化工进展 ›› 2024, Vol. 43 ›› Issue (11): 6140-6154.DOI: 10.16085/j.issn.1000-6613.2023-1735
• 工业催化 • 上一篇
周强1(), 殷成阳2(), 刘百军1(), 赵震1,2()
收稿日期:
2023-10-07
修回日期:
2023-12-26
出版日期:
2024-11-15
发布日期:
2024-12-07
通讯作者:
殷成阳,刘百军,赵震
作者简介:
周强(1991—),男,博士研究生,研究方向为氢气选择催化还原氮氧化物。E-mail:1987107063@qq.com。
基金资助:
ZHOU Qiang1(), YIN Chengyang2(), LIU Baijun1(), ZHAO Zhen1,2()
Received:
2023-10-07
Revised:
2023-12-26
Online:
2024-11-15
Published:
2024-12-07
Contact:
YIN Chengyang, LIU Baijun, ZHAO Zhen
摘要:
柴油发动机尾气是氮氧化物(NO x )主要来源之一,烃类化合物(HC)选择催化还原氮氧化物(HC-SCR)技术是一种常见的脱除氮氧化物方法,但是在HC-SCR催化还原NO x 中,Ag基氧化物催化剂的低温脱硝活性较差,活性温度窗口较窄。在HC-SCR反应气氛中添加少量氢气(H2)能显著提升Ag/γ-Al2O3等催化剂的低温脱硝活性,拓宽活性温度窗口。本文以贫燃柴油发动机尾气脱硝为背景,归纳了H2对活性中心Ag物种种类、烃类化合物和氧气的活化以及活性含氮中间体转化的影响,总结了H2在提升HC-SCR催化剂抗硫和抗水性能起到的作用,列举了近年来新型催化剂在H2辅助HC-SCR(H2-HC-SCR)脱硝体系中的应用。相关研究表明H2促进HC-SCR中具有催化活性的Ag物种的生成,促进O2活化为活性氧物种,加速烃类化合物转化为异氰酸盐、烯醇物种等关键中间体,并减少可毒化活性中心硝酸盐物种的含量,从而提高HC-SCR脱硝活性。H2辅助HC-SCR脱硝技术有望在机动车尾气脱硝中发挥重要作用,推动HC-SCR脱硝技术的发展。
中图分类号:
周强, 殷成阳, 刘百军, 赵震. 氢气辅助HC-SCR脱硝性能和作用机制的研究进展[J]. 化工进展, 2024, 43(11): 6140-6154.
ZHOU Qiang, YIN Chengyang, LIU Baijun, ZHAO Zhen. Research progress on the performance and mechanism of H2-assisted HC-SCR denitration[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6140-6154.
发动机操作条件 | O2/% | CO/% | CO2/% | H2/% | HC/% | NO x /% | H2O①/% | 发动机尾气温度/℃ |
---|---|---|---|---|---|---|---|---|
发动机负荷25% 发动机转速1500r/min 平均指示缸内压力0.3MPa | 15.8 | 0.01 | 3.3 | 0.004 | ~0.07 | 0.038 | 4.0 | 195 |
发动机负荷50% 发动机转速1500r/min 平均指示缸内压力0.43MPa | 13.7 | 0.01 | 5.0 | 0.008 | ~0.075 | 0.059 | 4.9 | 260 |
发动机负荷75% 发动机转速1500r/min 平均指示缸内压力0.59MPa | 11.1 | 0.01 | 6.7 | 0.007 | ~0.085 | 0.093 | 7.0 | 360 |
表1 不同柴油发动机负荷下的实际尾气物质组成(体积分数)[35]
发动机操作条件 | O2/% | CO/% | CO2/% | H2/% | HC/% | NO x /% | H2O①/% | 发动机尾气温度/℃ |
---|---|---|---|---|---|---|---|---|
发动机负荷25% 发动机转速1500r/min 平均指示缸内压力0.3MPa | 15.8 | 0.01 | 3.3 | 0.004 | ~0.07 | 0.038 | 4.0 | 195 |
发动机负荷50% 发动机转速1500r/min 平均指示缸内压力0.43MPa | 13.7 | 0.01 | 5.0 | 0.008 | ~0.075 | 0.059 | 4.9 | 260 |
发动机负荷75% 发动机转速1500r/min 平均指示缸内压力0.59MPa | 11.1 | 0.01 | 6.7 | 0.007 | ~0.085 | 0.093 | 7.0 | 360 |
序号 | 催化剂种类 | 基本反应条件 | [H2]①/% | XNOmax②/%-TNOmax③/℃ | T50④/℃ | ∆T50⑤/℃ | 参考文献 |
---|---|---|---|---|---|---|---|
1 | 2%Ag/γ-Al2O3 | 0.1%NO/0.15%C3H6/10% O2/Ar | 0 | 约92-400 | 约350 | 约50 | [ |
0.1 | 约95-400 | 约300 | |||||
2 | 1%Ag/γ-Al2O3 (未水热老化) | 0.05%NO/0.1333%C3H6/8% O2/0.05%CO/5 %H2O/N2 | 0 | 约92-450 | 约410 | 约170 | [ |
1 | 约100-300 | 约240 | |||||
3 | 2%Ag/γ-Al2O3-WO x | 0.05%NO/0.0625%C3H8/0.02%CO/2% O2/N2 | 0 | 约80-450 | 约410 | 约260 | [ |
0.066 | 约65-170 | 约150 | |||||
4 | 2%Ag/CeZr0.4 | 0.07%NO/0.07%C3H6/3% O2/Ar | 0 | 约72-350 | 约225 | 约50 | [ |
0.5 | 约86-400 | 约175 | |||||
5 | 2%Ag-Ce0.4ZrO2-δ | 0.1% NO/0.1% C3H6/10% O2/He | 0 | 约70-320 | 约220 | 约40 | [ |
10 | 约82-500 | 约180 |
表2 H2对Ag基催化剂HC-SCR脱硝活性的影响
序号 | 催化剂种类 | 基本反应条件 | [H2]①/% | XNOmax②/%-TNOmax③/℃ | T50④/℃ | ∆T50⑤/℃ | 参考文献 |
---|---|---|---|---|---|---|---|
1 | 2%Ag/γ-Al2O3 | 0.1%NO/0.15%C3H6/10% O2/Ar | 0 | 约92-400 | 约350 | 约50 | [ |
0.1 | 约95-400 | 约300 | |||||
2 | 1%Ag/γ-Al2O3 (未水热老化) | 0.05%NO/0.1333%C3H6/8% O2/0.05%CO/5 %H2O/N2 | 0 | 约92-450 | 约410 | 约170 | [ |
1 | 约100-300 | 约240 | |||||
3 | 2%Ag/γ-Al2O3-WO x | 0.05%NO/0.0625%C3H8/0.02%CO/2% O2/N2 | 0 | 约80-450 | 约410 | 约260 | [ |
0.066 | 约65-170 | 约150 | |||||
4 | 2%Ag/CeZr0.4 | 0.07%NO/0.07%C3H6/3% O2/Ar | 0 | 约72-350 | 约225 | 约50 | [ |
0.5 | 约86-400 | 约175 | |||||
5 | 2%Ag-Ce0.4ZrO2-δ | 0.1% NO/0.1% C3H6/10% O2/He | 0 | 约70-320 | 约220 | 约40 | [ |
10 | 约82-500 | 约180 |
序号 | 催化剂种类 | 反应条件 | [H2]/% | Tmax①/℃ | (XNOxtoN2)max②/% | 参考文献 |
---|---|---|---|---|---|---|
1 | 0.5%Pt/γ-Al2O3 | 0.1%NO/0.1% C3H6/2% O2/Ar | 0 | 约220 | 约25 | [ |
0.5 | 约110 | 约72 | ||||
2 | 0.5%Ir/γ-Al2O3 | 0.1%NO/0.1% C3H6/2% O2/Ar | 0 | 约325 | 约20 | [ |
0.5 | 约280 | 约60 | ||||
3 | 0.07g Au(1.6%)/γ-Al2O3+0.30g γ-Al2O3 | 0.037%NO/0.04%C3H6/8% O2/He | 0 | 400 | 约30 | [ |
0.21 | 400 | 约43 | ||||
4 | 0.5%Au/γ-Al2O3 | 0.0385%NO x (~96% NO)/0.04%C3H6/8% O2/He | 0 | 约400 | 约39 | [ |
0.21 | 约390 | 约57 |
表3 H2对贵金属催化剂HC-SCR脱硝活性的影响
序号 | 催化剂种类 | 反应条件 | [H2]/% | Tmax①/℃ | (XNOxtoN2)max②/% | 参考文献 |
---|---|---|---|---|---|---|
1 | 0.5%Pt/γ-Al2O3 | 0.1%NO/0.1% C3H6/2% O2/Ar | 0 | 约220 | 约25 | [ |
0.5 | 约110 | 约72 | ||||
2 | 0.5%Ir/γ-Al2O3 | 0.1%NO/0.1% C3H6/2% O2/Ar | 0 | 约325 | 约20 | [ |
0.5 | 约280 | 约60 | ||||
3 | 0.07g Au(1.6%)/γ-Al2O3+0.30g γ-Al2O3 | 0.037%NO/0.04%C3H6/8% O2/He | 0 | 400 | 约30 | [ |
0.21 | 400 | 约43 | ||||
4 | 0.5%Au/γ-Al2O3 | 0.0385%NO x (~96% NO)/0.04%C3H6/8% O2/He | 0 | 约400 | 约39 | [ |
0.21 | 约390 | 约57 |
催化剂 | 反应条件 | 烃类化合物种类 | 温度/℃ | (XNO | 参考文献 | |
---|---|---|---|---|---|---|
不添加H2 | 添加H2 | |||||
γ-Al2O3 | R#1 | C3H8 | 500 | 15 | 35 | [ |
2%Ag/γ-Al2O3 | R#1 | C3H8 | 300 | 0 | 36 | [ |
2%Ag/TiO2 | R#1 | C3H8 | 500 | 3 | 3 | [ |
2%Ag/Ga2O3 | R#1 | C3H8 | 500 | 34 | 12 | [ |
2%Co/γ-Al2O3 | R#1 | C3H8 | 350 | 12 | 10 | [ |
0.5%Pt/γ-Al2O3(Engelhard公司生产) | R#1 | C3H8 | 325 | 8 | 6 | [ |
0.5%Pt/γ-Al2O3(初湿浸渍法) | R#2 | C3H6 | 约110 | 约0 | 约72 | [ |
0.5%Pd/γ-Al2O3 | R#2 | C3H6 | 200 | 约12 | 约16 | [ |
0.5%Ir/γ-Al2O3 | R#2 | C3H6 | 约280 | 约0 | 约61 | [ |
表4 H2-HC-SCR催化剂的活性对比
催化剂 | 反应条件 | 烃类化合物种类 | 温度/℃ | (XNO | 参考文献 | |
---|---|---|---|---|---|---|
不添加H2 | 添加H2 | |||||
γ-Al2O3 | R#1 | C3H8 | 500 | 15 | 35 | [ |
2%Ag/γ-Al2O3 | R#1 | C3H8 | 300 | 0 | 36 | [ |
2%Ag/TiO2 | R#1 | C3H8 | 500 | 3 | 3 | [ |
2%Ag/Ga2O3 | R#1 | C3H8 | 500 | 34 | 12 | [ |
2%Co/γ-Al2O3 | R#1 | C3H8 | 350 | 12 | 10 | [ |
0.5%Pt/γ-Al2O3(Engelhard公司生产) | R#1 | C3H8 | 325 | 8 | 6 | [ |
0.5%Pt/γ-Al2O3(初湿浸渍法) | R#2 | C3H6 | 约110 | 约0 | 约72 | [ |
0.5%Pd/γ-Al2O3 | R#2 | C3H6 | 200 | 约12 | 约16 | [ |
0.5%Ir/γ-Al2O3 | R#2 | C3H6 | 约280 | 约0 | 约61 | [ |
图10 Ag/γ-Al2O3和Pd/γ-Al2O3催化剂在不同还原气氛下的脱硝活性[16](基本反应条件:[NO]=0.05%,[O2]=8%,[CO]=0.05%,[H2O]=5%;H2–SCR:[H2]=1%;C3H6–SCR:[C3H6]=0.1333%;H2-C3H6–SCR:[H2]=1%,[C3H6]=0.1333%)
26 | REITZ R D, RUTLAND C J. Development and testing of diesel engine CFD models[J]. Progress in Energy and Combustion Science, 1995, 21(2): 173-196. |
27 | ROY Sounak, HEGDE M S, MADRAS Giridhar. Catalysis for NO x abatement[J]. Applied Energy, 2009, 86(11): 2283-2297. |
28 | PRASAD Ram, SINGH Pratichi. Applications and preparation methods of copper chromite catalysts: a review[J]. Bulletin of Chemical Reaction Engineering & Catalysis, 2011, 6(2): 63-113. |
29 | REŞITOĞLU İbrahim Aslan, Kemal ALTINIŞIK, KESKIN Ali. The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems[J]. Clean Technologies and Environmental Policy, 2015, 17(1): 15-27. |
30 | QI Gongshin, YANG Ralph T, RINALDI Fabrizio C. Selective catalytic reduction of nitric oxide with hydrogen over Pd-based catalysts[J]. Journal of Catalysis, 2006, 237(2): 381-392. |
31 | GARIN François. Mechanism of NO x decomposition[J]. Applied Catalysis A: General, 2001, 222(1/2): 183-219. |
32 | MACLEOD Norman, CROPLEY Rachael, KEEL James M, et al. Exploiting the synergy of titania and alumina in lean NO x reduction: In situ ammonia generation during the Pd/TiO2/Al2O3-catalysed H2/CO/NO/O2 reaction[J]. Journal of Catalysis, 2004, 221(1): 20-31. |
33 | QI Gongshin, YANG Ralph T, THOMPSON Levi T. Catalytic reduction of nitric oxide with hydrogen and carbon monoxide in the presence of excess oxygen by Pd supported on pillared clays[J]. Applied Catalysis A: General, 2004, 259(2): 261-267. |
34 | MACLEOD Norman, LAMBERT Richard M. Lean NO x reduction with CO+H2 mixtures over Pt/Al2O3 and Pd/Al2O3 catalysts[J]. Applied Catalysis B: Environmental, 2002, 35(4): 269-279. |
35 | ABU-JRAI A, TSOLAKIS A. The effect of H2 and CO on the selective catalytic reduction of NO x under real diesel engine exhaust conditions over Pt/Al2O3 [J]. International Journal of Hydrogen Energy, 2007, 32(12): 2073-2080. |
36 | 苏庆运, 解亮, 冯廷智, 等. 柴油机LNT再生过程铂催化CO还原NO x 反应机理[J]. 内燃机学报, 2016, 34(4): 339-345. |
SU Qingyun, XIE Liang, FENG Tingzhi, et al. Detailed mechanism of NO x reduction by CO over Pt catalyst during regeneration period of diesel LNT[J]. Transactions of CSICE, 2016, 34(4): 339-345. | |
1 | GHOLAMI Fatemeh, TOMAS Martin, GHOLAMI Zahra, et al. Technologies for the nitrogen oxides reduction from flue gas: A review[J]. Science of the Total Environment, 2020, 714: 136712. |
2 | WU Peng, YU Qing, YAN Jingjing, et al. Progress in selective catalytic reduction of NO x by hydrogen in excess oxygen[J]. Chinese Journal of Catalysis, 2010, 31(8): 912-918. |
3 | 汤常金, 孙敬方, 董林. 超低温(<150℃)SCR脱硝技术研究进展[J]. 化工学报, 2020, 71(11): 4873-4884. |
TANG Changjin, SUN Jingfang, DONG Lin. Recent progress on elimination of NO x from flue gas via SCR technology under ultra-low temperatures (<150℃)[J]. CIESC Journal, 2020, 71(11): 4873-4884. | |
4 | 单玉龙, 彭悦, 楚碧武, 等. 我国重点行业氮氧化物管控现状及减排策略[J]. 环境科学研究, 2023, 36(3): 431-438. |
SHAN Yulong, PENG Yue, CHU Biwu, et al. Control status and emission reduction strategies of nitrogen oxides in key industries in China[J]. Research of Environmental Sciences, 2023, 36(3): 431-438. | |
5 | 中华人民共和国生态环境部. 重型柴油车污染物排放限值及测量方法(中国第六阶段): [S]. 北京: 中国环境科学出版社, 2018. |
Ministry of Ecology and Environment of the People’s Republic of China. Limits and measurement methods for emissions from diesel fuelled heavy-duty vehicles (): GB 17691—2018[S]. Beijing: China Environment Science Press, 2018. | |
6 | TOFAN C, KLVANA D, KIRCHNEROVA J. Decomposition of nitric oxide over perovskite oxide catalysts: Effect of CO2, H2O and CH4 [J]. Applied Catalysis B: Environmental, 2002, 36(4): 311-323. |
7 | GOULA M A, CHARISIOU N D, PAPAGERIDIS K N, et al. A comparative study of the H2-assisted selective catalytic reduction of nitric oxide by propene over noble metal (Pt, Pd, Ir)/γ-Al2O3 catalysts[J]. Journal of Environmental Chemical Engineering, 2016, 4(2): 1629-1641. |
8 | DUAN Jun, ZHAO Ling, GAO Shengjun, et al. New aspects on a low-medium temperature mechanism of H2-assisted C3H6-SCR over xAg-CeZr catalyst[J]. Fuel, 2021, 305: 121574. |
9 | 宁淑英, 苏亚欣, 杨洪海, 等. 用于HC-SCR还原NO x 的Cu基分子筛催化剂研究进展[J]. 化工进展, 2023, 42(3): 1308-1320. |
NING Shuying, SU Yaxin, YANG Honghai, et al. Research progress on supported Cu-based zeolite catalysts for the selective catalytic reduction of NO x with hydrocarbons[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1308-1320. | |
10 | LEE Kyungseok, CHOI Byungchul, LEE Chunbeom, et al. Effects of SiO2/Al2O3 ratio, reaction atmosphere and metal additive on de-NO x performance of HC-SCR over Cu-based ZSM-5[J]. Journal of Industrial and Engineering Chemistry, 2020, 90: 132-144. |
11 | BREEN J P, BURCH R. A review of the effect of the addition of hydrogen in the selective catalytic reduction of NO x with hydrocarbons on silver catalysts[J]. Topics in Catalysis, 2006, 39(1/2): 53-58. |
12 | SATOKAWA Shigeo. Enhancing the NO/C3H8/O2 reaction by using H2 over Ag/Al2O3 catalysts under lean-exhaust conditions[J]. Chemistry Letters, 2000, 29(3): 294-295. |
13 | SITTICHOMPOO Sak, THEINNOI Kampanart, SAWATMONGKHON Boonlue, et al. Promotion effect of hydrogen addition in selective catalytic reduction of nitrogen oxide emissions from diesel engines fuelled with diesel-biodiesel-ethanol blends[J]. Alexandria Engineering Journal, 2022, 61(7): 5383-5395. |
14 | HERNÁNDEZ-TERÁN María E, LÓPEZ CURIEL Julio C, FUENTES Gustavo A. Study of the reversibility of the H2 effect over Ag/γ-Al2O3 catalyst during selective catalytic reduction (SCR) of NO x by propane[J]. Topics in Catalysis, 2022, 65(13/14/15/16): 1505-1515. |
15 | WANG Jia, YOU Rui, QIAN Kun, et al. Effect of the modification of alumina supports with chloride on the structure and catalytic performance of Ag/Al2O3 catalysts for the selective catalytic reduction of NO x with propene and H2/propene[J]. Chinese Journal of Catalysis, 2021, 42(12): 2242-2253. |
16 | LEE Kyungseok, CHOI Byungchul. HC-SCR system combining Ag/Al2O3 and Pd/Al2O3 catalysts with resistance to hydrothermal aging for simultaneous removal of NO, HC, and CO[J]. Journal of Industrial and Engineering Chemistry, 2021, 102: 51-68. |
17 | KHATRI Prateek, BHATIA Divesh. Effect of gas composition on the NO x adsorption and reduction activity of a dual-function Ag/MgO/γ- Al2O3 catalyst[J]. Applied Catalysis A: General, 2021, 618: 118114. |
18 | YAN Tao, ZHAO Kaiwen, GAO Zhaojun, et al. Investigation of the effect of bimetallic Zn-Mg modified Al2O3 carriers modulating Ag species on the performance of H2-assisted C3H6-SCR and the mechanism[J]. Applied Surface Science, 2023, 615: 156323. |
19 | AZIS Muhammad Mufti. Experimental and kinetic studies of H2 effect on lean exhaust aftertreatment processes: HC-SCR and DOC[D]. Sweden: Chalmers Tekniska Hogskola, 2015. |
20 | XU Guangyan, WANG Honghong, YU Yunbo, et al. Role of silver species in H2-NH3-SCR of NO x over Ag/Al2O3 catalysts: Operando spectroscopy and DFT calculations[J]. Journal of Catalysis, 2021, 395: 1-9. |
37 | GUAN Yu, LIU Yinhe, LV Qiang, et al. Review on the selective catalytic reduction of NO x with H2 by using novel catalysts[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106770. |
38 | CHOI Byungchul, LEE Kyungseok, Geonseog SON. Review of recent after-treatment technologies for de-NO x process in diesel engines[J]. International Journal of Automotive Technology, 2020, 21(6): 1597-1618. |
39 | HELD Wolfgang, Axel KÖNIG, RICHTER Thomas, et al. Catalytic NO x reduction in net oxidizing exhaust gas[C]//SAE Technical Paper Series, 400 Commonwealth Drive. United States: SAE International, 1990: 209-216. |
40 | CHENG Xingxing, BI Xiaotao T. A review of recent advances in selective catalytic NO x reduction reactor technologies[J]. Particuology, 2014, 16: 1-18. |
41 | LIU Zhiming, Seong IHL WOO. Recent advances in catalytic DeNO x science and technology[J]. Catalysis Reviews, 2006, 48(1): 43-89. |
42 | MEUNIER F C, ZUZANIUK V, BREEN J P, et al. Mechanistic differences in the selective reduction of NO by propene over cobalt- and silver-promoted alumina catalysts: Kinetic and in situ DRIFTS study[J]. Catalysis Today, 2000, 59(3): 287-304. |
43 | CHENG Xingxing, BI Xiaotao T. Reaction kinetics of selective catalytic reduction of NO x by propylene over Fe/ZSM-5[J]. Chemical Engineering Journal, 2012, 211/212: 453-462. |
44 | MEUNIER F C, BREEN J P, ZUZANIUK V, et al. Mechanistic aspects of the selective reduction of NO by propene over alumina and silver-alumina catalysts[J]. Journal of Catalysis, 1999, 187(2): 493-505. |
45 | CHANSAI Sarayute, BURCH Robbie, HARDACRE Christopher, et al. Investigating the promotional effect of methanol on the low temperature SCR reaction on Ag/Al2O3 [J]. Applied Catalysis B: Environmental, 2014, 160/161: 356-364. |
46 | DENG Hua, YU Yunbo, HE Hong. Water effect on preparation of Ag/Al2O3 catalyst for reduction of NO x by ethanol[J]. The Journal of Physical Chemistry C, 2016, 120(42): 24294-24301. |
47 | XU Guangyan, MA Jinzhu, WANG Lian, et al. Insight into the origin of sulfur tolerance of Ag/Al2O3 in the H2-C3H6-SCR of NO x [J]. Applied Catalysis B: Environmental, 2019, 244: 909-918. |
48 | KRUTZSCH Bernd, GOERIGK Christian, KURZE Stefan, et al. Process and apparatus for reducing nitrogen oxides in engine emissions: US5921076[P]. 1999-07-13. |
21 | XU Guangyan, MA Jinzhu, WANG Lian, et al. Mechanism of the H2 effect on NH3-selective catalytic reduction over Ag/Al2O3: Kinetic and diffuse reflectance infrared Fourier transform spectroscopy studies[J]. ACS Catalysis, 2019, 9(11): 10489-10498. |
22 | Linda STRÖM, CARLSSON Per-Anders, SKOGLUNDH Magnus, et al. Surface species and metal oxidation state during H2-assisted NH3-SCR of NO x over alumina-supported silver and indium[J]. Catalysts, 2018, 8(1): 38. |
23 | WANG Xiuyun, JIANG Lilong, WANG Jinyun, et al. Ag/bauxite catalysts: improved low-temperature activity and SO2 tolerance for H2-promoted NH3-SCR of NO x [J]. Applied Catalysis B: Environmental, 2015, 165: 700-705. |
24 | DORONKIN Dmitry E, FOGEL Sebastian, Pär GABRIELSSON, et al. Ti and Si doping as a way to increase low temperature activity of sulfated Ag/Al2O3 in H2-assisted NH3-SCR of NO x [J]. Applied Catalysis B: Environmental, 2014, 148/149: 62-69. |
25 | YASUMURA Shunsaku, KATO Taisetsu, TOYAO Takashi, et al. An automated reaction route mapping for the reaction of NO and active species on Ag4 clusters in zeolites[J]. Physical Chemistry Chemical Physics, 2023, 25(12): 8524-8531. |
49 | THOMAS Cyril. On an additional promoting role of hydrogen in the H2-assisted C3H6-SCR of NO x on Ag/Al2O3: A lowering of the temperature of formation-decomposition of the organo-NO x intermediates?[J]. Applied Catalysis B: Environmental, 2015, 162: 454-462. |
50 | SADOKHINA N A, PROKHOROVA A F, KVON R I, et al. Dependence of the catalytic activity of Ag/Al2O3 on the silver concentration in the selective reduction of NO x with n-hexane in the presence of H2 [J]. Kinetics and Catalysis, 2012, 53(1): 107-116. |
51 | BABA Toshihide, AKINAKA Noboru, NOMURA Mamoru, et al. Reversible redox behaviour between silver cations and silver metal particles in hydrated Ag-Y zeolites[J]. Journal of the Chemical Society, Faraday Transactions, 1993, 89(3): 595-599. |
52 | SATSUMA Atsushi, SHIBATA Junji, SHIMIZU Ken-ichi, et al. Ag clusters as active species for HC-SCR over Ag-zeolites[J]. Catalysis Surveys from Asia, 2005, 9(2): 75-85. |
53 | SHIBATA Junji, TAKADA Yuu, SHICHI Akira, et al. Ag cluster as active species for SCR of NO by propane in the presence of hydrogen over Ag-MFI[J]. Journal of Catalysis, 2004, 222(2): 368-376. |
54 | KIM Pyung Soon, KIM Mun Kyu, CHO Byong K, et al. Effect of H2 on deNO x performance of HC-SCR over Ag/Al2O3: Morphological, chemical, and kinetic changes[J]. Journal of Catalysis, 2013, 301: 65-76. |
55 | Kari ERÄNEN, KLINGSTEDT Fredrik, ARVE Kalle, et al. On the mechanism of the selective catalytic reduction of NO with higher hydrocarbons over a silver/alumina catalyst[J]. Journal of Catalysis, 2004, 227(2): 328-343. |
56 | BREEN J P, BURCH R, HARDACRE C, et al. A fast transient kinetic study of the effect of H2 on the selective catalytic reduction of NO x with octane using isotopically labelled 15NO[J]. Journal of Catalysis, 2007, 246(1): 1-9. |
57 | SHIMIZU Kenichi, SAWABE Kyoichi, SATSUMA Atsushi. Unique catalytic features of Ag nanoclusters for selective NO x reduction and green chemical reactions[J]. Catalysis Science & Technology, 2011, 1(3): 331-341. |
58 | SHIMIZU Ken-ichi, SHIBATA Junji, SATSUMA Atsushi. Kinetic and in situ infrared studies on SCR of NO with propane by silver-alumina catalyst: Role of H2 on O2 activation and retardation of nitrate poisoning[J]. Journal of Catalysis, 2006, 239(2): 402-409. |
59 | RICHTER M. The effect of hydrogen on the selective catalytic reduction of NO in excess oxygen over Ag/Al2O3 [J]. Applied Catalysis B: Environmental, 2004, 51(4): 261-274. |
60 | SHIMIZU Ken-ichi, SUGINO Kenji, KATO Kazuo, et al. Reaction mechanism of H2-promoted selective catalytic reduction of NO with C3H8 over Ag-MFI zeolite[J]. The Journal of Physical Chemistry C, 2007, 111(17): 6481-6487. |
61 | ZHANG Xiuli, HE Hong, MA Zichuan. Hydrogen promotes the selective catalytic reduction of NO by ethanol over Ag/Al2O3 [J]. Catalysis Communications, 2007, 8(2): 187-192. |
62 | SATOKAWA Shigeo, SHIBATA Junji, SHIMIZU Ken-ichi, et al. Promotion effect of H2 on the low temperature activity of the selective reduction of NO by light hydrocarbons over Ag/Al2O3 [J]. Applied Catalysis B: Environmental, 2003, 42(2): 179-186. |
63 | ARVE Kalle, BACKMAN Henrik, KLINGSTEDT Fredrik, et al. Hydrogen as a remedy for the detrimental effect of aromatic and cyclic compounds on the HC-SCR over Ag/alumina[J]. Applied Catalysis B: Environmental, 2007, 70(1/2/3/4): 65-72. |
64 | YU Yunbo, LI Yi, ZHANG Xiuli, et al. Promotion effect of H2 on ethanol oxidation and NO x reduction with ethanol over Ag/Al2O3 catalyst[J]. Environmental Science & Technology, 2015, 49(1): 481-488. |
65 | YU Yunbo, HE Hong, ZHANG Xiuli, et al. A common feature of H2-assisted HC-SCR over Ag/Al2O3 [J]. Catalysis Science & Technology, 2014, 4(5): 1239-1245. |
66 | KANNISTO Hannes, INGELSTEN Hanna Härelind, SKOGLUNDH Magnus. Aspects of the role of hydrogen in H2-assisted HC-SCR over Ag-Al2O3 [J]. Topics in Catalysis, 2009, 52(13/14/15/16/17/18/19/20): 1817-1820. |
67 | BURCH R. Knowledge and know-how in emission control for mobile applications[J]. Catalysis Reviews, 2004, 46(3/4): 271-334. |
68 | JOHNSON William L, FISHER Galen B, TOOPS Todd J. Mechanistic investigation of ethanol SCR of NO x over Ag/Al2O3 [J]. Catalysis Today, 2012, 184(1): 166-177. |
69 | BURCH R, BREEN J P, HILL C J, et al. Exceptional activity for NO x reduction at low temperatures using combinations of hydrogen and higher hydrocarbons on Ag/Al2O3 catalysts[J]. Topics in Catalysis, 2004, 30/31(1/2/3/4): 19-25. |
70 | BENTRUP Ursula, RICHTER Manfred, FRICKE Rolf. Effect of H2 admixture on the adsorption of NO, NO2 and propane at Ag/Al2O3 catalyst as examined by in situ FTIR[J]. Applied Catalysis B: Environmental, 2005, 55(3): 213-220. |
71 | AZIS Muhammad Mufti, Hanna HÄRELIND, CREASER Derek. On the role of H2 to modify surface NO x species over Ag-Al2O3 as lean NO x reduction catalyst: TPD and DRIFTS studies[J]. Catalysis Science & Technology, 2015, 5(1): 296-309. |
72 | SHIMIZU Ken-ichi, TSUZUKI Masao, SATSUMA Atsushi. Effects of hydrogen and oxygenated hydrocarbons on the activity and SO2-tolerance of Ag/Al2O3 for selective reduction of NO[J]. Applied Catalysis B: Environmental, 2007, 71(1/2): 80-84. |
73 | SHIMIZU Ken-ichi, HIGASHIMATA Takaaki, TSUZUKI Masao, et al. Effect of hydrogen addition on SO2 tolerance of silver-alumina for SCR of NO with propane[J]. Journal of Catalysis, 2006, 239(1): 117-124. |
74 | WANG Zhijian, XU Guangyan, LIU Xin, et al. Investigation of water and sulfur tolerance of precipitable silver compound Ag/Al2O3 catalysts in H2-assisted C3H6-SCR of NO x [J]. ACS Omega, 2020, 5(45): 29593-29600. |
75 | XU Guangyan, YU Yunbo, HE Hong. Silver valence state determines the water tolerance of Ag/Al2O3 for the H2-C3H6-SCR of NO x [J]. The Journal of Physical Chemistry C, 2018, 122(1): 670-680. |
76 | XU Guangyan, MA Jinzhu, HE Guangzhi, et al. An alumina-supported silver catalyst with high water tolerance for H2 assisted C3H6-SCR of NO x [J]. Applied Catalysis B: Environmental, 2017, 207: 60-71. |
77 | SAZAMA P, ČAPEK L, DROBNÁ H, et al. Enhancement of decane-SCR-NO over Ag/alumina by hydrogen. Reaction kinetics and in situ FTIR and UV-vis study[J]. Journal of Catalysis, 2005, 232(2): 302-317. |
78 | BACKMAN Henrik, ARVE Kalle, KLINGSTEDT Fredrik, et al. Kinetic considerations of H2 assisted hydrocarbon selective catalytic reduction of NO over Ag/Al2O3: II. Kinetic modelling[J]. Applied Catalysis A: General, 2006, 304: 86-92. |
79 | 张秀丽, 贺泓, 余运波. 氢气对Ag/Al2O3和Cu/Al2O3催化剂选择性催化C3H6还原NO x 反应的影响[J]. 催化学报, 2007, 28(2): 117-123. |
ZHANG Xiuli, HE Hong, YU Yunbo. Effect of H2 on selective catalytic reduction of NO x by C3H6 over Ag/Al2O3 and Cu/Al2O3 catalysts[J]. Chinese Journal of Catalysis, 2007, 28(2): 117-123. | |
80 | DUAN Jun, ZHAO Ling, GAO Shengjun, et al. Reaction mechanism of H2-assisted C3H6-SCR over Ag-Ce x Zr catalyst as investigated by in situ FTIR[J]. Chemical Research in Chinese Universities, 2020, 36(5): 885-893. |
81 | POPOVYCH Nataliia O, KYRIIENKO Pavlo I, SOLOVIEV Sergiy O, et al. Influence of partial dealumination of BEA zeolites on physicochemical and catalytic properties of AgAlSiBEA in H2-promoted SCR of NO with ethanol[J]. Microporous and Mesoporous Materials, 2016, 226: 10-18. |
82 | ZHANG Xiuli, HE Hong, GAO Hongwei, et al. Experimental and theoretical studies of surface nitrate species on Ag/Al2O3 using DRIFTS and DFT[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2008, 71(4): 1446-1451. |
83 | Marika MÄNNIKKÖ, SKOGLUNDH Magnus, INGELSTEN Hanna Härelind. Selective catalytic reduction of NO x with methanol over supported silver catalysts[J]. Applied Catalysis B: Environmental, 2012, 119/120: 256-266. |
84 | GONZÁLEZ HERNÁNDEZ Naomi N, LUIS Contreras José, MARCOS Pinto, et al. Improved NO x reduction using C3H8 and H2 with Ag/Al2O3 catalysts promoted with Pt and WO x [J]. Catalysts, 2020, 10(10): 1212. |
85 | KALAMARAS Christos M, OLYMPIOU George G, PÂRVULESCU Vasile I, et al. Selective catalytic reduction of NO by H2/C3H6 over Pt/Ce1- x Zr x O2- δ : The synergy effect studied by transient techniques[J]. Applied Catalysis B: Environmental, 2017, 206: 308-318. |
86 | CHAIEB Tesnim, DELANNOY Laurent, CASALE Sandra, et al. Evidence for an H2 promoting effect in the selective catalytic reduction of NO x by propene on Au/Al2O3 [J]. Chemical Communications, 2015, 51(4): 796-799. |
87 | CHAIEB Tesnim, THOMAS Cyril, CASALE Sandra, et al. Selective catalytic reduction of NO x over Au/Al2O3: Influence of the gold loading on the promoting effect of H2 in H2-assisted C3H6-SCR of NO x [J]. Catalysis Letters, 2018, 148(2): 539-546. |
88 | YADAV Deepak, KAVAIYA Ashish R, MOHAN Devendra, et al. Low temperature selective catalytic reduction (SCR) of NO x emissions by Mn-doped Cu/Al2O3 catalysts[J]. Bulletin of Chemical Reaction Engineering & Catalysis, 2017, 12(3): 415-429. |
89 | KESKIN Zeycan, Tayfun ÖZGÜR, Himmet ÖZARSLAN, et al. Effects of hydrogen addition into liquefied petroleum gas reductant on the activity of Ag-Ti-Cu/cordierite catalyst for selective catalytic reduction system[J]. International Journal of Hydrogen Energy, 2021, 46(10): 7634-7641. |
90 | YADAV Deepak, SINGH Pratichi, PRASAD Ram. MnCo2O4 spinel catalysts synthesized by nanocasting method followed by different calcination routes for low-temperature reduction of NO x using various reductants[J]. International Journal of Hydrogen Energy, 2018, 43(10): 5346-5357. |
[1] | 李新月, 李振京, 韩沂杭, 郭永强, 闫瑜, 哈力米热·卡热木拉提, 赵会吉, 柴永明, 刘东, 殷长龙. 油脂加氢脱氧生产绿色柴油催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 351-364. |
[2] | 李帅哲, 聂懿宸, PHIDSAVARD Keomeesay, 顾雯, 张伟, 刘娜, 徐高翔, 刘莹, 李兴勇, 陈玉保. 非贵金属催化生物质加氢脱氧制备烃基生物燃料的研究进展[J]. 化工进展, 2024, 43(S1): 225-242. |
[3] | 郝静远, 齐宝金, 魏进家. 不同压力下榆神地区富油煤原位热解产物特性[J]. 化工进展, 2024, 43(S1): 268-281. |
[4] | 熊磊, 丁飞燕, 李聪, 王群乐, 吕起, 翟晓娜, 刘峰. 金属Pt负载型非均相催化剂研究进展[J]. 化工进展, 2024, 43(S1): 295-304. |
[5] | 宋财城, 陈晓贞, 刘丽, 杨成敏, 郑步梅, 尹晓莹, 孙进, 姚运海, 段为宇. 碳基载体负载加氢脱硫催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 305-314. |
[6] | 韩洪晶, 车宇, 田宇轩, 王海英, 张亚男, 陈彦广. 木质素催化氢解催化剂及溶剂的研究进展[J]. 化工进展, 2024, 43(S1): 315-324. |
[7] | 胡兴, 刘易, 杜泽学. 3-氯丙烯直接合成环氧氯丙烷催化剂研究进展[J]. 化工进展, 2024, 43(S1): 325-334. |
[8] | 于梦洁, 吴语童, 罗发祥, 豆义波. 低浓度二氧化碳还原光催化剂结构设计的研究进展[J]. 化工进展, 2024, 43(S1): 335-350. |
[9] | 何世坤, 张荣花, 李昊阳, 潘晖, 冯君锋. 脱铝分子筛固体酸催化葡萄糖制备5-羟甲基糠醛[J]. 化工进展, 2024, 43(S1): 374-381. |
[10] | 张日东, 吕建华, 刘继东, 郭豹, 李文松. Ru-K-NaY催化草酸二甲酯脱羰基制备碳酸二甲酯[J]. 化工进展, 2024, 43(S1): 382-390. |
[11] | 谢钰麟, 饶瑞晔, 黄建, 蒿佳怡, 王友益, 黄琦. 连续ZIF-8膜制备及在氢气分离中的研究进展[J]. 化工进展, 2024, 43(S1): 403-418. |
[12] | 高聪志, 张雅萱, 林璐, 邓晓婷, 殷霞, 丁一刚, 肖艳华, 杜治平. 新戊二醇的合成工艺[J]. 化工进展, 2024, 43(S1): 469-478. |
[13] | 李琳, 黄国勇, 徐盛明, 郁丰善, 翁雅青, 曹才放, 温嘉玮, 王春霞, 王俊莲, 顾斌涛, 张袁华, 刘斌, 王才平, 潘剑明, 徐泽良, 王翀, 王珂. 铝基废催化剂载体的回收与再生制备[J]. 化工进展, 2024, 43(S1): 640-649. |
[14] | 刘振涛, 梅金林, 王春雅, 段爱军, 巩雁军, 徐春明, 王喜龙. 一步法加氢制生物航煤催化剂研究进展[J]. 化工进展, 2024, 43(9): 4909-4924. |
[15] | 廖旭, 周骏, 罗杰, 曾瑞琳, 王泽宇, 李尊华, 林金清. 多孔离子聚合物催化二氧化碳环加成反应的研究进展[J]. 化工进展, 2024, 43(9): 4925-4940. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |