化工进展 ›› 2024, Vol. 43 ›› Issue (S1): 391-402.DOI: 10.16085/j.issn.1000-6613.2024-0743
收稿日期:
2024-05-06
修回日期:
2024-06-11
出版日期:
2024-11-20
发布日期:
2024-12-06
通讯作者:
谷传涛
作者简介:
王于华(1986—),女,硕士,研究方向为有机功能材料。E-mail:wangyuhua0721@126.com。
WANG Yuhua1(), ZHOU Xue2, GU Chuantao2()
Received:
2024-05-06
Revised:
2024-06-11
Online:
2024-11-20
Published:
2024-12-06
Contact:
GU Chuantao
摘要:
聚小分子受体(PSMAs)由于其既保留了稠环小分子受体(SMAs)的优点,又具有聚合物良好的成膜性能和光辐照稳定性而受到越来越多的关注。但目前大多数PSMAs是区域无规的,这不仅对PSMAs的批间重复性产生负面影响,还会扰乱了分子构型和电子结构,从而影响了分子间的π堆积,进一步导致其迁移率显著降低。近年来,研究者们通过核心工程、端基工程、连接单元调整和侧链工程等策略设计合成了许多区域规整的PSMAs,光电转换效率(PCEs)得到明显提升。本文综述了用于高性能全聚合物太阳能电池(all-PSCs)的区域规整的PSMAs的最新研究进展。未来通过核心工程、端基工程、连接单元调整和侧链工程等策略进行合理的分子结构设计,合成新的区域规整的PSMAs,搭配合适的给体材料并通过器件工艺优化可以实现更高的PCEs。
中图分类号:
王于华, 周雪, 谷传涛. 用于高性能全聚合物太阳能电池的区域规整的聚小分子受体研究进展[J]. 化工进展, 2024, 43(S1): 391-402.
WANG Yuhua, ZHOU Xue, GU Chuantao. Recent advances in regioregular polymerized small-molecule acceptors for high-performance all-polymer solar cells[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 391-402.
区域规整 | 区域无规 | 受体 | 给体 | VOC/V | Eloss/eV | JSC/mA∙cm-2 | FF | PCE/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
√ | PYT | PBDB-T | 0.892 | 0.58 | 20.8 | 0.696 | 12.9 | [ | |
√ | PZT | PBDB-T | 0.909 | 0.52 | 23.2 | 0.686 | 14.5 | [ | |
√ | PZT-γ | PBDB-T | 0.896 | 0.51 | 24.7 | 0.713 | 15.8 | [ | |
√ | PYT-2S | PM6 | 0.941 | 0.523 | 22.3 | 0.707 | 14.8 | [ | |
√ | PYT-1S1Se | PM6 | 0.926 | 0.502 | 24.1 | 0.730 | 16.3 | [ | |
√ | PYT-2Se | PM6 | 0.908 | 0.510 | 23.9 | 0.714 | 15.5 | [ |
表1 基于核心工程的区域无规和区域规整PSMAs的all-PSCs器件参数
区域规整 | 区域无规 | 受体 | 给体 | VOC/V | Eloss/eV | JSC/mA∙cm-2 | FF | PCE/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
√ | PYT | PBDB-T | 0.892 | 0.58 | 20.8 | 0.696 | 12.9 | [ | |
√ | PZT | PBDB-T | 0.909 | 0.52 | 23.2 | 0.686 | 14.5 | [ | |
√ | PZT-γ | PBDB-T | 0.896 | 0.51 | 24.7 | 0.713 | 15.8 | [ | |
√ | PYT-2S | PM6 | 0.941 | 0.523 | 22.3 | 0.707 | 14.8 | [ | |
√ | PYT-1S1Se | PM6 | 0.926 | 0.502 | 24.1 | 0.730 | 16.3 | [ | |
√ | PYT-2Se | PM6 | 0.908 | 0.510 | 23.9 | 0.714 | 15.5 | [ |
区域规整 | 区域无规 | 受体 | 给体 | VOC/V | Eloss/eV | JSC/mA∙cm-2 | FF | PCE/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
√ | PBI-α | PM6 | 0.930 | — | 19.0 | 0.646 | 11.4 | [ | |
√ | PBI-β | PM6 | 1.030 | — | 16.1 | 0.684 | 11.3 | [ | |
√ | PY-IT | PM6 | 0.933 | — | 22.30 | 0.723 | 15.05 | [ | |
√ | PY-OT | PM6 | 0.954 | — | 16.82 | 0.626 | 10.04 | [ | |
√ | PY-IOT | PM6 | 0.939 | — | 19.71 | 0.656 | 12.12 | [ | |
√ | PY-IT | PQM-Cl | 0.920 | — | 24.3 | 0.807 | 18.0 | [ | |
√ | PY-IT | PQB-2 | 0.942 | — | 24.2 | 0.795 | 18.1 | [ | |
√ | PY-IT | PBDB-TF | 0.941 | 0.549 | 23.4 | 0.757 | 16.7 | [ | |
√ | PY-IT | PBQx-TF | 0.925 | 0.564 | 23.8 | 0.772 | 17.0 | [ | |
√ | PYF-T | PM6 | 0.891 | 0.53 | 23.1 | 0.680 | 14.0 | [ | |
√ | PYF-T-o | PM6 | 0.901 | 0.52 | 23.3 | 0.724 | 15.2 | [ | |
√ | PY-T | PM6 | 0.93 | 0.53 | 21.30 | 0.674 | 13.37 | [ | |
√ | PY2F-T | PM6 | 0.86 | 0.52 | 24.27 | 0.726 | 15.22 | [ |
表2 基于端基工程的区域无规和区域规整PSMAs的all-PSCs器件参数
区域规整 | 区域无规 | 受体 | 给体 | VOC/V | Eloss/eV | JSC/mA∙cm-2 | FF | PCE/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
√ | PBI-α | PM6 | 0.930 | — | 19.0 | 0.646 | 11.4 | [ | |
√ | PBI-β | PM6 | 1.030 | — | 16.1 | 0.684 | 11.3 | [ | |
√ | PY-IT | PM6 | 0.933 | — | 22.30 | 0.723 | 15.05 | [ | |
√ | PY-OT | PM6 | 0.954 | — | 16.82 | 0.626 | 10.04 | [ | |
√ | PY-IOT | PM6 | 0.939 | — | 19.71 | 0.656 | 12.12 | [ | |
√ | PY-IT | PQM-Cl | 0.920 | — | 24.3 | 0.807 | 18.0 | [ | |
√ | PY-IT | PQB-2 | 0.942 | — | 24.2 | 0.795 | 18.1 | [ | |
√ | PY-IT | PBDB-TF | 0.941 | 0.549 | 23.4 | 0.757 | 16.7 | [ | |
√ | PY-IT | PBQx-TF | 0.925 | 0.564 | 23.8 | 0.772 | 17.0 | [ | |
√ | PYF-T | PM6 | 0.891 | 0.53 | 23.1 | 0.680 | 14.0 | [ | |
√ | PYF-T-o | PM6 | 0.901 | 0.52 | 23.3 | 0.724 | 15.2 | [ | |
√ | PY-T | PM6 | 0.93 | 0.53 | 21.30 | 0.674 | 13.37 | [ | |
√ | PY2F-T | PM6 | 0.86 | 0.52 | 24.27 | 0.726 | 15.22 | [ |
区域规整 | 区域无规 | 受体 | 给体 | VOC/V | Eloss/eV | JSC/mA∙cm-2 | FF | PCE/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
√ | PZ1 | PBDB-T | 0.830 | — | 16.05 | 0.690 | 9.19 | [ | |
√ | PBTIC-γ-2F2T | PM6 | 0.95 | 0.560 | 22.56 | 0.669 | 14.34 | [ | |
√ | PBTIC-m-2F2T | PM6 | 0.99 | 0.528 | 9.72 | 0.338 | 3.26 | [ | |
√ | PBTIC-γ-2T | PM6 | 0.95 | 0.569 | 20.85 | 0.602 | 11.92 | [ | |
√ | Y5-Se-Out | PBDB-T | 0.88 | 0.569 | 16.09 | 0.56 | 7.92 | [ | |
√ | Y5-Se-Mix | PBDB-T | 0.89 | — | 17.95 | 0.58 | 9.33 | [ | |
√ | Y5-Se-In | PBDB-T | 0.86 | 0.588 | 21.74 | 0.72 | 13.38 | [ | |
√ | Y5-BiSe-Out | PBDB-T | 0.92 | 0.559 | 18.12 | 0.66 | 10.67 | [ | |
√ | Y5-BiSe-Mix | PBDB-T | 0.92 | — | 17.44 | 0.60 | 9.58 | [ | |
√ | Y5-BiSe-In | PBDB-T | 0.86 | 0.597 | 16.54 | 0.59 | 8.52 | [ | |
√ | PY-V-γ | PM6 | 0.912 | 0.54 | 24.8 | 0.758 | 17.1 | [ | |
√ | PY-T-γ | PM6 | 0.929 | 0.55 | 24.1 | 0.719 | 16.1 | [ | |
√ | PY-2T-γ | PM6 | 0.933 | 0.56 | 23.5 | 0.699 | 15.3 | [ | |
√ | L14 | PM6 | 0.953 | — | 21.12 | 0.716 | 14.41 | [ | |
√ | L15 | PM6 | 0.953 | — | 22.21 | 0.719 | 15.22 | [ |
表3 基于连接单元调整的区域无规和区域规整PSMAs的all-PSCs器件参数
区域规整 | 区域无规 | 受体 | 给体 | VOC/V | Eloss/eV | JSC/mA∙cm-2 | FF | PCE/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
√ | PZ1 | PBDB-T | 0.830 | — | 16.05 | 0.690 | 9.19 | [ | |
√ | PBTIC-γ-2F2T | PM6 | 0.95 | 0.560 | 22.56 | 0.669 | 14.34 | [ | |
√ | PBTIC-m-2F2T | PM6 | 0.99 | 0.528 | 9.72 | 0.338 | 3.26 | [ | |
√ | PBTIC-γ-2T | PM6 | 0.95 | 0.569 | 20.85 | 0.602 | 11.92 | [ | |
√ | Y5-Se-Out | PBDB-T | 0.88 | 0.569 | 16.09 | 0.56 | 7.92 | [ | |
√ | Y5-Se-Mix | PBDB-T | 0.89 | — | 17.95 | 0.58 | 9.33 | [ | |
√ | Y5-Se-In | PBDB-T | 0.86 | 0.588 | 21.74 | 0.72 | 13.38 | [ | |
√ | Y5-BiSe-Out | PBDB-T | 0.92 | 0.559 | 18.12 | 0.66 | 10.67 | [ | |
√ | Y5-BiSe-Mix | PBDB-T | 0.92 | — | 17.44 | 0.60 | 9.58 | [ | |
√ | Y5-BiSe-In | PBDB-T | 0.86 | 0.597 | 16.54 | 0.59 | 8.52 | [ | |
√ | PY-V-γ | PM6 | 0.912 | 0.54 | 24.8 | 0.758 | 17.1 | [ | |
√ | PY-T-γ | PM6 | 0.929 | 0.55 | 24.1 | 0.719 | 16.1 | [ | |
√ | PY-2T-γ | PM6 | 0.933 | 0.56 | 23.5 | 0.699 | 15.3 | [ | |
√ | L14 | PM6 | 0.953 | — | 21.12 | 0.716 | 14.41 | [ | |
√ | L15 | PM6 | 0.953 | — | 22.21 | 0.719 | 15.22 | [ |
区域规整 | 区域无规 | 受体 | 给体 | VOC/V | Eloss/eV | JSC/mA∙cm-2 | FF | PCE/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
√ | RRd-C12 | PBDB-T | 0.93 | — | 19.14 | 0.54 | 9.39 | [ | |
√ | RRd-C20 | PBDB-T | 0.93 | — | 19.67 | 0.63 | 11.59 | [ | |
√ | RRd-C24 | PBDB-T | 0.93 | — | 20.34 | 0.67 | 12.18 | [ | |
√ | RRg-C20 | PBDB-T | 0.88 | — | 23.54 | 0.73 | 15.12 | [ | |
√ | RRg-C24 | PBDB-T | 0.88 | — | 21.67 | 0.71 | 13.53 | [ | |
√ | PIR-C39 | PTzBI-Si | 0.89 | 0.59 | 19.6 | 0.660 | 11.5 | [ | |
√ | PRi-C39 | PTzBI-Si | 0.90 | 0.57 | 23.1 | 0.694 | 14.4 | [ | |
√ | PRo-C39 | PTzBI-Si | 0.83 | 0.63 | 22.1 | 0.732 | 13.4 | [ | |
√ | PA-6 | JD40 | 0.92 | 0.58 | 22.42 | 0.724 | 14.99 | [ |
表4 基于侧链工程和不同分子量的区域无规和区域规整PSMAs的all-PSCs器件参数
区域规整 | 区域无规 | 受体 | 给体 | VOC/V | Eloss/eV | JSC/mA∙cm-2 | FF | PCE/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
√ | RRd-C12 | PBDB-T | 0.93 | — | 19.14 | 0.54 | 9.39 | [ | |
√ | RRd-C20 | PBDB-T | 0.93 | — | 19.67 | 0.63 | 11.59 | [ | |
√ | RRd-C24 | PBDB-T | 0.93 | — | 20.34 | 0.67 | 12.18 | [ | |
√ | RRg-C20 | PBDB-T | 0.88 | — | 23.54 | 0.73 | 15.12 | [ | |
√ | RRg-C24 | PBDB-T | 0.88 | — | 21.67 | 0.71 | 13.53 | [ | |
√ | PIR-C39 | PTzBI-Si | 0.89 | 0.59 | 19.6 | 0.660 | 11.5 | [ | |
√ | PRi-C39 | PTzBI-Si | 0.90 | 0.57 | 23.1 | 0.694 | 14.4 | [ | |
√ | PRo-C39 | PTzBI-Si | 0.83 | 0.63 | 22.1 | 0.732 | 13.4 | [ | |
√ | PA-6 | JD40 | 0.92 | 0.58 | 22.42 | 0.724 | 14.99 | [ |
1 | TU Qisheng, MA Yunlong, SHEN Shengwei, et al. Wide bandgap polymer donors with an acceptor1-π-acceptor2-π configuration for efficient polymer solar cells[J]. Chemical Engineering Journal, 2024, 489: 151444. |
2 | GU Chuantao, ZHAO Yu, KANG Xiao, et al. Cost-effective polymer donors based on pyridine for efficient nonfullerene polymer solar cells[J]. Polymer, 2024, 299: 126926. |
3 | SUN Yuandong, WANG Liang, GUO Chuanhang, et al. π-extended nonfullerene acceptor for compressed molecular packing in organic solar cells to achieve over 20% efficiency[J]. Journal of the American Chemical Society, 2024, 146(17): 12011-12019. |
4 | LUO Zhenghui, LIU Tao, MA Ruijie, et al. Precisely controlling the position of bromine on the end group enables well-regular polymer acceptors for all-polymer solar cells with efficiencies over 15[J]. Advanced Materials, 2020, 32(48): 2005942. |
5 | FU Huiting, LI Yuxiang, YU Jianwei, et al. High efficiency (15.8%) all-polymer solar cells enabled by a regioregular narrow bandgap polymer acceptor[J]. Journal of the American Chemical Society, 2021, 143(7): 2665-2670. |
6 | YU Han, PAN Mingao, SUN Rui, et al. Regio-regular polymer acceptors enabled by determined fluorination on end groups for all-polymer solar cells with 15.2 % efficiency[J]. Angewandte Chemie International Edition, 2021, 60(18): 10137-10146. |
7 | JIA Jianchao, HUANG Qiri, JIA Tao, et al. Fine-tuning batch factors of polymer acceptors enables a binary all-polymer solar cell with high efficiency of 16.11%[J]. Advanced Energy Materials, 2022, 12(3): 2103193. |
8 | YU G, A-J HEEGER. Charge separation and photovoltaic conversion in polymer composites with internal donor/acceptor heterojunctions[J]. Journal of Applied Physics, 1995, 78(7): 4510-4515. |
9 | YAN He, CHEN Zhihua, ZHENG Yan, et al. A high-mobility electron-transporting polymer for printed transistors[J]. Nature, 2009, 457(7230): 679-686. |
10 | ZHU Lei, ZHONG Wenkai, QIU Chaoqun, et al. Aggregation-induced multilength scaled morphology enabling 11.76% efficiency in all-polymer solar cells using printing fabrication[J]. Advanced Materials, 2019, 31(41): 1902899. |
11 | GUO Yikun, LI Yunke, AWARTANI Omar, et al. A vinylene-bridged perylenediimide-based polymeric acceptor enabling efficient all-polymer solar cells processed under ambient conditions[J]. Advanced Materials, 2016, 28(38): 8483-8489. |
12 | GUO Yikun, LI Yunke, AWARTANI Omar, et al. Improved performance of all-polymer solar cells enabled by naphthodiperylenetetraimide-based polymer acceptor[J]. Advanced Materials, 2017, 29(26): 1700309. |
13 | WANG Yingfeng, YAN Zhenglong, UDDIN Mohammad Afsar, et al. Triimide-functionalized n-type polymer semiconductors enabling all-polymer solar cells with power conversion efficiencies approaching 9%[J]. Solar RRL, 2019, 3(7): 1900107. |
14 | SHI Yongqiang, GUO Han, HUANG Jiachen, et al. Distannylated bithiophene imide: Enabling high-performance n-type polymer semiconductors with an acceptor-acceptor backbone[J]. Angewandte Chemie International Edition, 2020, 59(34): 14449-14457. |
15 | ZHAO Ruyan, LIN Baojun, FENG Jirui, et al. Amorphous polymer acceptor containing B←N units matches various polymer donors for all-polymer solar cells[J]. Macromolecules, 2019, 52(18): 7081-7088. |
16 | ZHAO Ruyan, WANG Ning, YU Yingjian, et al. Organoboron polymer for 10% efficiency all-polymer solar cells[J]. Chemistry of Materials, 2020, 32(3): 1308-1314. |
17 | SHI Shengbin, CHEN Peng, CHEN Yao, et al. A narrow-bandgap n-type polymer semiconductor enabling efficient all-polymer solar cells[J]. Advanced Materials, 2019, 31(46): 1905161. |
18 | FENG Kui, HUANG Jiachen, ZHANG Xianhe, et al. High-performance all-polymer solar cells enabled by n-type polymers with an ultranarrow bandgap down to 1.28 eV[J]. Advanced Materials, 2020, 32(30): 2001476. |
19 | GU Chuantao, SU Xinze, LI Yonghai, et al. N-type polymer electron acceptors for organic solar cells[J]. Molecular Systems Design & Engineering, 2022, 7(11): 1364-1384. |
20 | DU Jiaqi, HU Ke, MENG Lei, et al. High-performance all-polymer solar cells: Synthesis of polymer acceptor by a random ternary copolymerization strategy[J]. Angewandte Chemie International Edition, 2020, 59(35): 15181-15185. |
21 | GU Chuantao, WANG Xunchang, WANG Haicheng, et al. Recent advances in small molecular design for high performance non-fullerene organic solar cells[J]. Molecular Systems Design & Engineering, 2022, 7(8): 832-855. |
22 | ZHANG Zhiguo, YANG Yankang, YAO Jia, et al. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells[J]. Angewandte Chemie International Edition, 2017, 56(43): 13503-13507. |
23 | LI Ruonan, XU Yunhua, WANG Chao, et al. Modulating the central units of polymerized nonfused electron acceptors for all-polymer solar cells[J]. ACS Applied Polymer Materials, 2024, 6(9): 5021-5027. |
24 | ZENG Liang, MA Ruijie, ZHOU Zhongxin, et al. Ester side chains engineered quinoxaline based D-A copolymers for high-efficiency all-polymer solar cells[J]. Chemical Engineering Journal, 2022, 429: 132551. |
25 | ZHANG Zhiguo, LI Yongfang. Polymerized small-molecule acceptors for high-performance all-polymer solar cells[J]. Angewandte Chemie International Edition, 2021, 60(9): 4422-4433. |
26 | ZHANG Long, JIA Tao, PAN Langheng, et al. 15.4% Efficiency all-polymer solar cells[J]. Science China Chemistry, 2021, 64(3): 408-412. |
27 | JIA Tao, ZHANG Jiabin, ZHANG Kai, et al. All-polymer solar cells with efficiency approaching 16% enabled using a dithieno[3’,2’:3, 4;2”,3”:5,6]benzo[1,2-c][1,2,5]thiadiazole (fDTBT)-based polymer donor[J]. Journal of Materials Chemistry A, 2021, 9(14): 8975-8983. |
28 | ZHANG Tao, XU Ye, YAO Huifeng, et al. Suppressing the energetic disorder of all-polymer solar cells enables over 18% efficiency[J]. Energy & Environmental Science, 2023, 16(4): 1581-1589. |
29 | MA Lijiao, CUI Yong, ZHANG Jianqi, et al. High-efficiency and mechanically robust all-polymer organic photovoltaic cells enabled by optimized fibril network morphology[J]. Advanced Materials, 2023, 35(9): e2208926. |
30 | WANG Jingwen, CUI Yong, XU Ye, et al. A new polymer donor enables binary all-polymer organic photovoltaic cells with 18% efficiency and excellent mechanical robustness[J]. Advanced Materials, 2022, 34(35): 2205009. |
31 | QU Jianfei, LI Duning, WANG Huan, et al. Bromination of the small-molecule acceptor with fixed position for high-performance solar cells[J]. Chemistry of Materials, 2019, 31(19): 8044-8051. |
32 | WANG Huan, HAN Liang, ZHOU Jiadong, et al. Isomerism: Minor changes in the bromine substituent positioning lead to notable differences in photovoltaic performance[J]. CCS Chemistry, 2021, 3(9): 2591-2601. |
33 | SUN Cheng, LEE Jin-Woo, SEO Soodeok, et al. Synergistic engineering of side chains and backbone regioregularity of polymer acceptors for high-performance all-polymer solar cells with 15.1% efficiency[J]. Advanced Energy Materials, 2022, 12(3): 2103239. |
34 | YANG Hang, FAN Hongyu, WANG Zhen, et al. Impact of isomer design on physicochemical properties and performance in high-efficiency all-polymer solar cells[J]. Macromolecules, 2020, 53(20): 9026-9033. |
35 | WANG Hengtao, CHEN Hui, XIE Weicheng, et al. Configurational isomers induced significant difference in all-polymer solar cells[J]. Advanced Functional Materials, 2021, 31(26): 2100877. |
36 | KONG Yuxin, LI Yuxiang, YUAN Jianyu, et al. Polymerizing small molecular acceptors for efficient all-polymer solar cells[J]. InfoMat, 2022, 4(3): e12271. |
37 | MA Ruijie, ZHOU Kangkang, SUN Yanna, et al. Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors[J]. Matter, 2022, 5(2): 725-734. |
38 | LEE Jin-Woo, SUN Cheng, KIM Dong Jun, et al. Donor-acceptor alternating copolymer compatibilizers for thermally stable, mechanically robust, and high-performance organic solar cells[J]. ACS Nano, 2021, 15(12): 19970-19980. |
39 | JIA Tao, ZHANG Jiabin, TANG Haoran, et al. Synchronously regulating the alkyl side-chain and regioisomer of polymerized small molecule acceptor enabling highly efficient all-polymer solar cells processed with non-halogenated solvent[J]. Chemical Engineering Journal, 2022, 433: 133575. |
40 | FU Huiting, FAN Qunping, GAO Wei, et al. 16.3% Efficiency binary all-polymer solar cells enabled by a novel polymer acceptor with an asymmetrical selenophene-fused backbone[J]. Science China Chemistry, 2022, 65(2): 309-317. |
41 | YU Han, WANG Yan, KIM Ha Kyung, et al. A vinylene-linker-based polymer acceptor featuring a coplanar and rigid molecular conformation enables high-performance all-polymer solar cells with over 17% efficiency[J]. Advanced Materials, 2022, 34(27): 2200361. |
42 | LAI Hanjian, CHEN Hui, ZHU Yulin, et al. Aggregation of small molecule and polymer acceptors with 2D-fused backbones in organic solar cells[J]. Macromolecules, 2022, 55(8): 3353-3360. |
43 | YU Han, LUO Siwei, SUN Rui, et al. A difluoro-monobromo end group enables high-performance polymer acceptor and efficient all-polymer solar cells processable with green solvent under ambient condition[J]. Advanced Functional Materials, 2021, 31(25): 2100791. |
44 | SEO Soodeok, SUN Cheng, LEE Jin-Woo, et al. Importance of high-electron mobility in polymer acceptors for efficient all-polymer solar cells: Combined engineering of backbone building unit and regioregularity[J]. Advanced Functional Materials, 2022, 32(5): 2108508. |
45 | SUN Huiliang, LIU Bin, MA Yunlong, et al. Regioregular narrow-bandgap n-type polymers with high electron mobility enabling highly efficient all-polymer solar cells[J]. Advanced Materials, 2021, 33(37): 2102635. |
46 | ZHANG Guichuan, LIN Francis R, QI Feng, et al. Renewed prospects for organic photovoltaics[J]. Chemical Reviews, 2022, 122(18): 14180-14274. |
47 | YAN Lu, ZHANG Heng, AN Qiaoshi, et al. Regioisomer-free difluoro-monochloro terminal-based hexa-halogenated acceptor with optimized crystal packing for efficient binary organic solar cells[J]. Angewandte Chemie International Edition, 2022, 61(46): e202209454. |
48 | ZHOU Zichun, LIU Wenrui, ZHOU Guanqing, et al. Subtle molecular tailoring induces significant morphology optimization enabling over 16% efficiency organic solar cells with efficient charge generation[J]. Advanced Materials, 2020, 32(4): 1906324. |
49 | JIN Jianghao, WANG Qiao, MA Kaige, et al. Recent developments of polymer solar cells with photovoltaic performance over 17%[J]. Advanced Functional Materials, 2023, 33(14): 2213324. |
50 | SUN Huiliang, YU Han, SHI Yongqiang, et al. A narrow-bandgap n-type polymer with an acceptor-acceptor backbone enabling efficient all-polymer solar cells[J]. Advanced Materials, 2020, 32(43): 2004183. |
51 | BAI Hairui, AN Qiaoshi, JIANG Mengyun, et al. Isogenous asymmetric-symmetric acceptors enable efficient ternary organic solar cells with thin and 300nm thick active layers simultaneously[J]. Advanced Functional Materials, 2022, 32(26): 2200807. |
52 | LIU Tao, YANG Tao, MA Ruijie, et al. 16% Efficiency all-polymer organic solar cells enabled by a finely tuned morphology via the design of ternary blend[J]. Joule, 2021, 5(4): 914-930. |
53 | SUN Rui, WANG Wei, YU Han, et al. Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors[J]. Joule, 2021, 5(6): 1548-1565. |
54 | HAN Chenyu, WANG Jianxiao, ZHANG Shuai, et al. Over 19% efficiency organic solar cells by regulating multidimensional intermolecular interactions[J]. Advanced Materials, 2023, 35(10): 2208986. |
55 | LI Yonghai, YU Lu, CHEN Liangliang, et al. Subtle side chain triggers unexpected two-channel charge transport property enabling 80% fill factors and efficient thick-film organic photovoltaics[J]. The Innovation, 2021, 2(1): 100090. |
56 | XIAO Cong, WANG Xunchang, ZHONG Tian, et al. Hybrid cycloalkyl-alkyl chain-based symmetric/asymmetric acceptors with optimized crystal packing and interfacial exciton properties for efficient organic solar cells[J]. Advanced Science, 2023, 10(7): 2206580. |
57 | WANG Xunchang, LI Zhiya, ZHENG Xufan, et al. High-efficiency all-small-molecule organic solar cells based on new molecule donors with conjugated symmetric/asymmetric hybrid cyclopentyl-hexyl side chains[J]. Advanced Functional Materials, 2023, 33(24): 2300323. |
58 | SHEN Wenfei, ZHAO Guoqing, ZHANG Xiaolin, et al. Using dual microresonant cavity and plasmonic effects to enhance the photovoltaic efficiency of flexible polymer solar cells[J]. Nanomaterials, 2020, 10(5): 944. |
59 | JAIN Ajay, KOTHARI Richa, TYAGI V V, et al. Advances in organic solar cells: Materials, progress, challenges and amelioration for sustainable future[J]. Sustainable Energy Technologies and Assessments, 2024, 63: 103632. |
60 | HAN Jianhua, XU Han, PALETI Sri Harish Kumar, et al. Vertical stratification engineering of insulating poly(aryl ether)s enables 18.6% organic solar cells with improved stability[J]. ACS Energy Letters, 2022, 7(9): 2927-2936. |
61 | ZHANG Shuai, BI Fuzhen, HAN Jianhua, et al. Boosts charge utilization and enables high performance organic solar cells by marco- and micro- synergistic method[J]. Nano Energy, 2022, 102: 107742. |
62 | WANG Jianxiao, HAN Chenyu, HAN Jianhua, et al. Synergetic strategy for highly efficient and super flexible thick-film organic solar cells[J]. Advanced Energy Materials, 2022, 12(31): 2201614. |
[1] | 李新月, 李振京, 韩沂杭, 郭永强, 闫瑜, 哈力米热·卡热木拉提, 赵会吉, 柴永明, 刘东, 殷长龙. 油脂加氢脱氧生产绿色柴油催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 351-364. |
[2] | 王月, 张学瑞, 宋玺文, 陈渤燕, 李庆勋, 钟海军, 胡孝伟, 何帅. 电解制氢合成氨技术综述与展望[J]. 化工进展, 2024, 43(S1): 180-188. |
[3] | 高觊兴, 丁玉梅, 张超, 谭晶, 丁熙, 李好义, 杨卫民. 熔体微分电纺PLA/PCL微纳米纤维膜的制备及其性能[J]. 化工进展, 2024, 43(S1): 457-468. |
[4] | 高玉李, 王红秋, 黄格省, 鲜楠莹, 师晓玉. 全固态锂电池的产业化和技术研究进展[J]. 化工进展, 2024, 43(9): 4767-4778. |
[5] | 廖旭, 周骏, 罗杰, 曾瑞琳, 王泽宇, 李尊华, 林金清. 多孔离子聚合物催化二氧化碳环加成反应的研究进展[J]. 化工进展, 2024, 43(9): 4925-4940. |
[6] | 孙诗婉, 李欣, 周涵. 辐射冷却涂料及其在能源环境领域的应用[J]. 化工进展, 2024, 43(9): 4961-4969. |
[7] | 张政, 刘琳, 李子晨, 王梦琦, 黄春燕, 葛圆圆. 载铜地质聚合物微球的制备及其催化降解双酚S的性能[J]. 化工进展, 2024, 43(9): 5290-5301. |
[8] | 王洋, 张苗苗, 吕阳, 侯翠红, 危常州, 马文奇, 张福锁, 申建波. pH响应材料及其在智能肥料中的应用[J]. 化工进展, 2024, 43(8): 4477-4489. |
[9] | 王颖杰, 祝新利. 溶胶-凝胶法制备高分散Ni-Cu/SiO2 促进间甲酚直接脱氧制甲苯[J]. 化工进展, 2024, 43(7): 3824-3833. |
[10] | 江慧珍, 罗凯, 王艳, 费华, 吴登科, 叶卓铖, 曹雄金. 废弃生物质复合相变材料的构建与应用[J]. 化工进展, 2024, 43(7): 3934-3945. |
[11] | 杨磊, 邱广薇, 李思言, 葛宏程, 孙园园, 王菲, 范晓光. 基于温度和葡萄糖双重响应性共聚物微囊的胰岛素控释载体[J]. 化工进展, 2024, 43(6): 3277-3284. |
[12] | 陈科宇, 徐金鑫, 吴桂波, 杨哲, 陈嘉鸿, 陈永利. 绿氨产业现状及发展展望[J]. 化工进展, 2024, 43(5): 2544-2553. |
[13] | 薛云娇, 张璇, 刘洋, 陈玉焕, 房静, 杨芳. 伪蛋白生物材料的分类、合成及其应用[J]. 化工进展, 2024, 43(4): 2001-2016. |
[14] | 吴晨赫, 刘彧旻, 杨昕旻, 崔记伟, 姜韶堃, 叶金花, 刘乐全. 粉体光催化全水分解技术研究进展[J]. 化工进展, 2024, 43(4): 1810-1822. |
[15] | 王雄, 康文倩, 任悦, 乔彤森, 张鹏, 黄安平, 李广全. 多孔有机聚合物中试制备及其在聚烯烃催化剂中的应用[J]. 化工进展, 2024, 43(3): 1412-1417. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |