orange 7-containing wastewater[J]. Bioresource Technology, 2015, 197: 284-288. |
50 | 朱超, 解井坤, 易维洁, 等. 微生物燃料电池快速处理含偶氮染料废水的研究[J]. 工业水处理, 2015, 35(8): 62-65. |
ZHU Chao, XIE Jingkun, YI Weijie, et al. Study on the rapid treatment of azo dye-bearing wastewater with microbial fuel cells[J]. Industrial Water Treatment, 2015, 35(8): 62-65. | |
51 | HUANG W T, CHEN J F, HU Y Y, et al. Enhanced simultaneous decolorization of azo dye and electricity generation in microbial fuel cell (MFC) with redox mediator modified anode[J]. International Journal of Hydrogen Energy, 2017, 42(4): 2349-2359. |
52 | XU H D, QUAN X C, XIAO Z T, et al. Cathode modification with peptide nanotubes (PNTs) incorporating redox mediators for azo dyes decolorization enhancement in microbial fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(12): 8207-8215. |
53 | MOHANAKRISHNA G, ABU-REESH I M, KONDAVEETI S, et al. Enhanced treatment of petroleum refinery wastewater by short-term applied voltage in single chamber microbial fuel cell[J]. Bioresource Technology, 2018, 253: 16-21. |
54 | ZHANG F, AHN Y, LOGAN B E. Treating refinery wastewaters in microbial fuel cells using separator electrode assembly or spaced electrode configurations[J]. Bioresource Technology, 2014, 152: 46-52. |
55 | MOHANAKRISHNA G, AL-RAOUSH R I, ABU-REESH I M. Induced bioelectrochemical metabolism for bioremediation of petroleum refinery wastewater: optimization of applied potential and flow of wastewater[J]. Bioresource Technology, 2018, 260: 227-232. |
56 | SRIKANTH S, KUMAR M, SINGH D, et al. Electro-biocatalytic treatment of petroleum refinery wastewater using microbial fuel cell (MFC) in continuous mode operation[J]. Bioresource Technology, 2016, 221: 70-77. |
57 | 孙培杰, 王林平, 徐乐瑾. 焦化废水中氰化物的处理技术研究进展[J]. 化工进展, 2021, 40(S1): 386-396. |
SUN Peijie, WANG Linping, XU Lejin. Advances in the treatment of cyanide in coking wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 386-396. | |
58 | 范小丰, 成岳, 袁萃贤. MFC处理低浓度焦化废水的试验研究[J]. 工业水处理, 2016, 36(8): 81-84. |
FAN Xiaofeng, CHENG Yue, YUAN Cuixian. Experimental research on microbial fuel cells for the treatment of low-concentration coking wastewater[J]. Industrial Water Treatment, 2016, 36(8): 81-84. | |
59 | ZHANG Q, LIU L F. Cathodes of membrane and packed manganese dioxide/titanium dioxide/graphitic carbon nitride/granular activated carbon promoted treatment of coking wastewater in microbial fuel cell[J]. Bioresource Technology, 2021, 321: 124442. |
60 | WU D, YI X Y, TANG R, et al. Single microbial fuel cell reactor for coking wastewater treatment: simultaneous carbon and nitrogen removal with zero alkaline consumption[J]. Science of the Total Environment, 2018, 621: 497-506. |
61 | ZHANG Y, LIU M M, ZHOU M H, et al. Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: synergistic effects, mechanisms and challenges[J]. Renewable and Sustainable Energy Reviews, 2019, 103: 13-29. |
62 | LI X H, CHEN S, ANGELIDAKI I, et al. Bio-electro-Fenton processes for wastewater treatment: advances and prospects[J]. Chemical Engineering Journal, 2018, 354: 492-506. |
63 | ZHU X P, NI J R. Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell[J]. Electrochemistry Communications, 2009, 11(2): 274-277. |
64 | FENG C H, LI F B, MAI H J, et al. Bio-electro-Fenton process driven by microbial fuel cell for wastewater treatment[J]. Environmental Science & Technology, 2010, 44(5): 1875-1880. |
65 | HASSAN M, OLVERA-VARGAS H, ZHU X P, et al. Microbial electro-Fenton: an emerging and energy-efficient platform for environmental remediation[J]. Journal of Power Sources, 2019, 424: 220-244. |
66 | HASSAN M, POUS N, XIE B, et al. Influence of iron species on integrated microbial fuel cell and electro-Fenton process treating landfill leachate[J]. Chemical Engineering Journal, 2017, 328: 57-65. |
67 | WANG Y Z, ZHANG H M, FENG Y J, et al. Bio-electron-Fenton (BEF) process driven by sediment microbial fuel cells (SMFCs) for antibiotics desorption and degradation[J]. Biosensors and Bioelectronics, 2019, 136: 8-15. |
68 | ZHAO H H, ZHANG Q H. Performance of electro-Fenton process coupling with microbial fuel cell for simultaneous removal of herbicide mesotrione[J]. Bioresource Technology, 2021, 319: 124244. |
69 | YONG X Y, GU D Y, WU Y D, et al. Bio-electron-Fenton (BEF) process driven by microbial fuel cells for triphenyltin chloride (TPTC) degradation[J]. Journal of Hazardous Materials, 2017, 324: 178-183. |
70 | YU X F, FU W N, JIANG M H, et al. Automatic microbial electro-Fenton system driven by transpiration for degradation of acid orange 7[J]. Science of the Total Environment, 2020, 725: 138508. |
71 | LONG S, ZHAO L, CHEN J C, et al. Tetracycline inhibition and transformation in microbial fuel cell systems: performance, transformation intermediates, and microbial community structure[J]. Bioresource Technology, 2021, 322: 124534. |
72 | GANIYU S O, ZHOU M H, MARTÍNEZ-HUITLE C A. Heterogeneous electro-Fenton and photoelectro-Fenton processes: a critical review of fundamental principles and application for water/wastewater treatment[J]. Applied Catalysis B: Environmental, 2018, 235: 103-129. |
73 | LIANOS P. Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen[J]. Applied Catalysis B: Environmental, 2017, 210: 235-254. |
74 | YUAN S J, SHENG G P, LI W W, et al. Degradation of organic pollutants in a photoelectrocatalytic system enhanced by a microbial fuel cell[J]. Environmental Science & Technology, 2010, 44(14): 5575-5580. |
75 | 钟登杰, 徐云兰. MFC产电辅助Fe,Ce-TiO2/Ti-Cu光催化处理染料废水[J]. 环境工程学报, 2018, 12(6): 1644-1650. |
ZHONG Dengjie, XU Yunlan. MFC assisted Fe, Ce-TiO2/Ti-Cu photocatalytic treatment of dye wastewater[J]. Chinese Journal of Environmental Engineering, 2018, 12(6): 1644-1650. | |
76 | LONG X Z, PAN Q R, WANG C Q, et al. Microbial fuel cell-photoelectrocatalytic cell combined system for the removal of azo dye wastewater[J]. Bioresource Technology, 2017, 244: 182-191. |
77 | ZHANG M M, WANG Y, LIANG P, et al. Combined photoelectrocatalytic microbial fuel cell (PEC-MFC) degradation of refractory organic pollutants and in situ electricity utilization[J]. Chemosphere, 2019, 214: 669-678. |
78 | 梁康, 王启烁, 王飞华, 等. 人工湿地处理生活污水的研究进展[J]. 农业环境科学学报, 2014, 33(3): 422-428. |
LIANG Kang, WANG Qishuo, WANG Feihua, et al. Research progresses in domestic wastewater treatment by constructed wetlands[J]. Journal of Agro-Environment Science, 2014, 33(3): 422-428. | |
79 | GUPTA S, SRIVASTAVA P, PATIL S A, et al. A comprehensive review on emerging constructed wetland coupled microbial fuel cell technology: potential applications and challenges[J]. Bioresource Technology, 2021, 320: 124376. |
80 | DOHERTY L, ZHAO Y Q, ZHAO X H, et al. A review of a recently emerged technology: constructed wetland—Microbial fuel cells[J]. Water Research, 2015, 85: 38-45. |
81 | CORBELLA C, HARTL M, FERNANDEZ-GATELL M, et al. MFC-based biosensor for domestic wastewater COD assessment in constructed wetlands[J]. Science of the Total Environment, 2019, 660: 218-226. |
82 | WANG J F, SONG X S, WANG Y H, et al. Nitrate removal and bioenergy production in constructed wetland coupled with microbial fuel cell: establishment of electrochemically active bacteria community on anode[J]. Bioresource Technology, 2016, 221: 358-365. |
83 | XU H, SONG H L, SINGH R P, et al. Simultaneous reduction of antibiotics leakage and methane emission from constructed wetland by integrating microbial fuel cell[J]. Bioresource Technology, 2021, 320: 124285. |
84 | 李骅, 杨小丽, 宋海亮, 等. 微生物燃料电池型人工湿地去除抗生素的效能研究[J]. 东南大学学报(自然科学版), 2017, 47(2): 410-415. |
LI Hua, YANG Xiaoli, SONG Hailiang, et al. Study on antibiotics removal by microbial fuel cell coupled constructed wetland[J]. Journal of Southeast University (Natural Science Edition), 2017, 47(2): 410-415. | |
85 | ZHAO Y Q, COLLUM S, PHELAN M, et al. Preliminary investigation of constructed wetland incorporating microbial fuel cell: batch and continuous flow trials[J]. Chemical Engineering Journal, 2013, 229: 364-370. |
86 | 夏函青, 伍永钢, 付成林, 等. 人工湿地-微生物电解池耦合系统的脱氮特性[J]. 化工进展, 2020, 39(11): 4677-4684. |
XIA Hanqing, WU Yonggang, FU Chenglin, et al. Nitrogen removal characteristics of the coupling system of constructed wetland and microbial electrolysis cell[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4677-4684. | |
87 | TANG C, ZHAO Y Q, KANG C, et al. Towards concurrent pollutants removal and high energy harvesting in a pilot-scale CW-MFC: insight into the cathode conditions and electrodes connection[J]. Chemical Engineering Journal, 2019, 373: 150-160. |
88 | WANG X O, TIAN Y M, LIU H, et al. Optimizing the performance of organics and nutrient removal in constructed wetland-microbial fuel cell systems[J]. Science of the Total Environment, 2019, 653: 860-871. |
89 | 王博, 高冠道, 李凤祥, 等. 微生物电解池应用研究进展[J]. 化工进展, 2017, 36(3): 1084-1092. |
WANG Bo, GAO Guandao, LI Fengxiang, et al. Advance in application of microbial electrolysis cells[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 1084-1092. | |
90 | 郭坤, 张京京, 李浩然, 等. 微生物电解电池制氢[J]. 化学进展, 2010, 22(4): 748-753. |
GUO Kun, ZHANG Jingjing, LI Haoran, et al. Hydrogen production by microbial electrolysis cells[J]. Progress in Chemistry, 2010, 22(4): 748-753. | |
91 | SUN M, SHENG G P, ZHANG L, et al. An MEC-MFC-coupled system for biohydrogen production from acetate[J]. Environmental Science & Technology, 2008, 42(21): 8095-8100. |
92 | 吴丹菁, 潘璐璐, 刘维平. MFC-MEC生物电化学耦合系统回收钴[J]. 中国有色金属学报, 2019, 29(7): 1536-1542. |
WU Danjing, PAN Lulu, LIU Weiping. Recovery of cobalt by MFC-MEC bioelectrochemical coupling system[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(7): 1536-1542. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[4] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[5] | 许中硕, 周盼盼, 王宇晖, 黄威, 宋新山. 硫铁矿介导的自养反硝化研究进展[J]. 化工进展, 2023, 42(9): 4863-4871. |
[6] | 陈翔宇, 卞春林, 肖本益. 温度分级厌氧消化工艺的研究进展[J]. 化工进展, 2023, 42(9): 4872-4881. |
[7] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[8] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[9] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[10] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[11] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[12] | 杨子育, 朱玲, 王文龙, 于超凡, 桑义敏. 阴燃法处理含油污泥的研究及应用进展[J]. 化工进展, 2023, 42(7): 3760-3769. |
[13] | 徐伟, 李凯军, 宋林烨, 张兴惠, 姚舜华. 光催化及其协同电化学降解VOCs的研究进展[J]. 化工进展, 2023, 42(7): 3520-3531. |
[14] | 蒋博龙, 崔艳艳, 史顺杰, 常嘉城, 姜楠, 谭伟强. 过渡金属Co3O4/ZnO-ZIF氧还原催化剂Co/Zn-ZIF模板法制备及其产电性能[J]. 化工进展, 2023, 42(6): 3066-3076. |
[15] | 张鹏, 潘原. 单原子催化剂在电催化氧还原直接合成过氧化氢中的研究进展[J]. 化工进展, 2023, 42(6): 2944-2953. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |