1 |
CHOONG Zheng-Yi, GASIM Mohamed Faisal, LIN Kun-Yi Andrew, et al. Unravelling the formation mechanism and performance of nitrogen, sulfur codoped biochar as peroxymonosulfate activator for gatifloxacin removal[J]. Chemical Engineering Journal, 2023, 451: 138958.
|
2 |
WANG Kemeng, YANG Xiaohuan, PEI Yuansheng. Removal of gatifloxacin by activated peroxymonosulfate using co-pyrolysis materials of water treatment residuals and biomass: Nonradical-dominated mechanisms enhanced by adsorption[J]. Journal of Cleaner Production, 2023, 409: 137125.
|
3 |
刘建华, 刘江涛, 邢献军, 等. 钴氮共掺杂生物质活性炭提升氧化还原催化剂性能[J]. 真空科学与技术学报, 2018, 38(11): 996-1002.
|
|
LIU Jianhua, LIU Jiangtao, XING Xianjun, et al. Novel Co-N-C type non-precious metal catalyst fabricated from fresh kelp[J]. Chinese Journal of Vacuum Science and Technology, 2018, 38(11): 996-1002.
|
4 |
LI Hongyan, CHAI Lina, CUI Jianguo, et al. Polypyrrole-modified mushroom residue activated carbon for sulfate and nitrate removal from water: Adsorption performance and mechanism[J]. Journal of Water Process Engineering, 2022, 49: 102916.
|
5 |
董颖虹, 李红艳, 崔建国, 等. Cu-Mn-EFBC的制备及其对水中TCH的吸附机理研究[J]. 应用化工, 2023, 52(2): 426-432, 438.
|
|
DONG Yinghong, LI Hongyan, CUI Jianguo, et al. Preparation of Cu-Mn-EFBC and its adsorption mechanism for TCH in water[J]. Applied Chemical Industry, 2023, 52(2): 426-432, 438.
|
6 |
陈一萍, 夏管商, 郑朝洪, 等. CNTs/PMS高级氧化体系去除水中的环丙沙星[J]. 化工进展, 2019, 38(4): 2037-2045.
|
|
CHEN Yiping, XIA Guanshang, ZHENG Chaohong, et al. Degradation of ciprofloxacin by advanced oxidation process with carbon nanotubes/peroxymonosulfate[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 2037-2045.
|
7 |
XIAO Ruiyang, LUO Zonghao, WEI Zongsu, et al. Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies[J]. Current Opinion in Chemical Engineering, 2018, 19: 51-58.
|
8 |
LI Hongchao, QIAN Jieshu, PAN Bingcai. N-coordinated Co containing porous carbon as catalyst with improved dispersity and stability to activate peroxymonosulfate for degradation of organic pollutants[J]. Chemical Engineering Journal. 2021, 403: 126395.
|
9 |
ANIPSITAKIS George P, DIONYSIOU Dionysios D. Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38(13): 3705-3712.
|
10 |
CHEN Xiao, Wen-Da OH, HU Zhongting, et al. Enhancing sulfacetamide degradation by peroxymonosulfate activation with N-doped graphene produced through delicately-controlled nitrogen functionalization via tweaking thermal annealing processes[J]. Applied Catalysis B: Environmental, 2018, 225: 243-257.
|
11 |
LI Yangju, LI Jun, PAN Yuting, et al. Peroxymonosulfate activation on FeCo2S4 modified g-C3N4 (FeCo2S4-CN): Mechanism of singlet oxygen evolution for nonradical efficient degradation of sulfamethoxazole[J]. Chemical Engineering Journal, 2020, 384: 123361.
|
12 |
相里鹏, 崔佳丽, 张峰, 等. 磁性生物炭活化过硫酸盐去除水中罗丹明B[J]. 中国环境科学, 2023, 43(4): 1672-1687.
|
|
XIANGLI Peng, CUI Jiali, ZHANG Feng, et al. Removal of Rhodamine B from aqueous solutions by magnetic biochar activated persulfate[J]. China Environmental Science, 2023, 43(4): 1672-1687.
|
13 |
YANG Yi, BANERJEE Gourab, BRUDVIG Gary W, et al. Oxidation of organic compounds in water by unactivated peroxymonosulfate[J]. Environmental Science & Technology, 2018, 52(10): 5911-5919.
|
14 |
罗晗倬. 氮、钴共掺杂秸秆衍生生物炭活化过硫酸盐降解环丙沙星的研究[D]. 长沙: 湖南大学, 2021.
|
|
LUO Hanzhuo. Lignocellulosic biomass derived nitrogen and cobalt co-doped biochar as highly efficient peroxymonosulfate activator for ciprofloxacin degradation[D]. Changsha: Hunan University, 2021.
|
15 |
YIN Lichang, LIANG Ji, ZHOU Guangmin, et al. Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations[J]. Nano Energy, 2016, 25: 203-210.
|
16 |
LU Xiaomei, QIN Jingzhong, XIAN Chensheng, et al. Cobalt nanoparticles supported on microporous nitrogen-doped carbon for an efficient catalytic transfer hydrogenation reaction between nitroarenes and N-heterocycles[J]. Catalysis Science & Technology, 2022, 12(18): 5549-5558.
|
17 |
XUE Yanjun, LU Shucao, LIANG Zhangqian, et al. Porous graphitic carbon nitride with nitrogen defects and cobalt-nitrogen (CoN) bonds for efficient broad spectrum (visible and near-infrared) photocatalytic H2 production[J]. Journal of Colloid and Interface Science, 2020, 561: 719-729.
|
18 |
TANG Yiwu, KANG Jin, WANG Min, et al. Catalytic degradation of oxytetracycline via FeVO4 nanorods activating PMS and the insights into the performance and mechanism[J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105864.
|
19 |
姚彦红, 林波. 抗生素制药废水的污染特点及处理研究进展[J]. 江西化工, 2008, 24(4): 33-35.
|
|
YAO Yanhong, LIN Bo. Study development of pollution chracteristics and treatment of antibiotics pharmaceutical wastewater[J]. Jiangxi Chemical Industry, 2008, 24(4): 33-35.
|
20 |
李加根. 不同光源条件下加替沙星的光化学氧化降解研究[D]. 金华: 浙江师范大学, 2022.
|
|
LI Jiagen. Photochemical oxidative degradation of gatifloxacin under different light sources[D]. Jinhua: Zhejiang Normal University, 2022.
|
21 |
LI Meng, LI Yanwen, YU Pengfei, et al. Exploring degradation mechanism of tetracycline via high-effective peroxymonosulfate catalysts of montmorillonite hybridized CoFe composites and safety assessment[J]. Chemical Engineering Journal, 2022, 427: 130930.
|
22 |
LUO Junmei, BO Shufeng, QIN Yanan, et al. Transforming goat manure into surface-loaded cobalt/biochar as PMS activator for highly efficient ciprofloxacin degradation[J]. Chemical Engineering Journal, 2020, 395: 125063.
|
23 |
白青青, 吴小宁, 王倩, 等. Fenton反应中拓展pH的研究进展[J]. 化学通报, 2018, 81(3): 217-222.
|
|
BAI Qingqing, WU Xiaoning, WANG Qian, et al. Research progress in enlargement of pH in Fenton reaction[J]. Chemistry, 2018, 81(3): 217-222.
|
24 |
XIANG Yujia, XU Zhangyi, WEI Yuyi, et al. Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors[J]. Journal of Environmental Management, 2019, 237: 128-138.
|
25 |
熊明慧. 秸秆生物炭负载钴基催化剂活化过硫酸盐降解抗生素性能研究[D]. 武汉: 武汉轻工大学, 2022.
|
|
XIONG Minghui. Straw biochar supported cobalt-based catalysts for antibiotics degradation via peroxymonosulfate activation[D]. Wuhan: Wuhan Polytechnic University, 2022.
|
26 |
伊玉, 李洁冰, 王倩, 等. 无机盐离子对CoFe2O4/GO催化PMS氧化降解酸性橙Ⅱ的影响[J]. 广东化工, 2014, 41(13): 10-11.
|
|
YI Yu, LI Jiebing, WANG Qian, et al. The effects of inorganic ions on the CoFe2O4/GO catalytic oxidation orange Ⅱ by PMS[J]. Guangdong Chemical Industry, 2014, 41(13): 10-11.
|
27 |
CHEN Liwei, DING Dahu, LIU Chao, et al. Degradation of norfloxacin by CoFe2O4-GO composite coupled with peroxymonosulfate: A comparative study and mechanistic consideration[J]. Chemical Engineering Journal, 2018, 334: 273-284.
|
28 |
YOU Yang, SHI Zekai, LI Yunhe, et al. Magnetic cobalt ferrite biochar composite as peroxymonosulfate activator for removal of lomefloxacin hydrochloride[J]. Separation and Purification Technology, 2021, 272: 118889.
|
29 |
ZHU Enhao, HONG Xiaoting, YE Zhuoliang, et al. Influence of various experimental parameters on the capacitive removal of phosphate from aqueous solutions using LDHs/AC composite electrodes[J]. Separation and Purification Technology, 2019, 215: 454-462.
|
30 |
KOHANTORABI Mona, MOUSSAVI Gholamreza, GIANNAKIS Stefanos. A review of the innovations in metal and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants[J]. Chemical Engineering Journal, 2021, 411: 127957.
|
31 |
WANG Yanbin, LIU Man, ZHAO Xu, et al. Insights into heterogeneous catalysis of peroxymonosulfate activation by boron-doped ordered mesoporous carbon[J]. Carbon, 2018, 135: 238-247.
|
32 |
焦路畅, 卫月星, 张禹洵, 等. 煤气化细渣负载CoO活化PMS高效降解双酚A[J]. 化工进展, 2023, 42(11): 5993-6004.
|
|
JIAO Luchang, WEI Yuexing, ZHANG Yuxun, et al. Coal gasification fine slag supported CoO catalyst for the efficient degradation of bisphenol A by activating peroxymonosulfate process[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5993-6004.
|
33 |
YUN Eun-Tae, LEE Jeong Hoon, KIM Jaesung, et al. Identifying the nonradical mechanism in the peroxymonosulfate activation process: Singlet oxygenation versus mediated electron transfer[J]. Environmental Science & Technology, 2018, 52(12): 7032-7042.
|
34 |
YOU Junjie, LI Junyi, ZHANG Heng, et al. Removal of bisphenol A via peroxymonosulfate activation over graphite carbon nitride supported NiC x nanoclusters catalyst: Synergistic oxidation of high-valent nickel-oxo species and singlet oxygen[J]. Journal of Hazardous Materials, 2022, 445: 130440.
|
35 |
孙浩. 氮改性生物炭活化过一硫酸盐去除水体中2,4-二氯酚的性能与机理研究[D]. 长春: 吉林大学, 2022.
|
|
SUN Hao. Performance and mechanism of removal of 2,4-dichlorophenol from water by activated peroxymonosulfate with nitrogen-modified biochar[D]. Changchun: Jilin University, 2022.
|
36 |
QIU Xiaojie, ZHAO Yingxin, LI Chenxi, et al. Different peroxymonosulfate activation and utilization pathways of typical cobalt oxides, cobalt-carbon and carbonaceous composites derived from metal-organic frameworks for pollutant oxidation in wastewater[J]. Chemical Engineering Journal, 2023, 475: 146234.
|
37 |
董康妮, 谢更新, 晏铭, 等. 磺化生物炭活化过硫酸盐去除水中盐酸四环素[J]. 中国环境科学, 2022, 42(8): 3650-3657.
|
|
DONG Kangni, XIE Gengxin, YAN Ming, et al. Removal of tetracycline hydrochloride from aqueous solutions by sulfonated biochar-activated persulfate[J]. China Environmental Science, 2022, 42(8): 3650-3657.
|
38 |
ZHOU Yang, JIANG Jin, GAO Yuan, et al. Activation of peroxymonosulfate by benzoquinone: A novel nonradical oxidation process[J]. Environmental Science & Technology, 2015, 49(21): 12941-12950.
|
39 |
LIANG Song, NIU Huaiyuan, GUO Hai, et al. Incorporating Fe3C into B,N co-doped CNTs: Non-radical-dominated peroxymonosulfate catalytic activation mechanism[J]. Chemical Engineering Journal, 2021, 405: 126686.
|