化工进展 ›› 2024, Vol. 43 ›› Issue (8): 4450-4463.DOI: 10.16085/j.issn.1000-6613.2023-1179
• 材料科学与技术 • 上一篇
任国瑜1,2(), 妥云1, 郑文杰1, 谯泽庭2, 任壮壮2, 赵娅莉2, 尚军飞2, 陈晓东1, 高祥虎3
收稿日期:
2023-07-11
修回日期:
2023-09-13
出版日期:
2024-08-15
发布日期:
2024-09-02
通讯作者:
任国瑜
作者简介:
任国瑜(1986—),女,博士,副教授,研究方向为过程强化和材料合成技术。E-mail:625503913@qq.com。
基金资助:
REN Guoyu1,2(), TUO Yun1, ZHENG Wenjie1, QIAO Zeting2, REN Zhuangzhuang2, ZHAO Yali2, SHANG Junfei2, CHEN Xiaodong1, GAO Xianghu3
Received:
2023-07-11
Revised:
2023-09-13
Online:
2024-08-15
Published:
2024-09-02
Contact:
REN Guoyu
摘要:
受自然界荷叶、玫瑰花瓣等植物超疏水现象启发,超疏水涂层在自清洁、油水分离、防冰等领域被广泛应用。然而,传统超疏水涂层依赖于其表面微观粗糙结构和特殊涂层材料,制备工艺复杂,耐久性差,防腐蚀性能不足。超疏水纳米涂层由于其独特的形貌和功能,使超疏水涂层变得多功能、通用、耐用、高效。本文综述了近些年来不同纳米材料超疏水涂层的设计与制备,针对不同超疏水纳米涂层的优缺点进行了评述,并简述了其在各个领域的潜在应用,如防菌、传感器、微流体、催化等。最后,本文指出了关于使用纳米技术的超疏水涂层的最新发展和未来趋势,通过对其新颖的制备策略和对其独特性质的研究为该领域的研究人员提供一定的理论和技术参考,推进超疏水纳米涂层在诸多领域的应用。
中图分类号:
任国瑜, 妥云, 郑文杰, 谯泽庭, 任壮壮, 赵娅莉, 尚军飞, 陈晓东, 高祥虎. 超疏水纳米涂层技术研究进展及应用[J]. 化工进展, 2024, 43(8): 4450-4463.
REN Guoyu, TUO Yun, ZHENG Wenjie, QIAO Zeting, REN Zhuangzhuang, ZHAO Yali, SHANG Junfei, CHEN Xiaodong, GAO Xianghu. Research progress and application of superhydrophobic nano-coating technology[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4450-4463.
1 | GAO Xuefeng, JIANG Lei. Water-repellent legs of water striders[J]. Nature, 2004, 432(7013): 36. |
2 | 江雷. 具有特殊浸润性的仿生智能纳米界面材料[J]. 科学观察, 2007, 2(5): 38. |
JIANG Lei. Bionic intelligent nano-interface material with special wettability[J]. Science Focus, 2007, 2(5): 38. | |
3 | OKADA Ayako, NIKAIDO Toru, IKEDA Masaomi, et al. Inhibition of biofilm formation using newly developed coating materials with self-cleaning properties[J]. Dental Materials Journal, 2008, 27(4): 565-572. |
4 | 郑建勇, 钟明强, 冯杰. 基于超疏水原理的自清洁表面研究进展及产业化状况[J]. 化工进展, 2010, 29(2): 281-284, 288. |
ZHENG Jianyong, ZHONG Mingqiang, FENG Jie. Research progress and industrialization status of superhydrophobic self-cleaning surfaces[J]. Chemical Industry and Engineering Progress, 2010, 29(2): 281-284, 288. | |
5 | 黄启舒, 许里杰. 超疏水自清洁涂料的研究与应用现状[J]. 化工新型材料, 2020, 48(5): 219-222, 228. |
HUANG Qishu, XU Lijie. Research and application situation of superhydrophobic self-cleaning coating[J]. New Chemical Materials, 2020, 48(5): 219-222, 228. | |
6 | CHEN Yuan, GAO Xinrui, HUANG Huadong, et al. Superhydrophobic, self-cleaning, and robust properties of oriented polylactide imparted by surface structuring[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(18): 6296-6304. |
7 | SHANG Yanwei, SI Yang, RAZA Aikifa, et al. An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil–water separation[J]. Nanoscale, 2012, 4(24): 7847-7854. |
8 | 梁格, 黄翔峰, 刘婉琪, 等. 超疏水三维多孔材料在乳化液油水分离中的应用研究进展[J]. 化工进展, 2022, 41(12): 6557-6572. |
LIANG Ge, HUANG Xiangfeng, LIU Wanqi, et al. A review of superhydrophobic three-dimensional porous materials for oil/water separation of emulsions[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6557-6572. | |
9 | 薛星星, 孙雪菲, 万章弘, 等. 超疏水/超亲油RGO/TiO2@MS海绵的制备及油水分离性能[J]. 合肥工业大学学报(自然科学版), 2023, 46(4): 512-518, 553. |
XUE Xingxing, SUN Xuefei, WAN Zhanghong, et al. Preparation of super-hydrophobic/super-lipophilic RGO/TiO2@MS sponge and oil-water separation performance[J]. Journal of Hefei University of Technology (Natural Science), 2023, 46(4): 512-518, 553. | |
10 | 刘瑞, 李录平, 龚妙. 铜基超疏水表面防覆冰/抗霜冻特性分析[J]. 化工进展, 2019, 38(S1): 166-171. |
LIU Rui, LI Luping, GONG Miao. Anti-icing/anti-frost performers of copper-based superhydrophobic surfaces[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 166-171. | |
11 | 沈一洲, 谢欣瑜, 陶杰, 等. 超疏水防冰材料的理论基础与应用研究进展[J]. 中国材料进展, 2022, 41(5): 388-397. |
SHEN Yizhou, XIE Xinyu, TAO Jie, et al. Review on theoretical foundations and applications of superhydrophobic anti-icing materials[J]. Materials China, 2022, 41(5): 388-397. | |
12 | SELIM Mohamed S, FATTHALLAH Nesreen A, SHENASHEN Mohamed A, et al. Bioinspired graphene oxide-magnetite nanocomposite coatings as protective superhydrophobic antifouling surfaces[J]. Langmuir, 2023, 39(6): 2333-2346. |
13 | 黄谦, 贺小燕, 常江凡, 等. 基于超疏水和卤代过氧化物酶活性协同防污的氧化铈纳米涂层研究[J]. 表面技术, 2022, 51(5): 283-292. |
HUANG Qian, HE Xiaoyan, CHANG Jiangfan, et al. CeO2 nanocomposite coating with synergistic antifouling effects of superhydrophobicity and haloperoxidase activity[J]. Surface Technology, 2022, 51(5): 283-292. | |
14 | 刘战剑, 付雨欣, 任丽娜, 等. 超疏水涂层在防腐阻垢领域研究进展[J]. 化工进展, 2023, 42(6): 2999-3011. |
LIU Zhanjian, FU Yuxin, REN Lina, et al. New research progress of superhydrophobic coatings in the field of anti-corrosion and anti-scaling[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2999-3011. | |
15 | LIU Ning, YANG Zhensheng, SUN Yue, et al. Slippery mechanism for enhancing separation and anti-fouling of the superhydrophobic membrane in a water-in-oil emulsion: Evaluating water adhesion of the membrane surface[J]. Langmuir, 2022, 38(27): 8312-8323. |
16 | SHATERI KHALIL-ABAD Mohammad, YAZDANSHENAS Mohammad E. Superhydrophobic antibacterial cotton textiles[J]. Journal of Colloid and Interface Science, 2010, 351(1): 293-298. |
17 | AGBE Henry, SARKAR Dilip Kumar, CHEN X-Grant, et al. Silver-polymethylhydrosiloxane nanocomposite coating on anodized aluminum with superhydrophobic and antibacterial properties[J]. ACS Applied Bio Materials, 2020, 3(7): 4062-4073. |
18 | RAZAVI Seyed Mohammad Reza, Junho OH, HAASCH Richard T, et al. Environment-friendly antibiofouling superhydrophobic coatings[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14509-14520. |
19 | ALMEIDA Riberet. Anti-fog coatings using the super-hydrophobic approach[D]. Columbia: University of Missouri Libraries, M.S., 2008. |
20 | 袁雨婷, 冯勇超, 易红宏, 等. 体相超疏水材料及其在大气污染控制领域的应用研究进展[J]. 化工进展, 2021, 40(8): 4327-4345. |
YUAN Yuting, FENG Yongchao, YI Honghong, et al. Research progress of superhydrophobic surface materials and its application in air pollution control[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4327-4345. | |
21 | 郑龙珠, 苏晓竞, 李红强, 等. 功能性超疏水表面的构建及其应用进展[J]. 化工进展, 2021, 40(5): 2634-2645. |
ZHENG Longzhu, SU Xiaojing, LI Hongqiang, et al. Progress in construction and application of functional superhydrophobic surfaces[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2634-2645. | |
22 | BALL Philip. Engineering Shark skin and other solutions[J]. Nature, 1999, 400(6744): 507-509. |
23 | ZHENG Yongmei, BAI Hao, HUANG Zhongbing, et al. Directional water collection on wetted spider silk[J]. Nature, 2010, 463(7281): 640-643. |
24 | LIU Mingjie, WANG Shutao, JIANG Lei. Nature-inspired superwettability systems[J]. Nature Reviews Materials, 2017, 2: 17036. |
25 | KOSTAL Elisabeth, STROJ Sandra, KASEMANN Stephan, et al. Fabrication of biomimetic fog-collecting superhydrophilic-superhydrophobic surface micropatterns using femtosecond lasers[J]. Langmuir, 2018, 34(9): 2933-2941. |
26 | CHEN Cheng, LIU Mingming, ZHANG Liping, et al. Mimicking from rose petal to lotus leaf: Biomimetic multiscale hierarchical particles with tunable water adhesion[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 7431-7440 |
27 | ZHU Hai, CAI Si, LIAO Guangfu, et al. Recent advances in photocatalysis based on bioinspired super-wettabilities[J]. ACS Catalysis, 2021, 11(24): 14751-14771. |
28 | SI Yifan, GUO Zhiguang. Superhydrophobic nanocoatings: From materials to fabrications and to applications[J]. Nanoscale, 2015, 7(14): 5922-5946. |
29 | LIU Kesong, CAO Moyuan, FUJISHIMA Akira, et al. Bio-inspired titanium dioxide materials with special wettability and their applications[J]. Chemical Reviews, 2014, 114(19): 10044-10094. |
30 | 纪浩楠, 易昌凤, 徐祖顺, 等. 二氧化钛/ZIF-8复合超疏水海绵的制备及其油水分离性能[J]. 复合材料学报, 2022, 39(12): 5758-5767. |
JI Haonan, YI Changfeng, XU Zushun, et al. Preparation of TiO2/ZIF-8 composite super-hydrophobic sponge and its oil-water separation performance[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5758-5767. | |
31 | LAI Yuekun, TANG Yuxin, GONG Jiaojiao, et al. Transparent superhydrophobic/superhydrophilic TiO2-based coatings for self-cleaning and anti-fogging[J]. Journal of Materials Chemistry, 2012, 22(15): 7420-7426. |
32 | WANG Chih-Feng, CHEN Weiyan, CHENG Huy-Zu, et al. Pressure-proof superhydrophobic films from flexible carbon nanotube/polymer coatings[J]. The Journal of Physical Chemistry C, 2010, 114(37): 15607-15611. |
33 | REN Zhiying, FAN Mingzhi, ZHANG Zhen, et al. Superhydrophobic carbon nanotube–metal rubber composites for emulsion separation[J]. ACS Applied Nano Materials, 2021, 4(12): 13643-13654. |
34 | 刘晓燕, 赵雨新, 赵海谦, 等. 铝基碳纳米管阵列超疏水表面的制备[J]. 当代化工, 2021, 50(3): 576-580. |
LIU Xiaoyan, ZHAO Yuxin, ZHAO Haiqian, et al. Preparation of superhydrophobic surface of aluminum based carbon nanotube arrays[J]. Contemporary Chemical Industry, 2021, 50(3): 576-580. | |
35 | LI Yang, WANG Jingfeng, KONG Yi, et al. Micro/Nano hierarchical peony-like Al doped ZnO superhydrophobic film: The guiding effect of (100) preferred seed layer[J]. Scientific Reports, 2016, 6: 19187. |
36 | 孙坤. 纳米结构氧化锌/二氧化硅壳微胶囊化的正二十二烷超疏水热储能材料的设计[D]. 北京: 北京化工大学, 2019. |
SUN Kun. Design of nanostructured zinc oxide/silica shell microencapsulated N-docosane superhydrophobic thermal energy storage material[D].Beijing: Beijing University of Chemical Technology, 2019. | |
37 | 郝李伟, 董如林, 陈智栋, 等. 超疏水仿生氧化锌纳米棒阵列薄膜的合成[J]. 化工新型材料, 2020, 48(11): 69-71, 76. |
HAO Liwei, DONG Rulin, CHEN Zhidong, et al. Synthesis of superhydrophobic biomimetic ZnO nanorod array film[J]. New Chemical Materials, 2020, 48(11): 69-71, 76. | |
38 | SU Xiaojing, LI Hongqiang, LAI Xuejun, et al. Vapor-liquid sol-gel approach to fabricating highly durable and robust superhydrophobic Polydimethylsiloxane@Silica surface on polyester textile for oil-water separation[J]. ACS Applied Materials & Interfaces, 2017, 9(33): 28089-28099. |
39 | 侯成敏, 李娜, 董海涛, 等. 含氟环氧树脂杂化纳米二氧化硅超疏水材料的制备与性能[J]. 应用化学, 2019, 36(7): 798-806. |
HOU Chengmin, LI Na, DONG Haitao, et al. Preparation and performance of hybrid superhydrophobic materials from fluorinated epoxy resin and silica nanoparticles[J]. Chinese Journal of Applied Chemistry, 2019, 36(7): 798-806. | |
40 | GHODRATI Mohammad, Mehdi MOUSAVI-KAMAZANI, BAHRAMI Zohreh. Synthesis of superhydrophobic coatings based on silica nanostructure modified with organosilane compounds by sol-gel method for glass surfaces[J]. Scientific Reports, 2023, 13: 548. |
41 | WENZEL Robert N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. |
42 | CHEN Yun, LONG Junyu, XIE Bin, et al. One-step ultraviolet laser-induced fluorine-doped graphene achieving superhydrophobic properties and its application in deicing[J]. ACS Applied Materials & Interfaces, 2022, 14(3): 4647-4655. |
43 | PATHREEKER Shreyas, CHANDO Paul, CHEN Fuhao, et al. Superhydrophobic polymer composite surfaces developed via photopolymerization[J]. ACS Applied Polymer Materials, 2021, 3(9): 4661-4672. |
44 | LI Yang, CHEN Shanshan, WU Mengchun, et al. All spraying processes for the fabrication of robust, self-healing, superhydrophobic coatings[J]. Advanced Materials, 2014, 26(20): 3344-3348. |
45 | LI Xuemei, REINHOUDT David, Mercedes CREGO-CALAMA. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces[J]. Chemical Society Reviews, 2007, 36(8): 1350. |
46 | GUO Zhiguang, LIU Weimin, SU Baolian. Superhydrophobic surfaces: From natural to biomimetic to functional[J]. Journal of Colloid and Interface Science, 2011, 353(2): 335-355. |
47 | LI Lingxiao, LI Bucheng, DONG Jie, et al. Roles of silanes and silicones in forming superhydrophobic and superoleophobic materials[J]. Journal of Materials Chemistry A, 2016, 4(36): 13677-13725. |
48 | BAYER Ilker S. Superhydrophobic coatings from ecofriendly materials and processes: A review[J]. Advanced Materials Interfaces, 2020, 7(13): 2000095. |
49 | SHAHID Mohammad, MAITI Saptarshi, ADIVAREKAR Ravindra V, et al. Biomaterial based fabrication of superhydrophobic textiles—A review[J]. Materials Today Chemistry, 2022, 24: 100940. |
50 | GONG Xiao, HE Shuang. Highly durable superhydrophobic polydimethylsiloxane/silica nanocomposite surfaces with good self-cleaning ability[J]. ACS Omega, 2020, 5(8): 4100-4108. |
51 | ALAWAJJI Raad A, KANNARPADY Ganesh K, BIRIS Alexandru S. Fabrication of transparent superhydrophobic polytetrafluoroethylene coating[J]. Applied Surface Science, 2018, 444: 208-215. |
52 | SHARMA Deepak Kumar, SIKARWAR Basant Singh, UPADHYAY Sumant, et al. Super-hydrophobic nanostructured silica coating on aluminum substrate for moist air condensation[J]. Journal of Materials Engineering and Performance, 2022, 31(2): 1266-1276. |
53 | ZHU Jilin, FANG Kuanjun, CHEN Weichao, et al. Preparation of superhydrophobic, antibacterial and photocatalytic cotton by the synergistic effect of dual nanoparticles of rGO-TiO2/QAS-SiO2 [J]. Industrial Crops and Products, 2022, 189: 115801. |
54 | LUO Guanzhou, WEN Lanfang, YANG Kai, et al. Robust and durable fluorinated 8-MAPOSS-based superamphiphobic fabrics with buoyancy boost and drag reduction[J]. Chemical Engineering Journal, 2020, 383: 123125. |
55 | CHEN Ying, YANG Ge, JING Zhihong. Synthesis and characterization of superhydrophobic CeO2/ZnO nanotube arrays with low adhesive force[J]. Materials Letters, 2016, 176: 290-293. |
56 | BIAN Shunuo, XU Junhua, YU Lihua, et al. Preparation and properties of superhydrophobic ZnO nanorod-based nanocomposite on the surface of stainless steel mesh[J]. Journal of Bionic Engineering, 2023, 20(3): 910-922. |
57 | ARMELIN Elaine, MORADI Sona, HATZIKIRIAKOS Savvas G, et al. Designing stainless steel surfaces with anti-pitting properties applying laser ablation and organofluorine coatings[J]. Advanced Engineering Materials, 2018, 20(6): 1700814. |
58 | Jiajie LYU, XING Suli, MENG Yunyun, et al. Flexible superhydrophobic ZnO coating harvesting antibacterial and washable properties[J]. Materials Letters, 2022, 314: 131730. |
59 | JUNG Kyung Kuk, JUNG Young, CHOI Chang Jun, et al. Highly reliable superhydrophobic surface with carbon nanotubes immobilized on a PDMS/adhesive multilayer[J]. ACS Omega, 2018, 3(10): 12956-12966. |
60 | YE Hanchen, CHEN Dongyun, LI Najun, et al. Durable and robust self-healing superhydrophobic Co-PDMS@ZIF-8-coated MWCNT films for extremely efficient emulsion separation[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 38313-38320. |
61 | ZHANG Fan, QIAN Hongchang, WANG Luntao, et al. Superhydrophobic carbon nanotubes/epoxy nanocomposite coating by facile one-step spraying[J]. Surface and Coatings Technology, 2018, 341: 15-23. |
62 | JIANG Guo, CHEN Liang, ZHANG Shuidong, et al. Superhydrophobic SiC/CNTs coatings with photothermal deicing and passive anti-icing properties[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 36505-36511. |
63 | NINE Md J, COLE Martin A, JOHNSON Lucas, et al. Robust superhydrophobic graphene-based composite coatings with self-cleaning and corrosion barrier properties[J]. ACS Applied Materials & Interfaces, 2015, 7(51): 28482-28493. |
64 | WU Muqiu, AN Rong, YADAV Sudheer Kumar, et al. Graphene tailored by Fe3O4 nanoparticles: Low-adhesive and durable superhydrophobic coatings[J]. RSC Advances, 2019, 9(28): 16235-16245. |
65 | YUN Xiawei, XIONG Zhiyuan, HE Yaning, et al. Superhydrophobic lotus-leaf-like surface made from reduced graphene oxide through soft-lithographic duplication[J]. RSC Advances, 2020, 10(9): 5478-5486. |
66 | CHOBAOMSUP Viriyah, METZNER Martin, BOONYONGMANEERAT Yuttanant. Superhydrophobic surface modification for corrosion protection of metals and alloys[J]. Journal of Coatings Technology and Research, 2020, 17(3): 583-595. |
67 | FENG Libang, ZHANG Hongxia, WANG Zilong, et al. Superhydrophobic aluminum alloy surface: Fabrication, structure, and corrosion resistance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441: 319-325. |
68 | ZANG Dongmian, ZHU Ruiwen, ZHANG Wen, et al. Corrosion-resistant superhydrophobic coatings on Mg alloy surfaces inspired by lotus seedpod[J]. Advanced Functional Materials, 2017, 27(8): 1605446. |
69 | GU Rong, SHEN Jie, HAO Qing, et al. Harnessing superhydrophobic coatings for enhancing the surface corrosion resistance of magnesium alloys[J]. Journal of Materials Chemistry B, 2021, 9(48): 9893-9899. |
70 | BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8. |
71 | 王宇捷. 荷叶效应及其在生活中的应用[J]. 当代化工研究, 2018(9): 122-123. |
WANG Yujie. Lotus leaf effect and its application in life[J]. Modern Chemical Research, 2018(9): 122-123. | |
72 | WISDOM Katrina M, WATSON Jolanta A, QU Xiaopeng, et al. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(20): 7992-7997. |
73 | HANSEN W R, AUTUMN K. Evidence for self-cleaning in gecko setae[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(2): 385-389. |
74 | GILLIES Andrew G, PUTHOFF Jonathan, COHEN Michael J, et al. Dry self-cleaning properties of hard and soft fibrillar structures[J]. ACS Applied Materials & Interfaces, 2013, 5(13): 6081-6088. |
75 | CHEN Pei, LI Xudong, MA Junfei, et al. Bioinspired photodetachable dry self-cleaning surface[J]. Langmuir, 2019, 35(19): 6379-6386. |
76 | MEILERT K T, LAUB D, KIWI J. Photocatalytic self-cleaning of modified cotton textiles by TiO2 clusters attached by chemical spacers[J]. Journal of Molecular Catalysis A: Chemical, 2005, 237(1/2): 101-108. |
77 | NAKATA Kazuya, FUJISHIMA Akira. TiO2 photocatalysis: Design and applications[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(3): 169-189. |
78 | 韦玉辉, 郑晨, 程尔骕, 等. 光催化自清洁芳纶织物的制备及其性能[J]. 纺织学报, 2023, 44(5): 171-176. |
WEI Yuhui, ZHENG Chen, CHENG Erxiao, et al. Preparation and properties of photocatalytic self-cleaning aramid fabrics[J]. Journal of Textile Research, 2023, 44(5): 171-176. | |
79 | WEN Li, WEAVER James C, LAUDER George V. Biomimetic shark skin: Design, fabrication and hydrodynamic function[J]. The Journal of Experimental Biology, 2014, 217(Pt 10): 1656-1666. |
80 | TIAN L, YIN Y, JIN H, et al. Novel marine antifouling coatings inspired by corals[J]. Materials Today Chemistry, 2020, 17: 100294. |
81 | CHIEN Hsiu-Wen, CHEN Xiangyu, TSAI Wen-Pei, et al. Inhibition of biofilm formation by rough shark skin-patterned surfaces[J]. Colloids and Surfaces B: Biointerfaces, 2020, 186: 110738. |
82 | BAI Chunli. Ascent of nanoscience in China[J]. Science, 2005, 309(5731): 61-63. |
83 | 金小婷, 史诗, 陈欢欢, 等. 釉质表面超疏水凝胶纳米涂层的制备及其性能研究[J]. 口腔医学研究, 2020, 36(6): 585-590. |
JIN Xiaoting, SHI Shi, CHEN Huanhuan, et al. Preparation and performance of superhydrophobic gel nano-coating on enamel surface[J]. Journal of Oral Science Research, 2020, 36(6): 585-590. | |
84 | 闫茜, 谢谚, 盛学佳, 等. 超疏水纳米海绵制备及其二甲苯吸附性能[J]. 化工进展, 2020, 39(10): 4095-4101. |
YAN Xi, XIE Yan, SHENG Xuejia, et al. Preparation of superhydrophobic sponge and its adsorption performance for xylene[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4095-4101. | |
85 | ZHANG Ning, YANG Xianwen, WANG Yalun, et al. Hierarchically porous superhydrophobic sponge for oil-water separation[J]. Journal of Water Process Engineering, 2022, 46: 102590. |
86 | 丛真成, 陈德军, 郭皓, 等. 磁性石墨烯海绵复合材料的制备及其油水分离性能[J]. 精细石油化工, 2023, 40(3): 21-24. |
CONG Zhencheng, CHEN Dejun, GUO Hao, et al. Preparation of magnetic graphene sponge composite and its oil-water separation performance[J]. Speciality Petrochemicals, 2023, 40(3): 21-24. | |
87 | HUANG Pengke, WU Fei, SHEN Bin, et al. Bio-inspired lightweight polypropylene foams with tunable hierarchical tubular porous structure and its application for oil-water separation[J]. Chemical Engineering Journal, 2019, 370: 1322-1330. |
88 | 任龙芳, 汤正, 胡艳, 等. 疏水花生壳/聚氨酯复合泡沫的制备与油水分离性能[J]. 精细化工, 2023, 40(2): 263-271. |
REN Longfang, TANG Zheng, HU Yan, et al. Preparation and oil-water separation performance of hydrophobic peanut shell/polyurethane composite foam[J]. Fine Chemicals, 2023, 40(2): 263-271. | |
89 | UDAYAKUMAR Kavitha Vellopollath, GORE Prakash M, KANDASUBRAMANIAN Balasubramanian. Foamed materials for oil-water separation[J]. Chemical Engineering Journal Advances, 2021, 5: 100076. |
90 | LIU Xiaojuan, GE Lei, LI Wei, et al. Layered double hydroxide functionalized textile for effective oil/water separation and selective oil adsorption[J]. ACS Applied Materials & Interfaces, 2015, 7(1): 791-800. |
91 | WU Jindan, WEI Wei, ZHAO Sufang, et al. Fabrication of highly underwater oleophobic textiles through poly(vinyl alcohol) crosslinking for oil/water separation: The effect of surface wettability and textile type[J]. Journal of Materials Science, 2017, 52(2): 1194-1202. |
92 | 余钰骢, 史晓龙, 刘琳, 等. 用于油水分离的超润湿性纺织品研究进展[J]. 纺织学报, 2020, 41(11): 189-196. |
YU Yucong, SHI Xiaolong, LIU Lin, et al. Recent progress in super wettable textiles for oil-water separation[J]. Journal of Textile Research, 2020, 41(11): 189-196. | |
93 | ADEBAJO M O, FROST R L, KLOPROGGE J T, et al. Porous materials for oil spill cleanup: A review of synthesis and absorbing properties[J]. Journal of Porous Materials, 2003, 10(3): 159-170. |
94 | CHU Zonglin, FENG Yujun, SEEGER Stefan. Oil/water separation with selective superantiwetting/superwetting surface materials[J]. Angewandte Chemie International Edition, 2015, 54(8): 2328-2338. |
95 | VIDIELLA DEL BLANCO Marta, FISCHER Eric Jean, CABANE Etienne. Underwater superoleophobic wood cross sections for efficient oil/water separation[J]. Advanced Materials Interfaces, 2017, 4(21): 1700584. |
96 | 张建强, 刘锡鲁, 甘绍朋, 等. 超疏水功能海绵油水分离性能的研究型实验设计与实践[J]. 实验室研究与探索, 2022, 41(6): 186-189. |
ZHANG Jianqiang, LIU Xilu, GAN Shaopeng, et al. Research-oriented experimental design and practice of oil-water separation performance of super-hydrophobic functional sponge[J]. Research and Exploration in Laboratory, 2022, 41(6): 186-189. | |
97 | MA Wenjing, ZHANG Mengjie, LIU Zhongche, et al. Fabrication of highly durable and robust superhydrophobic-superoleophilic nanofibrous membranes based on a fluorine-free system for efficient oil/water separation[J]. Journal of Membrane Science, 2019, 570/571: 303-313. |
98 | SUTAR Rajaram S, KULKARNI Narayan P, NAGAPPAN Saravanan, et al. Octadecyltrichlorosilane-modified superhydrophobic-superoleophilic stainless steel mesh for oil-water separation[J]. Macromolecular Symposia, 2021, 400(1): 2100096. |
99 | BAYRAM Fatma, MERCAN Emine Sevgili, KARAMAN Mustafa. One-step fabrication of superhydrophobic-superoleophilic membrane by initiated chemical vapor deposition method for oil-water separation[J]. Colloid and Polymer Science, 2021, 299(9): 1469-1477. |
100 | LIU Shuhao, ZHENG Jeremy, HAO Li, et al. Dual-functional, superhydrophobic coatings with bacterial anticontact and antimicrobial characteristics[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 21311-21321. |
101 | MANOJ T P, RASITHA T P, VANITHAKUMARI S C, et al. A simple, rapid and single step method for fabricating superhydrophobic titanium surfaces with improved water bouncing and self cleaning properties[J]. Applied Surface Science, 2020, 512: 145636. |
102 | NASONGKLA Norased, TANESANUKUL Chayanan, NILYOK Sirawit, et al. Nano-coating of metronidazole on dental implants for antibacterial application[C]//2018 IEEE 12th International Conference on Nano/Molecular Medicine and Engineering (NANOMED). December 2-5, 2018, Waikiki Beach, HI, USA. IEEE, 2018: 59-62. |
103 | LI Wen, ZHAN Yanlong, YU Sirong. Applications of superhydrophobic coatings in anti-icing: Theory, mechanisms, impact factors, challenges and perspectives[J]. Progress in Organic Coatings, 2021, 152: 106117. |
104 | PIKE W S. Extreme warm frontal icing on 25 February 1994 causes an aircraft accident near Uttoxeter[J]. Meteorological Applications, 1995, 2(3): 273-279. |
105 | MARWITZ J, POLITOVICH M, BERNSTEIN B, et al. Meteorological conditions associated with the ATR72 aircraft accident near roselawn, Indiana, on 31 October 1994[J]. Bulletin of the American Meteorological Society, 1997, 78(1): 41-52. |
106 | 李哲, 徐浩军, 薛源, 等. 结冰对飞机飞行安全的影响机理与防护研究[J]. 飞行力学, 2016, 34(4): 10-14. |
LI Zhe, XU Haojun, XUE Yuan, et al. Research on flight safety effect mechanism and protection for aircraft icing[J]. Flight Dynamics, 2016, 34(4): 10-14. | |
107 | JAMIL Muhammad Imran, Abid ALI, Fazal HAQ, et al. Icephobic strategies and materials with superwettability: Design principles and mechanism[J]. Langmuir, 2018, 34(50): 15425-15444. |
108 | ZHOU Benzhi, GU Lianhong, DING Yihui, et al. The great 2008 Chinese ice storm: Its socioeconomic-ecological impact and sustainability lessons learned[J]. Bulletin of the American Meteorological Society, 2011, 92(1): 47-60. |
109 | 肖振. 耐磨超疏水涂层的防覆冰特性及其机理研究[D]. 南京: 东南大学, 2021. |
XIAO Zhen. Study on anti-icing characteristics and mechanism of wear-resistant superhydrophobic coating[D].Nanjing: Southeast University, 2021. | |
110 | LI Yizheng, SHA Aimin, TIAN Zhen, et al. Review on superhydrophobic anti-icing coating for pavement[J]. Journal of Materials Science, 2023, 58(8): 3377-3400. |
111 | 李君, 矫维成, 王寅春, 等. 超疏水材料在防/除冰技术中的应用研究进展[J]. 复合材料学报, 2022, 39(1): 23-38. |
LI Jun, JIAO Weicheng, WANG Yinchun, et al. Research progress on application of superhydrophobic materials in anti-icing and de-icing technology[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 23-38. | |
112 | 蒋炜, 杨超, 袁绍军, 等. 仿生超疏水金属材料制备技术及在化工领域应用进展[J]. 化工进展, 2019, 38(1): 344-364. |
JIANG Wei, YANG Chao, YUAN Shaojun, et al. Bioinspired superhydrophobic metal materials: Preparation methods and applications in chemical engineering[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 344-364. | |
113 | 刘明明, 侯媛媛, 陈唐建, 等. 超疏水防/除冰材料的基础理论和制备技术研究进展[J]. 材料保护, 2023, 56(5): 40-62. |
LIU Mingming, HOU Yuanyuan, CHEN Tangjian, et al. Research progress of basic theory and preparation technology of superhydrophobic anti/de-icing materials[J]. Materials Protection, 2023, 56(5): 40-62. | |
114 | LI Jiang, WANG Wenjun, MEI Xuesong, et al. Effects of surface wettability on the dewetting performance of hydrophobic surfaces[J]. ACS Omega, 2020, 5(44): 28776-28783. |
115 | WU Binrui, CUI Xin, JIANG Huayang, et al. A superhydrophobic coating harvesting mechanical robustness, passive anti-icing and active de-icing performances[J]. Journal of Colloid and Interface Science, 2021, 590: 301-310. |
116 | KHADAK A, SUBESHAN B, ASMATULU R. Studies on de-icing and anti-icing of carbon fiber-reinforced composites for aircraft surfaces using commercial multifunctional permanent superhydrophobic coatings[J]. Journal of Materials Science, 2021, 56(4): 3078-3094. |
117 | ZHANG Yinglu, CHEN Liang, LIN Zhenzhen, et al. Highly sensitive dissolved oxygen sensor with a sustainable antifouling, antiabrasion, and self-cleaning superhydrophobic surface[J]. ACS Omega, 2019, 4(1): 1715-1721. |
118 | ZHU Xiaoli, CHEN Yaoyao, FENG Chang, et al. Assembly of self-cleaning electrode surface for the development of refreshable biosensors[J]. Analytical Chemistry, 2017, 89(7): 4131-4138. |
119 | WU Jingjing, LI Hongqiang, LAI Xuejun, et al. Conductive and superhydrophobic F-rGO@CNTs/chitosan aerogel for piezoresistive pressure sensor[J]. Chemical Engineering Journal, 2020, 386: 123998. |
120 | DONG Zheqin, VUCKOVAC Maja, CUI Wenjuan, et al. 3D printing of superhydrophobic objects with bulk nanostructure[J]. Advanced Materials, 2021, 33(45): e2106068. |
121 | LIAO Kai, WANG Wenjun, MEI Xuesong, et al. Stable and drag-reducing superhydrophobic silica glass microchannel prepared by femtosecond laser processing: Design, fabrication, and properties[J]. Materials & Design, 2023, 225: 111501. |
122 | WANG Cong, DING Kaiwen, SONG Yuxin, et al. Femtosecond laser patterned superhydrophobic surface with anisotropic sliding for droplet manipulation[J]. Optics & Laser Technology, 2024, 168: 109829. |
123 | LI Chang, CHEN Haolong, FAN Yue, et al. Functionalized graphene modified styrene-divinylbenzene copolymer as a superhydrophobic catalyst carrier for hydrogen-water liquid phase catalytic exchange[J]. International Journal of Hydrogen Energy, 2023, 48(9): 3520-3533. |
124 | LU Zengqi, FU Xiaolong, LI Jiamao, et al. Superhydrophobic Pt@SBA-15 catalyst for tritium separation in liquid phase catalytic exchange[J]. International Journal of Hydrogen Energy, 2023, 48(5): 1979-1987. |
125 | KIM Dohun, ALAM Khurshed, HAN Mi-Kyung, et al. Manipulating wettability of catalytic surface for improving ammonia production from electrochemical nitrogen reduction[J]. Journal of Colloid and Interface Science, 2023, 633: 53-59. |
126 | Zhexin LYU, YU Sirong, SONG Kaixing, et al. Fabrication of a leaf-like superhydrophobic CuO coating on 6061Al with good self-cleaning, mechanical and chemical stability[J]. Ceramics International, 2020, 46(10): 14872-14883. |
127 | HAN Xutong, YANG Fuchao, FU Jing, et al. A bio-design of superhydrophobic nano-coating from ZnO and studies of its green photoluminescence inspired by lotus leaf[J]. Chemistry Letters, 2018, 47(7): 872-874. |
128 | SUTHA S, SURESH Sisira, Baldev RAJ, et al. Transparent alumina based superhydrophobic self-cleaning coatings for solar cell cover glass applications[J]. Solar Energy Materials and Solar Cells, 2017, 165: 128-137. |
[1] | 胡婷霞, 赵立欣, 姚宗路, 霍丽丽, 贾吉秀, 谢腾. 双金属催化剂在生物质焦油催化蒸汽重整领域的研究进展[J]. 化工进展, 2024, 43(8): 4354-4365. |
[2] | 吴泽亮, 管琦卉, 陈世霞, 王珺. 炔烃选择性加氢制烯烃反应的研究进展[J]. 化工进展, 2024, 43(8): 4366-4381. |
[3] | 张叶素, 权燕红, 丁欣欣, 任军. 链状MFI型分子筛的合成与应用[J]. 化工进展, 2024, 43(8): 4382-4392. |
[4] | 王嘉, 李文翠, 吴凡, 高新芊, 陆安慧. NiMo/Al2O3催化剂活性组分分布调控及其加氢脱硫应用[J]. 化工进展, 2024, 43(8): 4393-4402. |
[5] | 付涛, 李立, 高莉宁, 朱富维, 曹炜烨, 陈华鑫. 水泥基硼掺杂石墨相氮化碳降解NO[J]. 化工进展, 2024, 43(8): 4403-4410. |
[6] | 龙涛, 周锋, 张伟, 吴泓, 王建, 陈霖. CO-CO2体系制备氘代甲醇催化剂的合成与改性[J]. 化工进展, 2024, 43(8): 4411-4420. |
[7] | 王雨菲, 贾宇, 张议升, 薛伟, 李芳, 王延吉. 甲酸为氢源硝基苯转移加氢合成对氨基苯酚[J]. 化工进展, 2024, 43(8): 4421-4431. |
[8] | 刘文津, 张玉明, 李家州, 张炜, 陈哲文. 典型石油热加工技术发展现状及展望[J]. 化工进展, 2024, 43(7): 3534-3550. |
[9] | 张子杭, 王树荣. 生物质热解转化与产物低碳利用研究进展[J]. 化工进展, 2024, 43(7): 3692-3708. |
[10] | 龚德成, 沈倩, 朱贤青, 黄云, 夏奡, 张敬苗, 朱恂, 廖强. 微藻超临界水气化制取富氢合成气的研究进展[J]. 化工进展, 2024, 43(7): 3709-3728. |
[11] | 郭鹏, 李红伟, 李贵贤, 季东, 王东亮, 赵新红. 直接甲醇燃料电池阳极催化剂的失活机制及应对策略[J]. 化工进展, 2024, 43(7): 3812-3823. |
[12] | 王颖杰, 祝新利. 溶胶-凝胶法制备高分散Ni-Cu/SiO2 促进间甲酚直接脱氧制甲苯[J]. 化工进展, 2024, 43(7): 3824-3833. |
[13] | 王丽娜, 武金升. 共价有机框架材料的合成与应用研究进展[J]. 化工进展, 2024, 43(7): 3834-3856. |
[14] | 罗丛佳, 豆义波, 卫敏. 水滑石光催化剂结构调控用于二氧化碳还原的研究进展[J]. 化工进展, 2024, 43(7): 3891-3909. |
[15] | 龚勇, 潘忠文, 谢纯, 崔瑾, 王鲜. 碳酸钠催化制备纳米碳纤维[J]. 化工进展, 2024, 43(7): 3980-3986. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |