化工进展 ›› 2025, Vol. 44 ›› Issue (2): 820-833.DOI: 10.16085/j.issn.1000-6613.2024-0201
贾亦静(), 陶金泉, 黄文斌, 刘昊然, 李蓉蓉, 姚荣鹏, 白天瑜, 魏强, 周亚松(
)
收稿日期:
2024-01-26
修回日期:
2024-03-08
出版日期:
2025-02-25
发布日期:
2025-03-10
通讯作者:
周亚松
作者简介:
贾亦静(1997—),女,博士研究生,研究方向为CO2加氢催化材料及催化剂。E-mail:1021336045@qq.com。
基金资助:
JIA Yijing(), TAO Jinquan, HUANG Wenbin, LIU Haoran, LI Rongrong, YAO Rongpeng, BAI Tianyu, WEI Qiang, ZHOU Yasong(
)
Received:
2024-01-26
Revised:
2024-03-08
Online:
2025-02-25
Published:
2025-03-10
Contact:
ZHOU Yasong
摘要:
二氧化碳(CO2)的高值化利用是解决全球气候变暖和能源短缺问题的重要举措,低碳烯烃作为基础化工原料,是CO2加氢转化的主要产品之一。铁(Fe)基催化剂以其较高的CO2催化活性和低廉的制备成本成为该转化过程最具应用潜力的催化材料,但其对低碳烯烃的选择性仍有待提高。本文以CO2加氢制低碳烯烃Fe基催化剂为研究对象,介绍了Fe基催化剂表面CO2的吸附活化与反应机制,阐述了Fe基催化剂在反应过程中的结构演变规律(活化、碳化与失活),分析了影响Fe基催化剂性能的组成与结构因素;提出进一步提升催化剂性能的思路与方法,即借助模拟计算和原位表征技术深化对反应机制的认识,系统探究助剂和载体对Fe基催化剂结构和性质的调控机制,并结合反应特性对催化剂进行合理设计。
中图分类号:
贾亦静, 陶金泉, 黄文斌, 刘昊然, 李蓉蓉, 姚荣鹏, 白天瑜, 魏强, 周亚松. CO2加氢制低碳烯烃Fe基催化剂研究进展[J]. 化工进展, 2025, 44(2): 820-833.
JIA Yijing, TAO Jinquan, HUANG Wenbin, LIU Haoran, LI Rongrong, YAO Rongpeng, BAI Tianyu, WEI Qiang, ZHOU Yasong. Research progress on iron-based catalysts for CO2 hydrogenation to low carbon olefins[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 820-833.
1 | 董亮. “碳中和” 前景下的国际气候治理与中国的政策选择[J]. 外交评论(外交学院学报), 2021, 38(6): 132-154, 8. |
DONG Liang. International climate governance and China’s policy selection under carbon neutrality[J]. Foreign Affairs Review, 2021, 38(6): 132-154, 8. | |
2 | 邓一荣, 汪永红, 赵岩杰, 等. 碳中和背景下二氧化碳封存研究进展与展望[J]. 地学前缘, 2023, 30(4): 429-439. |
DENG Yirong, WANG Yonghong, ZHAO Yanjie, et al. Carbon dioxide storage in China: Current status, main challenges, and future outlooks[J]. Earth Science Frontiers, 2023, 30(4): 429-439. | |
3 | 武永光. CCUS技术进展和应用情况[J]. 当代化工研究, 2022(11): 118-120. |
WU Yongguang. Advances and application of CCUS technology[J]. Modern Chemical Research, 2022(11): 118-120. | |
4 | 周健, 邓一荣. 中国碳捕集与封存(CCS): 现状、挑战与展望[J]. 环境科学与管理, 2021, 46(8): 5-8. |
ZHOU Jian, DENG Yirong. Carbon capture and storage promotion in China: Current status, challenges and prospects[J]. Environmental Science and Management, 2021, 46(8): 5-8. | |
5 | 邹才能, 吴松涛, 杨智, 等. 碳中和战略背景下建设碳工业体系的进展、挑战及意义[J]. 石油勘探与开发, 2023, 50(1): 190-205. |
ZOU Caineng, WU Songtao, YANG Zhi, et al. Progress, challenge and significance of building a carbon industry system in the context of carbon neutrality strategy[J]. Petroleum Exploration and Development, 2023, 50(1): 190-205. | |
6 | 孟照鑫, 何青, 胡华为, 等. 我国氢能产业发展现状与思考[J]. 现代化工, 2022, 42(1): 1-6, 12. |
MENG Zhaoxin, HE Qing, HU Huawei, et al. Development situation and consideration of hydrogen energy industry in China[J]. Modern Chemical Industry, 2022, 42(1): 1-6, 12. | |
7 | 张帆. “双碳” 目标下CCUS产业化模式面临的挑战、对策及发展方向[J]. 现代化工, 2022, 42(9): 13-17. |
ZHANG Fan. Challenges, countermeasures and development direction of CCUS industrialization mode under ‘carbon emission peaking’ and ‘carbon neutrality’ goals[J]. Modern Chemical Industry, 2022, 42(9): 13-17. | |
8 | ZHOU Wei, CHENG Kang, KANG Jincan, et al. New horizon in C1 chemistry: Breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chemical Society Reviews, 2019, 48(12): 3193-3228. |
9 | TORRES GALVIS Hirsa M, DE JONG Krijn P. Catalysts for production of lower olefins from synthesis gas: A review[J]. ACS Catalysis, 2013, 3(9): 2130-2149. |
10 | 王旭. Fe基催化剂的设计、改性及其催化CO2加氢制低碳烯烃性能研究[D]. 银川: 宁夏大学, 2018. |
WANG Xu. Study on the design, modification and catalytic performance of iron-based catalysts for CO2 hydrogenation to light olefins[D]. Yinchuan: Ningxia University, 2018. | |
11 | WANG Qiang, CHEN Yao, LI Zhenhua. Research progress of catalysis for low-carbon olefins synthesis through hydrogenation of CO2 [J]. Journal of Nanoscience and Nanotechnology, 2019, 19(6): 3162-3172. |
12 | 张超, 张玉龙, 朱明辉, 等. CO2高值化利用新途径: 铁基催化剂CO2加氢制烯烃研究进展[J]. 化工进展, 2021, 40(2): 577-593. |
ZHANG Chao, ZHANG Yulong, ZHU Minghui, et al. New pathway for CO2 high-valued utilization: Fe-based catalysts for CO2 hydrogenation to low olefins[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 577-593. | |
13 | YE Runping, DING Jie, GONG Weibo, et al. CO2 hydrogenation to high-value products via heterogeneous catalysis[J]. Nature Communications, 2019, 10: 5698. |
14 | LIU Wenqi, CHENG Sifan, MALHI Haripal Singh, et al. Hydrogenation of CO2 to olefins over iron-based catalysts: A review[J]. Catalysts, 2022, 12(11): 1432. |
15 | 王晨, 张建利, 高新华, 等. 二氧化碳加氢制长链线性α-烯烃铁基催化剂研究进展[J]. 燃料化学学报, 2023, 51(1): 67-84. |
WANG Chen, ZHANG Jianli, GAO Xinhua, et al. Research progress on iron-based catalysts for CO2 hydrogenation to long-chain linear α-olefins[J]. Journal of Fuel Chemistry and Technology, 2023, 51(1): 67-84. | |
16 | 王建伟, 钟顺和. CO2吸附活化的研究进展[J]. 化学进展, 1998, 10(4): 374-380. |
WANG Jianwei, ZHONG Shunhe. Research progress on adsorption and activation of CO2 [J]. Progress in Chemistry, 1998, 10(4): 374-380. | |
17 | Jeonghyun KO, KIM Byung-Kook, HAN Jeong Woo. Density functional theory study for catalytic activation and dissociation of CO2 on bimetallic alloy surfaces[J]. The Journal of Physical Chemistry C, 2016, 120(6): 3438-3447. |
18 | 李静, 邓廷云, 杨林, 等. CO2吸附活化及催化加氢制低碳烯烃的研究进展[J]. 化工进展, 2013, 32(2): 340-345. |
LI Jing, DENG Tingyun, YANG Lin, et al. Research progress of adsorption/activation and catalytic hydrogenation of CO2 [J]. Chemical Industry and Engineering Progress, 2013, 32(2): 340-345. | |
19 | 索掌怀, 寇元, 王弘立. 还原条件对CO2加氢用Fe/TiO2催化剂结构的影响[J]. 催化学报, 2001, 22(4): 348-352. |
SUO Zhanghuai, KOU Yuan, WANG Hongli. Influence of reduction conditions on structure of Fe/TiO2 catalyst for hydrogenation of carbon dioxide[J]. Chinese Journal of Catalysis, 2001, 22(4): 348-352. | |
20 | WANG Haozhi, NIE Xiaowa, CHEN Yonggang, et al. Facet effect on CO2 adsorption, dissociation and hydrogenation over Fe catalysts: Insight from DFT[J]. Journal of CO2 Utilization, 2018, 26: 160-170. |
21 | NIE Xiaowa, HAN Guangxiu, SONG Chunshan, et al. Computational identification of facet-dependent CO2 initial activation and hydrogenation over iron carbide catalyst[J]. Journal of CO2 Utilization, 2022, 59: 101967. |
22 | FEDOROV Aleksandr, LUND Henrik, KONDRATENKO Vita A, et al. Elucidating reaction pathways occurring in CO2 hydrogenation over Fe-based catalysts[J]. Applied Catalysis B: Environmental, 2023, 328: 122505. |
23 | LIU Junhui, ZHANG Guanghui, JIANG Xiao, et al. Insight into the role of Fe5C2 in CO2 catalytic hydrogenation to hydrocarbons[J]. Catalysis Today, 2021, 371: 162-170. |
24 | LANDAU M V, MEIRI N, UTSIS N, et al. Conversion of CO2, CO, and H2 in CO2 hydrogenation to fungible liquid fuels on Fe-based catalysts[J]. Industrial & Engineering Chemistry Research, 2017, 56(45): 13334-13355. |
25 | DE SMIT Emiel, WECKHUYSEN Bert M. The renaissance of iron-based Fischer-Tropsch synthesis: On the multifaceted catalyst deactivation behaviour[J]. Chemical Society Reviews, 2008, 37(12): 2758-2781. |
26 | SAEIDI Samrand, AMIN Nor Aishah Saidina, RAHIMPOUR Mohammad Reza. Hydrogenation of CO2 to value-added products—A review and potential future developments[J]. Journal of CO2 Utilization, 2014, 5: 66-81. |
27 | SCHULZ Hans. Selforganization in Fischer-Tropsch synthesis with iron- and cobalt catalysts[J]. Catalysis Today, 2014, 228: 113-122. |
28 | ZHU Jie, WANG Peng, ZHANG Xiaoben, et al. Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO2 hydrogenation[J]. Science Advances, 2022, 8(5): eabm3629. |
29 | ZHANG Yulong, CAO Chenxi, ZHANG Chao, et al. The study of structure-performance relationship of iron catalyst during a full life cycle for CO2 hydrogenation[J]. Journal of Catalysis, 2019, 378: 51-62. |
30 | LEE Sung-Chul, KIM Jun-Sik, SHIN Woo Cheol, et al. Catalyst deactivation during hydrogenation of carbon dioxide: Effect of catalyst position in the packed bed reactor[J]. Journal of Molecular Catalysis A: Chemical, 2009, 301(1/2): 98-105. |
31 | Wilfried NGANTSOUE-HOC, ZHANG Yongqing, O’BRIEN Robert J, et al. Fischer-Tropsch synthesis: Activity and selectivity for Group I alkali promoted iron-based catalysts[J]. Applied Catalysis A: General, 2002, 236(1/2): 77-89. |
32 | Satyen Kumar DAS, MOHANTY Pravakar, MAJHI Sachchit, et al. CO-hydrogenation over silica supported iron based catalysts: Influence of potassium loading[J]. Applied Energy, 2013, 111: 267-276. |
33 | KOELBEL Herbert, LUDWIG Hans-Bolko, HAMMER Hans. Study on the formation mechanism of methane by hydrocracking in the Fischer-Tropsch synthesis[J]. Journal of Catalysis, 1962, 1(2): 156-164. |
34 | YOU Zhenya, DENG Weiping, ZHANG Qinghong, et al. Hydrogenation of carbon dioxide to light olefins over non-supported iron catalyst[J]. Chinese Journal of Catalysis, 2013, 34(5): 956-963. |
35 | CHOI Pyoung Ho, Ki-Won JUN, LEE Soo-Jae, et al. Hydrogenation of carbon dioxide over alumina supported Fe-K catalysts[J]. Catalysis Letters, 1996, 40(1/2): 115-118. |
36 | RAMIREZ Adrian, GEVERS Lieven, BAVYKINA Anastasiya, et al. Metal organic framework-derived iron catalysts for the direct hydrogenation of CO2 to short chain olefins[J]. ACS Catalysis, 2018, 8(10): 9174-9182. |
37 | HAN Yu, FANG Chuanyan, JI Xuewei, et al. Interfacing with carbonaceous potassium promoters boosts catalytic CO2 hydrogenation of iron[J]. ACS Catalysis, 2020, 10(20): 12098-12108. |
38 | RIBEIRO Mauro C, JACOBS Gary, DAVIS Burtron H, et al. Fischer-Tropsch synthesis: An in-situ TPR-EXAFS/XANES investigation of the influence of group Ⅰ alkali promoters on the local atomic and electronic structure of carburized iron/silica catalysts[J]. The Journal of Physical Chemistry C, 2010, 114(17): 7895-7903. |
39 | LIANG Binglian, DUAN Hongmin, SUN Ting, et al. Effect of Na promoter on Fe-based catalyst for CO2 hydrogenation to alkenes[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 925-932. |
40 | ZHAI Peng, XU Cong, GAO Rui, et al. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst[J]. Angewandte Chemie International Edition, 2016, 55(34): 9902-9907. |
41 | LIANG Binglian, SUN Ting, MA Junguo, et al. Mn decorated Na/Fe catalysts for CO2 hydrogenation to light olefins[J]. Catalysis Science & Technology, 2019, 9(2): 456-464. |
42 | XU Yao, ZHAI Peng, DENG Yuchen, et al. Highly selective olefin production from CO2 hydrogenation on iron catalysts: A subtle synergy between manganese and sodium additives[J]. Angewandte Chemie International Edition, 2020, 59(48): 21736-21744. |
43 | LIU Bing, GENG Shunshun, ZHENG Jiao, et al. Unravelling the new roles of Na and Mn promoter in CO2 hydrogenation over Fe3O4-based catalysts for enhanced selectivity to light α-olefins[J]. ChemCatChem, 2018, 10(20): 4718-4732. |
44 | ZHANG Zhiqiang, HUANG Gongxun, TANG Xinglei, et al. Zn and Na promoted Fe catalysts for sustainable production of high-valued olefins by CO2 hydrogenation[J]. Fuel, 2022, 309: 122105. |
45 | ZHANG Zhiqiang, YIN Haoren, YU Guangde, et al. Selective hydrogenation of CO2 and CO into olefins over Sodium- and Zinc-Promoted iron carbide catalysts[J]. Journal of Catalysis, 2021, 395: 350-361. |
46 | 董子超, 吴玉, 张博风, 等. 新型FeCo双金属催化剂催化CO2加氢制低碳烯烃[J]. 化工学报, 2021, 72(5): 2647-2656. |
DONG Zichao, WU Yu, ZHANG Bofeng, et al. Preparation and performances of FeCo/MC catalysts for CO2 hydrogenation to light olefins[J]. CIESC Journal, 2021, 72(5): 2647-2656. | |
47 | YU Yingzhe, ZHANG Jie, LEI Hao, et al. Carbon chain growth reaction of synthesis of lower olefins from syngas on Fe-Co catalyst[J]. Applied Surface Science, 2020, 504: 144211. |
48 | YUAN Fei, ZHANG Guanghui, ZHU Jie, et al. Boosting light olefin selectivity in CO2 hydrogenation by adding Co to Fe catalysts within close proximity[J]. Catalysis Today, 2021, 371: 142-149. |
49 | ZHU Minghui, TIAN Pengfei, FORD Michael E, et al. Nature of reactive oxygen intermediates on copper-promoted iron-chromium oxide catalysts during CO2 activation[J]. ACS Catalysis, 2020, 10(14): 7857-7863. |
50 | YANG Haiyan, DANG Yaru, CUI Xu, et al. Selective synthesis of olefins via CO2 hydrogenation over transition-metal-doped iron-based catalysts[J]. Applied Catalysis B: Environmental, 2023, 321: 122050. |
51 | LI Zhongling, WU Wenlong, WANG Menglin, et al. Ambient-pressure hydrogenation of CO2 into long-chain olefins[J]. Nature Communications, 2022, 13(1): 2396. |
52 | 邓国才, 李梦青, 穆瑞才, 等. 稀土对二氧化碳加氢合成低碳烯烃催化剂活性的影响[J]. 中国稀土学报, 1997, 15(3): 278-280. |
DENG Guocai, LI Mengqing, MU Ruicai, et al. Effects of rare earth addition on Fe system catalysts used in CO2 hydrogenation to light olefins[J]. Journal of the Chinese Society of Rare Earth, 1997, 15(3): 278-280. | |
53 | ZHANG Jianli, SU Xiaojuan, WANG Xu, et al. Promotion effects of Ce added Fe-Zr-K on CO2 hydrogenation to light olefins[J]. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124(2): 575-585. |
54 | PIRIYASURAWONG Kanyarat, PANPRANOT Joongjai, MEKASUWANDUMRONG Okorn, et al. CO2 hydrogenation over FSP-made iron supported on cerium modified alumina catalyst[J]. Catalysis Today, 2021, 375: 307-313. |
55 | GUO Lisheng, SUN Jian, JI Xuewei, et al. Directly converting carbon dioxide to linear α-olefins on bio-promoted catalysts[J]. Communications Chemistry, 2018, 1: 11. |
56 | 刘洋洋, 孙超, Malhi Haripal Singh, 等. 载体对铁基催化剂结构及CO2加氢制烯烃反应性能的影响特性[J]. 化工学报, 2020, 71(10): 4631-4641. |
LIU Yangyang, SUN Chao, SINGH Malhi Haripal, et al. Effects of identities of supports on Fe-based catalyst and their consequences on activities of CO2 hydrogenation to olefins[J]. CIESC Journal, 2020, 71(10): 4631-4641. | |
57 | LOPEZ LUNA Mauricio, TIMOSHENKO Janis, KORDUS David, et al. Role of the oxide support on the structural and chemical evolution of Fe catalysts during the hydrogenation of CO2 [J]. ACS Catalysis, 2021, 11(10): 6175-6185. |
58 | Laura TORRENTE-MURCIANO, CHAPMAN Robert S L, Ana NARVAEZ-DINAMARCA, et al. Effect of nanostructured ceria as support for the iron catalysed hydrogenation of CO2 into hydrocarbons[J]. Physical Chemistry Chemical Physics, 2016, 18(23): 15496-15500. |
59 | ZHU Jie, ZHANG Guanghui, LI Wenhui, et al. Deconvolution of the particle size effect on CO2 hydrogenation over iron-based catalysts[J]. ACS Catalysis, 2020, 10(13): 7424-7433. |
60 | TORRES GALVIS Hirsa M, BITTER Johannes H, DAVIDIAN Thomas, et al. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. Journal of the American Chemical Society, 2012, 134(39): 16207-16215. |
61 | LIU Junhui, LI Kuan, SONG Yakun, et al. Selective hydrogenation of CO2 to hydrocarbons: Effects of Fe3O4 particle size on reduction, carburization, and catalytic performance[J]. Energy & Fuels, 2021, 35(13): 10703-10709. |
62 | XIE Tianze, WANG Jianyang, DING Fanshu, et al. CO2 hydrogenation to hydrocarbons over alumina-supported iron catalyst: Effect of support pore size[J]. Journal of CO2 Utilization, 2017, 19: 202-208. |
63 | BUKUR Dragomir B, CARRETO-VAZQUEZ Victor H, MA Wenping. Catalytic performance and attrition strength of spray-dried iron catalysts for slurry phase Fischer-Tropsch synthesis[J]. Applied Catalysis A: General, 2010, 388(1/2): 240-247. |
64 | WAN Haijun, WU Baoshan, ZHANG Chenghua, et al. Study on Fe-Al2O3 interaction over precipitated iron catalyst for Fischer-Tropsch synthesis[J]. Catalysis Communications, 2007, 8(10): 1538-1545. |
65 | WU Tijun, LIN Jun, CHENG Yi, et al. Porous graphene-confined Fe-K as highly efficient catalyst for CO2 direct hydrogenation to light olefins[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23439-23443. |
66 | CHEN Xiaoqi, DENG Dehui, PAN Xiulian, et al. Iron catalyst encapsulated in carbon nanotubes for CO hydrogenation to light olefins[J]. Chinese Journal of Catalysis, 2015, 36(9): 1631-1637. |
67 | WANG Shunwu, WU Tijun, LIN Jun, et al. Iron-potassium on single-walled carbon nanotubes as efficient catalyst for CO2 hydrogenation to heavy olefins[J]. ACS Catalysis, 2020, 10(11): 6389-6401. |
68 | Elisa GARCÍA-HURTADO, Aída RODRÍGUEZ-FERNÁNDEZ, MOLINER Manuel, et al. CO2 hydrogenation using bifunctional catalysts based on K-promoted iron oxide and zeolite: Influence of the zeolite structure and crystal size[J]. Catalysis Science & Technology, 2020, 10(16): 5648-5658. |
69 | WEI Jian, GE Qingjie, YAO Ruwei, et al. Directly converting CO2 into a gasoline fuel[J]. Nature Communications, 2017, 8: 15174. |
70 | RAMIREZ Adrian, GONG Xuan, CAGLAYAN Mustafa, et al. Selectivity descriptors for the direct hydrogenation of CO2 to hydrocarbons during zeolite-mediated bifunctional catalysis[J]. Nature Communications, 2021, 12(1): 5914. |
71 | WANG Linkai, HAN Yu, WEI Jian, et al. Dynamic confinement catalysis in Fe-based CO2 hydrogenation to light olefins[J]. Applied Catalysis B: Environmental, 2023, 328: 122506. |
72 | ZHU Can, HUANG Chao, ZHANG Mingwei, et al. Design of ZSM-5 encapsulating FeMnK nanocatalysts for light olefins synthesis with enhanced carbon utilization efficiency[J]. Fuel, 2023, 335: 126745. |
73 | QURESHI Ziyauddin S, ARUDRA Palani, BARI SIDDIQUI M A, et al. Enhanced light olefins production via n-pentane cracking using modified MFI catalysts[J]. Heliyon, 2022, 8(3): e09181. |
74 | JI Yajun, SHI Bofang, YANG Honghui, et al. Synthesis of isomorphous MFI nanosheet zeolites for supercritical catalytic cracking of n-dodecane[J]. Applied Catalysis A: General, 2017, 533: 90-98. |
75 | TIAN Yajie, ZHANG Bofeng, LIANG Hairui, et al. Synthesis and performance of pillared HZSM-5 nanosheet zeolites for n-decane catalytic cracking to produce light olefins[J]. Applied Catalysis A: General, 2019, 572: 24-33. |
76 | HAO Jing, CHENG Dangguo, CHEN Fengqiu, et al. n-Heptane catalytic cracking on ZSM-5 zeolite nanosheets: Effect of nanosheet thickness[J]. Microporous and Mesoporous Materials, 2021, 310: 110647. |
77 | WANG Jie, SHAN Junwei, TIAN Yajie, et al. Catalytic cracking of n-heptane over Fe modified HZSM-5 nanosheet to produce light olefins[J]. Fuel, 2021, 306: 121725. |
78 | WANG Chengtao, FANG Wei, LIU Zhiqiang, et al. Fischer-Tropsch synthesis to olefins boosted by MFI zeolite nanosheets[J]. Nature Nanotechnology, 2022, 17(7): 714-720. |
79 | DOKANIA Abhay, DUTTA CHOWDHURY Abhishek, RAMIREZ Adrian, et al. Acidity modification of ZSM-5 for enhanced production of light olefins from CO2 [J]. Journal of Catalysis, 2020, 381: 347-354. |
80 | LIU Renjie, LESHCHEV Denis, STAVITSKI Eli, et al. Selective hydrogenation of CO2 and CO over potassium promoted Co/ZSM-5[J]. Applied Catalysis B: Environmental, 2021, 284: 119787. |
81 | LIU Renjie, MA Zhiqiang, SEARS Jeffrey D, et al. Identifying correlations in Fischer-Tropsch synthesis and CO2 hydrogenation over Fe-based ZSM-5 catalysts[J]. Journal of CO2 Utilization, 2020, 41: 101290. |
82 | RAMIREZ Adrian, DUTTA CHOWDHURY Abhishek, DOKANIA Abhay, et al. Effect of zeolite topology and reactor configuration on the direct conversion of CO2 to light olefins and aromatics[J]. ACS Catalysis, 2019, 9(7): 6320-6334. |
83 | BATTEN Stuart R, CHAMPNESS Neil R, CHEN Xiaoming, et al. Terminology of metal-organic frameworks and coordination polymers (IUPAC Recommendations 2013)[J]. Pure and Applied Chemistry, 2013, 85: 1715-1724. |
84 | HU Shen, LIU Min, DING Fanshu, et al. Hydrothermally stable MOFs for CO2 hydrogenation over iron-based catalyst to light olefins[J]. Journal of CO2 Utilization, 2016, 15: 89-95. |
85 | LIU Junhui, ZHANG Anfeng, LIU Min, et al. Fe-MOF-derived highly active catalysts for carbon dioxide hydrogenation to valuable hydrocarbons[J]. Journal of CO2 Utilization, 2017, 21: 100-107. |
86 | FANG Wei, WANG Chengtao, LIU Zhiqiang, et al. Physical mixing of a catalyst and a hydrophobic polymer promotes CO hydrogenation through dehydration[J]. Science, 2022, 377(6604): 406-410. |
87 | XU Yanfei, LI Xiangyang, GAO Junhu, et al. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products[J]. Science, 2021, 371(6529): 610-613. |
88 | DING Fanshu, ZHANG Anfeng, LIU Min, et al. Effect of SiO2-coating of FeK/Al2O3 catalysts on their activity and selectivity for CO2 hydrogenation to hydrocarbons[J]. RSC Advances, 2014, 4(17): 8930-8938. |
89 | WANG Chao, ZHAI Peng, ZHANG Zhichao, et al. Synthesis of highly stable graphene-encapsulated iron nanoparticles for catalytic syngas conversion[J]. Particle & Particle Systems Characterization, 2015, 32(1): 29-34. |
90 | LIU Yang, SHAO Wenli, ZHENG Yi, et al. Preparation of low carbon olefins on a core-shell K-Fe5C2@ZSM-5 catalyst by Fischer-Tropsch synthesis[J]. RSC Advances, 2020, 10(44): 26451-26459. |
91 | JIANG Nan, YANG Guohui, ZHANG Xiongfu, et al. A novel silicalite-1 zeolite shell encapsulated iron-based catalyst for controlling synthesis of light alkenes from syngas[J]. Catalysis Communications, 2011, 12(11): 951-954. |
92 | SONG Faen, YONG Xiaojing, WU Xuemei, et al. FeMn@HZSM-5 capsule catalyst for light olefins direct synthesis via Fischer-Tropsch synthesis: Studies on depressing the CO2 formation[J]. Applied Catalysis B: Environmental, 2022, 300: 120713. |
93 | ZHU Can, ZHANG Mingwei, HUANG Chao, et al. Controlled nanostructure of zeolite crystal encapsulating FeMnK catalysts targeting light olefins from syngas[J]. ACS Applied Materials & Interfaces, 2020, 12(52): 57950-57962. |
94 | GUPTA Sharad, JAIN Vivek K, JAGADEESAN Dinesh. Fine tuning the composition and nanostructure of Fe-based core-shell nanocatalyst for efficient CO2 hydrogenation[J]. ChemNanoMat, 2016, 2(10): 989-996. |
95 | WEBER Daniel, RUI Ning, ZHANG Feng, et al. Carbon nanosphere-encapsulated Fe core-shell structures for catalytic CO2 hydrogenation[J]. ACS Applied Nano Materials, 2022, 5(8): 11605-11616. |
96 | LIU Junhui, ZHANG Anfeng, JIANG Xiao, et al. Overcoating the surface of Fe-based catalyst with ZnO and nitrogen-doped carbon toward high selectivity of light olefins in CO2 hydrogenation[J]. Industrial & Engineering Chemistry Research, 2019, 58(10): 4017-4023. |
97 | HE Ruosong, WANG Yang, LI Meng, et al. Tailoring the CO2 hydrogenation performance of Fe-based catalyst via unique confinement effect of the carbon shell[J]. Chemistry, 2023, 29(65): e202301918. |
[1] | 苏良健, 肖俊岩, 张春光, 赵元生, 杨旭. 固定床渣油加氢脱残炭剂的深度再生[J]. 化工进展, 2025, 44(2): 728-734. |
[2] | 李琢宇, 余美琪, 陈孝彦, 胡若晖, 王庆宏, 陈春茂, 詹亚力. 炼油废催化剂吸附去除水中硝基苯的特性与机制[J]. 化工进展, 2025, 44(2): 1076-1087. |
[3] | 张海兵, 刘云遏, 黄志昊, 沈蓉. Ti foam-Ni-Sn/Bi电极制备及其电还原NO3--N的性能[J]. 化工进展, 2025, 44(2): 1100-1109. |
[4] | 刘法志, 张鹏威, 刘涛, 谢玉仙, 何建乐, 苏胜, 徐俊, 向军. Sb改性钒钛SCR脱硝催化剂抗CO中毒性能[J]. 化工进展, 2025, 44(2): 1129-1137. |
[5] | 杨群, 李红艳, 张峰, 毛立波, 崔佳丽, 董颖虹, 郭紫瑞. 钴氮共掺杂废菌棒生物炭活化PMS去除水中加替沙星[J]. 化工进展, 2025, 44(2): 1088-1099. |
[6] | 张琪, 王涛, 张雪冰, 李为真, 冯波, 蒋智慧, 吕毅军, 门卓武. 合成气制高级醇Co基催化剂研究进展[J]. 化工进展, 2025, 44(2): 773-787. |
[7] | 洪思琦, 顾方伟, 郑金玉. PEM水电解制氢低铱催化剂发展现状及展望[J]. 化工进展, 2025, 44(1): 158-168. |
[8] | 王世鑫, 闫锋, 刘晓利, 宋光春, 李玉星, 胡其会. “双碳”背景下二氧化碳管道输送技术研究进展[J]. 化工进展, 2025, 44(1): 17-26. |
[9] | 李雪莲, 曹志会, 雷普瑛, 白冰, 王璇, 张金鑫, 侯凯, 刘爱芳, 齐凯, 高丽丽. 珊瑚状Mo2C/Mo3P@NC异质结电极高效催化Li-CO2电池[J]. 化工进展, 2025, 44(1): 202-211. |
[10] | 宋顺明, 张敬雯, 张良清, 邱佳容, 陈剑锋, 曾宪海. 生物质基多元醇催化转化制备二醇[J]. 化工进展, 2025, 44(1): 228-252. |
[11] | 秦婷婷, 牛强. 二氧化碳加氢制高级醇Fe基催化剂研究进展[J]. 化工进展, 2025, 44(1): 253-265. |
[12] | 庄柯, 陈宏, 许芸, 仲兆平, 周峻伍, 周凯, 董月红. SiO2改性Ce-V-W/Ti催化剂载体的抗碱(土)金属中毒性能[J]. 化工进展, 2025, 44(1): 266-276. |
[13] | 董家彤, 单梦晴, 王华. Au-CuO/Cu2O串联催化增强电催化CO2还原制乙醇[J]. 化工进展, 2025, 44(1): 277-285. |
[14] | 游小银, 汪楚乔, 刘才华, 彭小明. Z型CN/NGBO/BV催化剂体系的构筑及光类芬顿降解四环素性能[J]. 化工进展, 2025, 44(1): 286-296. |
[15] | 李佳优, 张雨涵, 姜楠, 蒋博龙. 过渡金属硫化物NiS(x)@NF催化剂水热法制备及其析氢性能[J]. 化工进展, 2025, 44(1): 297-304. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 33
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 55
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |