化工进展 ›› 2024, Vol. 43 ›› Issue (6): 3386-3397.DOI: 10.16085/j.issn.1000-6613.2023-0727
• 资源与环境化工 • 上一篇
收稿日期:
2023-05-04
修回日期:
2023-07-04
出版日期:
2024-06-15
发布日期:
2024-07-02
通讯作者:
崔香梅
作者简介:
潘彤彤(1997—),女,硕士研究生,研究方向为盐湖化工。E-mail:744742991@qq.com。
基金资助:
PAN Tongtong(), CUI Xiangmei()
Received:
2023-05-04
Revised:
2023-07-04
Online:
2024-06-15
Published:
2024-07-02
Contact:
CUI Xiangmei
摘要:
气凝胶在吸附领域具有很好的应用前景。本文采用水热合成法和冷冻干燥法制备出葡甲胺功能化还原氧化石墨烯/羟基化碳纳米管气凝胶应用于盐湖卤水除硼,研究了吸附剂对水溶液中硼的吸附行为,吸附过程符合拟二级动力学和Freundlich等温吸附模型。当初始硼浓度为1000mg/L、pH为10、吸附时间为9h、温度298K时,最大吸附量为33.64mg/g。响应面法可以预测实验结果并优化反应条件,在最佳条件下硼吸附量为32.91mg/g。吸附机理分析表明,吸附过程主要是吸附剂上的—OH官能团与B的络合作用。吸附剂经过三次吸附-脱附实验,仍对B有较高吸附容量。吸附剂具有良好的抗共存盐干扰性,在真实卤水中吸附性能良好,吸附量为23.87mg/g。该气凝胶对于从盐湖卤水和废水中提硼具有潜在的价值。
中图分类号:
潘彤彤, 崔香梅. 葡甲胺功能化rGO/MWCNTs-OH复合气凝胶的制备及对硼的吸附[J]. 化工进展, 2024, 43(6): 3386-3397.
PAN Tongtong, CUI Xiangmei. Preparation of methylglucamine-functionalized rGO/MWCNTs-OH composite aerogels and its adsorption of boron[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3386-3397.
参数 | 数值 |
---|---|
孔容积/mL·g-1 | 8.3203 |
总孔面积/m²·g-1 | 1.346 |
中值孔径(V)/μm | 66.92 |
中值孔径(A)/μm | 10.05 |
平均孔径/μm | 24.73 |
堆积密度/g·mL-1 | 0.1103 |
表观密度/g·mL-1 | 1.3364 |
孔隙率/% | 91.75 |
表1 MIP测试数据总结
参数 | 数值 |
---|---|
孔容积/mL·g-1 | 8.3203 |
总孔面积/m²·g-1 | 1.346 |
中值孔径(V)/μm | 66.92 |
中值孔径(A)/μm | 10.05 |
平均孔径/μm | 24.73 |
堆积密度/g·mL-1 | 0.1103 |
表观密度/g·mL-1 | 1.3364 |
孔隙率/% | 91.75 |
Langmuir等温线模型 | Freundlich等温线模型 | |||||
---|---|---|---|---|---|---|
Qm/mg·g-1 | KL/L·mg-1 | R2 | KF | n | R2 | |
52.91 | 0.0012 | 0.8422 | 0.3264 | 1.5287 | 0.9819 |
表2 NGM对硼酸的吸附的Langmuir和Freundlich模型拟合数据(T=298K)
Langmuir等温线模型 | Freundlich等温线模型 | |||||
---|---|---|---|---|---|---|
Qm/mg·g-1 | KL/L·mg-1 | R2 | KF | n | R2 | |
52.91 | 0.0012 | 0.8422 | 0.3264 | 1.5287 | 0.9819 |
拟一级动力学模型 | 拟二级动力学模型 | 颗粒内扩散模型 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Qe(calc)/mg·g-1 | k1/min-1 | R2 | Qe(calc)/mg·g-1 | k2 | R2 | kd1 | R2 | kd2 | R2 | ||
54.27 | 0.4038 | 0.9567 | 71.94 | 0.001357 | 0.9898 | 14.41 | 0.9923 | 11.62 | 0.9978 |
表3 NGM上吸附硼的动力学模型参数(T=298K)
拟一级动力学模型 | 拟二级动力学模型 | 颗粒内扩散模型 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Qe(calc)/mg·g-1 | k1/min-1 | R2 | Qe(calc)/mg·g-1 | k2 | R2 | kd1 | R2 | kd2 | R2 | ||
54.27 | 0.4038 | 0.9567 | 71.94 | 0.001357 | 0.9898 | 14.41 | 0.9923 | 11.62 | 0.9978 |
因素 | 代码 | 单位 | 代码水平 | ||
---|---|---|---|---|---|
-1 | 0 | 1 | |||
pH | A | — | 7.5 | 8 | 8.5 |
初始硼浓度 | B | mg·L-1 | 900 | 1000 | 1100 |
吸附时间 | C | — | 9 | 10 | 11 |
温度 | D | K | 293 | 298 | 303 |
响应值 | 吸附量 | mg·g-1 |
表4 响应面因素和水平
因素 | 代码 | 单位 | 代码水平 | ||
---|---|---|---|---|---|
-1 | 0 | 1 | |||
pH | A | — | 7.5 | 8 | 8.5 |
初始硼浓度 | B | mg·L-1 | 900 | 1000 | 1100 |
吸附时间 | C | — | 9 | 10 | 11 |
温度 | D | K | 293 | 298 | 303 |
响应值 | 吸附量 | mg·g-1 |
项目 | 平方和 | 自由度 | 均方 | F | 显著水平 | 显著性 |
---|---|---|---|---|---|---|
模型 | 583.74 | 14 | 41.70 | 340.71 | <0.0001 | 显著 |
A-pH | 0.035 | 1 | 0.035 | 0.28 | 0.6051 | |
B-C0 | 0.045 | 1 | 0.045 | 0.37 | 0.5566 | |
C-t | 2.73 | 1 | 2.73 | 22.31 | 0.0006 | |
D-T | 2.49 | 1 | 2.49 | 20.38 | 0.0009 | |
AB | 1.35 | 1 | 1.35 | 11.04 | 0.0068 | |
AC | 0.0003062 | 1 | 0.0003062 | 0.002502 | 0.9610 | |
AD | 0.12 | 1 | 0.12 | 1.02 | 0.3353 | |
BC | 0.033 | 1 | 0.033 | 0.27 | 0.6122 | |
BD | 0.13 | 1 | 0.13 | 1.04 | 0.3288 | |
CD | 0.0001563 | 1 | 0.0001563 | 0.001277 | 0.9721 | |
A2 | 287.66 | 1 | 287.66 | 2350.61 | <0.0001 | |
B2 | 0.78 | 1 | 0.78 | 6.41 | 0.0279 | |
C2 | 0.35 | 1 | 0.35 | 2.89 | 0.1172 | |
D2 | 1.79 | 1 | 1.79 | 14.65 | 0.0028 | |
残差 | 1.35 | 11 | 0.12 | |||
失拟项 | 1.30 | 10 | 0.13 | 2.89 | 0.4305 | 不显著 |
绝对 误差 | 0.045 | 1 | 0.045 | |||
总和 | 585.09 | 25 | ||||
C.V.%=1.45 | R2=0.9977 | 调整R2=0.0.9948 | 预测R2=0.9840 |
表5 NGM气凝胶对硼酸的吸附能力的方差分析
项目 | 平方和 | 自由度 | 均方 | F | 显著水平 | 显著性 |
---|---|---|---|---|---|---|
模型 | 583.74 | 14 | 41.70 | 340.71 | <0.0001 | 显著 |
A-pH | 0.035 | 1 | 0.035 | 0.28 | 0.6051 | |
B-C0 | 0.045 | 1 | 0.045 | 0.37 | 0.5566 | |
C-t | 2.73 | 1 | 2.73 | 22.31 | 0.0006 | |
D-T | 2.49 | 1 | 2.49 | 20.38 | 0.0009 | |
AB | 1.35 | 1 | 1.35 | 11.04 | 0.0068 | |
AC | 0.0003062 | 1 | 0.0003062 | 0.002502 | 0.9610 | |
AD | 0.12 | 1 | 0.12 | 1.02 | 0.3353 | |
BC | 0.033 | 1 | 0.033 | 0.27 | 0.6122 | |
BD | 0.13 | 1 | 0.13 | 1.04 | 0.3288 | |
CD | 0.0001563 | 1 | 0.0001563 | 0.001277 | 0.9721 | |
A2 | 287.66 | 1 | 287.66 | 2350.61 | <0.0001 | |
B2 | 0.78 | 1 | 0.78 | 6.41 | 0.0279 | |
C2 | 0.35 | 1 | 0.35 | 2.89 | 0.1172 | |
D2 | 1.79 | 1 | 1.79 | 14.65 | 0.0028 | |
残差 | 1.35 | 11 | 0.12 | |||
失拟项 | 1.30 | 10 | 0.13 | 2.89 | 0.4305 | 不显著 |
绝对 误差 | 0.045 | 1 | 0.045 | |||
总和 | 585.09 | 25 | ||||
C.V.%=1.45 | R2=0.9977 | 调整R2=0.0.9948 | 预测R2=0.9840 |
盐湖 | pH | 组分含量/mg·L-1 | ||||||
---|---|---|---|---|---|---|---|---|
K+ | Ca2+ | Mg2+ | Li+ | Cl- | SO 42 - | B | ||
No.1 | 6.75 | 2539 | 1081 | 634.2 | 116.1 | 56800 | 16556 | 30.19 |
No.2 | 7.87 | 1989 | 3010 | 2025 | 4.137 | 164065 | 31720 | 31.59 |
表6 盐湖卤水的组成成分
盐湖 | pH | 组分含量/mg·L-1 | ||||||
---|---|---|---|---|---|---|---|---|
K+ | Ca2+ | Mg2+ | Li+ | Cl- | SO 42 - | B | ||
No.1 | 6.75 | 2539 | 1081 | 634.2 | 116.1 | 56800 | 16556 | 30.19 |
No.2 | 7.87 | 1989 | 3010 | 2025 | 4.137 | 164065 | 31720 | 31.59 |
项目 | No.1含量/mg·L-1 | No.2含量/mg·L-1 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | K+ | Ca2+ | Mg2+ | Li+ | B | Cl- | pH | K+ | Ca2+ | Mg2+ | Li+ | B | Cl- | SO42- | |||
调pH前 | 6.75 | 2539 | 1081 | 634.2 | 116.1 | 30.19 | 56800 | 16556 | 7.87 | 1989 | 3010 | 2025 | 4.137 | 31.59 | 164065 | 31720 | |
调pH后 | 10.01 | 2315 | 921.6 | 294.3 | 104.3 | 16.99 | 55670 | 15600 | 10.02 | 1644 | 2771 | 131.1 | 3.221 | 4.209 | 160195 | 30918 |
表7 盐湖卤水调pH前后组成成分
项目 | No.1含量/mg·L-1 | No.2含量/mg·L-1 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | K+ | Ca2+ | Mg2+ | Li+ | B | Cl- | pH | K+ | Ca2+ | Mg2+ | Li+ | B | Cl- | SO42- | |||
调pH前 | 6.75 | 2539 | 1081 | 634.2 | 116.1 | 30.19 | 56800 | 16556 | 7.87 | 1989 | 3010 | 2025 | 4.137 | 31.59 | 164065 | 31720 | |
调pH后 | 10.01 | 2315 | 921.6 | 294.3 | 104.3 | 16.99 | 55670 | 15600 | 10.02 | 1644 | 2771 | 131.1 | 3.221 | 4.209 | 160195 | 30918 |
16 | PINOTTI Camila N, DE SOUZA Luana M, MARQUES Willbrynner P, et al. A new magnetic composite with potential application in boron adsorption: Development, characterization, and removal tests[J]. Materials Chemistry and Physics, 2022, 277: 125368. |
17 | 周彩云. 改性氧化石墨烯吸附染料的性能研究[D]. 苏州: 苏州科技学院, 2015. |
ZHOU Caiyun. Study on adsorption properties of modified graphene oxide for dyes[D]. Suzhou: Suzhou University of Science | |
and Technology, 2015. | |
18 | ASARE Emmanuel Agyapong, DARTEY Emmanuel, SARPONG Kofi, et al. Adsorption isotherm, kinetic and thermodynamic modelling of Bacillus subtilis ATCC13952 mediated adsorption of arsenic in groundwaters of selected gold mining communities in the wassa west municipality of the western region of Ghana[J]. American Journal of Analytical Chemistry, 2021, 12(5): 121-161. |
19 | LUO Qinglong, ZENG Meiting, WANG Xueying, et al. Glycidol-functionalized macroporous polymer for boron removal from aqueous solution[J]. Reactive and Functional Polymers, 2020, 150: 104543. |
20 | 常娟, 程爱华. FeS/壳聚糖基碳气凝胶复合材料的制备及对Cr(Ⅵ)的吸附[J]. 化工进展, 2023, 42(11): 6042-6052. |
CHANG Juan, CHENG Aihua. Preparation and Cr(Ⅵ) adsorption properties of FeS/chitosan-based carbon aerogel composites[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 6042-6052. | |
21 | CAI Liang, ZHANG Yuze, PENG Xiaowu, et al. Preparation of layered double hydroxide intercalated by Gallic acid for boron adsorption[J]. Journal of Water Process Engineering, 2021, 44: 102394. |
22 | LIN Juiyen, MAHASTI Nicolaus N N, HUANG Yaohui. Recent advances in adsorption and coagulation for boron removal from wastewater: A comprehensive review[J]. Journal of Hazardous Materials, 2021, 407: 124401. |
23 | ZHANG Xi, WANG Jiawei, CHEN Shaofeng, et al. A spherical N-methyl-D-glucamine-based hybrid adsorbent for highly efficient adsorption of boric acid from water[J]. Separation and Purification Technology, 2017, 172: 43-50. |
24 | Pelin DEMIRÇIVI, SAYGıLı Gülhayat Nasün. Comparative study of modified expanded perlite with hexadecyltrimethylammonium-bromide and gallic acid for boron adsorption[J]. Journal of Molecular Liquids, 2018, 254: 383-390. |
25 | Jiafei LYU, LIU Hongxu, ZENG Zhouliangzi, et al. Metal–organic framework UiO-66 as an efficient adsorbent for boron removal from aqueous solution[J]. Industrial & Engineering Chemistry Research, 2017, 56(9): 2565-2572. |
26 | INCE Ahmet, KARAGOZ Bunyamin, BICAK Niyazi. Solid tethered imino-bis-propanediol and quaternary amine functional copolymer brushes for rapid extraction of trace boron[J]. Desalination, 2013, 310: 60-66. |
27 | DE LA FUENTE GARCÍA-SOTO M M, MUÑOZ CAMACHO E. Boron removal by means of adsorption processes with magnesium oxide—Modelization and mechanism[J]. Desalination, 2009, 249(2): 626-634. |
28 | 杨丽娟, 王刚, 张航, 等. 响应面法优化重金属絮凝剂MAMPAM除Cu(Ⅱ)的絮凝条件[J]. 环境科学研究, 2022, 35(3): 789-795. |
YANG Lijuan, WANG Gang, ZHANG Hang, et al. Response surface methodology to optimize flocculation conditions of heavy metal flocculant MAMPAM for removing Cu(Ⅱ)[J]. Research of Environmental Sciences, 2022, 35(3): 789-795. | |
29 | 李艳. 响应面法优化等离子体掺氮改性TiO2纳米管的制备条件[J]. 应用化工, 2022, 51(2): 466-470. |
LI Yan. Optimization of preparation factors for plasma nitrogen-doped modified TiO2 nanotubes by response surface methodology[J]. Applied Chemical Industry, 2022, 51(2): 466-470. | |
30 | SUN Tao, ZHUO Qin, LIU Xin, et al. Hydrophobic silica aerogel reinforced with carbon nanotube for oils removal[J]. Journal of Porous Materials, 2014, 21(6): 967-973. |
31 | ISAACS-PAEZ E D, LEYVA-RAMOS R, JACOBO-AZUARA A, et al. Adsorption of boron on calcined AlMg layered double hydroxide from aqueous solutions: Mechanism and effect of operating conditions[J]. Chemical Engineering Journal, 2014, 245: 248-257. |
32 | LI Ping, LIU Chuang, ZHANG Li, et al. Enhanced boron adsorption onto synthesized MgO nanosheets by ultrasonic method[J]. Ultrasonics Sonochemistry, 2017, 34: 938-946. |
33 | ELJAMAL Osama, MAAMOUN Ibrahim, ALKHUDHAYRI Sami, et al. Insights into boron removal from water using Mg-Al-LDH: Reaction parameters optimization & 3D-RSM modeling[J]. Journal of Water Process Engineering, 2022, 46: 102608. |
34 | LI Xufeng, ZHANG Dian, XIANG Kewei, et al. Synthesis of polyborosiloxane and its reversible physical crosslinks[J]. RSC Advances, 2014, 4(62): 32894-32901. |
1 | WANG Boyang, GUO Xianghai, BAI Peng. Removal technology of boron dissolved in aqueous solutions: A review[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 444: 338-344. |
2 | TANG Yupan, LUO Lin, THONG Zhiwei, et al. Recent advances in membrane materials and technologies for boron removal[J]. Journal of Membrane Science, 2017, 541: 434-446. |
3 | TU Kha L, NGHIEM Long D, CHIVAS Allan R. Boron removal by reverse osmosis membranes in seawater desalination applications[J]. Separation and Purification Technology, 2010, 75(2): 87-101. |
4 | SHENG Rui, ZHANG Yang, KANG Jingjing, et al. Nanorod-like polymer adsorbents with intermediate dihydroxy functional groups for efficient boron removal[J]. ChemistrySelect, 2021, 6(24): 6197-6201. |
5 | JULIANE Schott, JEROME Kretzschmar, MARGRET Acker, et al. Formation of a Eu(Ⅲ) borate solid species from a weak Eu(Ⅲ) borate complex in aqueous solution[J]. Dalton Transactions, 2014, 43(30): 11516-11528. |
6 | WANG Chunchun, YANG Sudong, MA Qing, et al. Preparation of carbon nanotubes/graphene hybrid aerogel and its application for the adsorption of organic compounds[J]. Carbon, 2017, 118: 765-771. |
7 | PEYDAYESH Mohammad, VOGT Julia, CHEN Xiulin, et al. Amyloid-based carbon aerogels for water purification[J]. Chemical Engineering Journal, 2022, 449: 137703. |
8 | LI Kexin, DING Dong, FANG Dezhen, et al. Hydrothermal deposition of titanate on biomass carbonaceous aerogel to prepare novel biomass adsorbents for Rb+ and Cs+ [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 590: 124501. |
9 | AI Lunhong, JIANG Jing. Removal of methylene blue from aqueous solution with self-assembled cylindrical graphene-carbon nanotube hybrid[J]. Chemical Engineering Journal, 2012, 192: 156-163. |
10 | XU Ting, YANG Dongzhi, FAN Zhuangjun, et al. Reduced graphene oxide/carbon nanotube hybrid fibers with narrowly distributed mesopores for flexible supercapacitors with high volumetric capacitances and satisfactory durability[J]. Carbon, 2019, 152: 134-143. |
11 | XU Hui, SONG Guojun, ZHANG Lina, et al. Preparation and performance evolution of enhancement polystyrene composites with graphene oxide/carbon nanotube hybrid aerogel: Mechanical properties, electrical and thermal conductivity[J]. Polymer Testing, 2021, 101: 107283. |
12 | SUN Li, HUANG Jiancheng, LIU Haining, et al. Adsorption of boron by CA@KH-550@EPH@NMDG (CKEN) with biomass carbonaceous aerogels as substrate[J]. Journal of Hazardous Materials, 2018, 358: 10-19. |
13 | NASEF Mohamed Mahmoud, NALLAPPAN Madana, UJANG Zaini. Polymer-based chelating adsorbents for the selective removal of boron from water and wastewater: A review[J]. Reactive and Functional Polymers, 2014, 85: 54-68. |
14 | KAMBOH Muhammad Afzal, YILMAZ Mustafa. Synthesis of N-methylglucamine functionalized calix[4]arene based magnetic sporopollenin for the removal of boron from aqueous environment[J]. Desalination, 2013, 310: 67-74. |
15 | AFOLABI Haruna Kolawole, NASEF Mohamed Mahmoud, NORDIN Nik Abdul Hadi Md, et al. Isotherms, kinetics, and thermodynamics of boron adsorption on fibrous polymeric chelator containing glycidol moiety optimized with response surface method[J]. Arabian Journal of Chemistry, 2021, 14(12): 103453. |
35 | PENG Haihao, XIONG Weiping, YANG Zhaohui, et al. Facile fabrication of three-dimensional hierarchical porous ZIF-L/gelatin aerogel: Highly efficient adsorbent with excellent recyclability towards antibiotics[J]. Chemical Engineering Journal, 2021, 426: 130798. |
36 | WANG Zhe, WU Zhongyu, ZHANG Yufeng, et al. Hyperbranched-polyol-tethered poly (amic acid) electrospun nanofiber membrane with ultrahigh adsorption capacity for boron removal[J]. Applied Surface Science, 2017, 402: 21-30. |
37 | JING Ying, JIA Meiying, XU Zhengyong, et al. Facile synthesis of recyclable 3D gelatin aerogel decorated with MIL-88B(Fe) for activation peroxydisulfate degradation of norfloxacin[J]. Journal of Hazardous Materials, 2022, 424: 127503. |
38 | AFOLABI Haruna Kolawole, NASEF Mohamed Mahmoud, NORDIN Nik Abdul Hadi Md, et al. Facile preparation of fibrous glycidol-containing adsorbent for boron removal from solutions by radiation-induced grafting of poly(vinylamine) and functionalisation[J]. Radiation Physics and Chemistry, 2021, 188: 109596. |
39 | LUO Qinglong, WANG Yinqiu, LI Liang, et al. Hydrothermal synthesis of hydroxyl terminated polymer boron adsorbents[J]. Journal of Solid State Chemistry, 2021, 296: 121977. |
40 | CHORGHE Darpan, SARI Mutiara Ayu, CHELLAM Shankararaman. Boron removal from hydraulic fracturing wastewater by aluminum and iron coagulation: Mechanisms and limitations[J]. Water Research, 2017, 126: 481-487. |
41 | TIAN Xiaojuan, WU Ni, ZHANG Bing, et al. Glycine functionalized boron nitride nanosheets with improved dispersibility and enhanced interaction with matrix for thermal composites[J]. Chemical Engineering Journal, 2021, 408: 127360. |
[1] | 丁嘉, 吴文琦, 李鹏程. 两电子水氧化反应抑制掺硼金刚石电极氧化有机物过程中氯酸盐和高氯酸盐的生成[J]. 化工进展, 2024, 43(4): 2183-2190. |
[2] | 陈林林, 于飞, 马杰. 木头基纤维素/石墨烯分离膜制备及污染物分离性能[J]. 化工进展, 2024, 43(3): 1584-1592. |
[3] | 王岩森, 侯丹丹, 李长金, 祁丽亚, 王春堯, 郭敏, 王颖. 氧化石墨烯/聚丙烯酸基导电黏附凝胶的制备与性能[J]. 化工进展, 2024, 43(2): 1022-1032. |
[4] | 王博, 张长安, 赵利民, 袁俊, 宋永一. 基于掺硼金刚石电极的工业废水处理研究进展[J]. 化工进展, 2024, 43(1): 501-513. |
[5] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[6] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[7] | 张浩月, 李春丽, 徐博, 李筱贺, 仝铃, 邱广明. 分段取样法研究改进Hummers法制备GO结构特性及其机理[J]. 化工进展, 2023, 42(5): 2606-2615. |
[8] | 庞楠炯, 王晓玲, 廖学品, 石碧. 胶原纤维固化黑荆树单宁对硼同位素的分离[J]. 化工进展, 2023, 42(5): 2616-2625. |
[9] | 何阳, 李思盈, 李传强, 袁小亚, 郑旭煦. 热还原氧化石墨烯/环氧树脂复合涂层的防腐性能[J]. 化工进展, 2023, 42(4): 1983-1994. |
[10] | 陈韶云, 周贤太, 纪红兵. 金属卟啉/碳纳米管仿生催化剂的制备及其在Baeyer-Villiger氧化反应中的催化机理[J]. 化工进展, 2023, 42(3): 1332-1340. |
[11] | 薛博, 杨婷婷, 王雪峰. 聚苯胺/碳纳米管气敏材料的研究进展[J]. 化工进展, 2023, 42(3): 1448-1456. |
[12] | 张帅国, 马文媛, 赵海鹏, 冯宇, 蔡旭萍, 杨士祥, 钱新月, 米杰. 火焰法制备CNTs基复合材料及其应用研究进展[J]. 化工进展, 2023, 42(12): 6409-6418. |
[13] | 段继转, 刘宪云. Mo2C的原位合成及增强Co基催化剂氨硼烷水解产氢性能[J]. 化工进展, 2023, 42(11): 5730-5737. |
[14] | 陈晓云, 郭亚东, 邸璐, 毕冬梅, 李凯凯, 林晓娜. 硼掺杂活性炭催化生物质与塑料共热解制芳烃[J]. 化工进展, 2022, 41(S1): 199-209. |
[15] | 张辛亥, 赵思琛, 朱辉, 张首石, 王凯. 多种碳材料与碳酸钠复合后脱硫性能对比[J]. 化工进展, 2022, 41(S1): 424-435. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |