1 |
WU Tong, YANG Shan-Shan, ZHONG Le, et al. Simultaneous nitrification, denitrification and phosphorus removal: What have we done so far and how do we need to do in the future?[J]. Science of the Total Environment, 2023, 856: 158977.
|
2 |
解舒婷. 限氧同步硝化反硝化除磷(SNDPR)系统处理低碳氮比污水研究[D]. 西安: 长安大学, 2022.
|
|
XIE Shuting. Study on treatment of low carbon/nitrogen ratio wastewater by limited oxygen simultaneous nitrification and denitrification phosphorus removal (SNDPR) system[D]. Xi’an: Chang’an University, 2022.
|
3 |
NGUYEN QUOC Bao, WEI Stephany, ARMENTA Maxwell, et al. Aerobic granular sludge: Impact of size distribution on nitrification capacity[J]. Water Research, 2021, 188: 116445.
|
4 |
SARVAJITH M, NANCHARAIAH Y V. Enhanced biological phosphorus removal in aerobic granular sludge reactors by granular activated carbon dosing[J]. Science of the Total Environment, 2022, 823: 153643.
|
5 |
XIE Shuting, ZHAO Jianqiang, ZHANG Qianqian, et al. Improvement of the performance of simultaneous nitrification denitrification and phosphorus removal (SNDPR) system by nitrite stress[J]. Science of the Total Environment, 2021, 788: 147825.
|
6 |
WANG Xue, ZHANG Guoyu, DING Aizhong, et al. Distinctive species interaction patterns under high nitrite stress shape inefficient denitrifying phosphorus removal performance[J]. Bioresource Technology, 2024, 394: 130269.
|
7 |
张杰, 杨杰, 李冬, 等. AOA-O模式下好氧颗粒污泥同步硝化内源反硝化除磷[J]. 中国环境科学, 2023, 43(10): 5226-5234.
|
|
ZHANG Jie, YANG Jie, LI Dong, et al. Simultaneous nitrification and phosphorus removal of aerobic granular sludge in AOA-O mode[J]. China Environmental Science, 2023, 43(10): 5226-5234.
|
8 |
李冬, 解一博, 高飞雁, 等. 调控内生正磷酸盐强化好氧颗粒污泥脱氮除磷[J].中国环境科学, 2023, 43(10): 5139-5147.
|
|
LI Dong, XIE Yibo, GAO Feiyan, et al. Regulating endogenous orthophosphate to initiate a synchronous short-pass nitrification and denitrification phosphorus removal granular sludge process[J]. China Environmental Science, 2023, 43(10): 5139-5147.
|
9 |
李军, 李嘉睿, 李东岳, 等. 同步硝化内源反硝化除磷好氧颗粒污泥的储存与恢复[J]. 中国环境科学, 2024, 44(4): 2023-2031.
|
|
LI Jun, LI Jiarui, LI Dongyue, et al. Storage and recovery of simultaneous nitrification and endogenous denitrification of phosphorus removal aerobic granular sludge[J]. China Environmental Science, 2024, 44(4): 2023-2031.
|
10 |
何秋来. 厌氧/好氧/缺氧同步硝化反硝化除磷颗粒污泥系统构建及强化策略研究[D]. 武汉: 武汉大学, 2019.
|
|
HE Qiulai. Study on the construction and strengthening strategy of anaerobic/aerobic/anoxic simultaneous nitrification, denitrification and phosphorus removal granular sludge system[D]. Wuhan: Wuhan University, 2019.
|
11 |
张帆. 有机物及铁盐对厌氧氨氧化反应器的脱氮性能及微生物菌群的影响特性研究[D]. 西安: 长安大学, 2019.
|
|
ZHANG Fan. Effects of organic matter and iron salt on nitrogen removal performance and microbial flora in anaerobic ammonia oxidation reactor[D]. Xi’an: Chang’an University, 2019.
|
12 |
VAKONDIOS Nikos, KOUKOURAKI Elisavet E, DIAMADOPOULOS Evan. Effluent organic matter (EfOM) characterization by simultaneous measurement of proteins and humic matter[J]. Water Research, 2014, 63: 62-70.
|
13 |
徐杰. 低表观气速下好氧颗粒污泥的骨架强化及其特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
|
|
XU Jie. Skeleton strengthening of aerobic granular sludge at low superficial gas velocity and its characteristics[D]. Harbin: Harbin Institute of Technology, 2020.
|
14 |
LIU Yongqiang, Joo-Hwa TAY. Characteristics and stability of aerobic granules cultivated with different starvation time[J]. Applied Microbiology and Biotechnology, 2007, 75(1): 205-210.
|
15 |
王景华, 袁林江, 贺向峰, 等. EPS对细菌凝聚和絮状污泥颗粒化的作用[J].中国环境科学, 2024, 44(9): 4893-4900.
|
|
WANG Jinghua, YUAN Linjiang, HE Xiangfeng, et al. Research on the effect of EPS on bacterial coagulation and granulation of flocculated sludge[J]. China Environmental Science, 2024, 44(9): 4893-4900.
|
16 |
郭欢, 徐平平, 赵月琴. 好氧颗粒污泥处理锅炉废水污泥特征及营养盐去除规律探究[J]. 水处理技术, 2024, 50(3): 113-116, 121.
|
|
GUO Huan, XU Pingping, ZHAO Yueqin. Sludge characteristics and nutrient removal of boiler wastewater treated with aerobic granular sludge[J]. Technology of Water Treatment, 2024, 50(3): 113-116, 121.
|
17 |
ZHU Liang, Meile LYU, DAI Xin, et al. Role and significance of extracellular polymeric substances on the property of aerobic granule[J]. Bioresource Technology, 2012, 107: 46-54.
|
18 |
CHEN Jieyu, WANG Jie, WANG Xiaoning, et al. Strengthening anoxic glycogen consumption in SNEDPR-CW as a strategy to control PAO-GAO competition under carbon limited condition[J]. Chemosphere, 2022, 288: 132617.
|
19 |
XIE Shuting, ZHAO Jianqiang, ZHANG Qianqian, et al. Improvement of the performance of simultaneous nitrification denitrification and phosphorus removal (SNDPR) system by nitrite stress[J]. Science of the Total Environment, 2021, 788: 147825.
|
20 |
ZHOU Yan, GANDA Lily, Melvin LIM, et al. Free nitrous acid (FNA) inhibition on denitrifying poly-phosphate accumulating organisms (DPAOs)[J]. Applied Microbiology and Biotechnology, 2010, 88(1): 359-369.
|
21 |
ZHOU Yan, OEHMEN Adrian, Melvin LIM, et al. The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants[J]. Water Research, 2011, 45(15): 4672-4682.
|
22 |
LEI Shuhan, ZHANG Ju, HU Bo, et al. Improving nutrients removal of anaerobic-anoxic-oxic process via inhibiting partial anaerobic mixture with nitrite in side-stream tanks: Role of nitric oxide[J]. Bioresource Technology, 2023, 382: 129207.
|
23 |
MA Bin, YANG Lan, WANG Qilin, et al. Inactivation and adaptation of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria when exposed to free nitrous acid[J]. Bioresource Technology, 2017, 245: 1266-1270.
|
24 |
KUYPERS Marcel M M, MARCHANT Hannah K, KARTAL Boran. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5): 263-276.
|
25 |
CARANTO Jonathan D, LANCASTER Kyle M. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(31): 8217-8222.
|
26 |
ZHAO Junkai, ZHAO Jianqiang, XIE Shuting, et al. The role of hydroxylamine in promoting conversion from complete nitrification to partial nitrification: NO toxicity inhibition and its characteristics[J]. Bioresource Technology, 2021, 319: 124230.
|
27 |
LAHDHIRI Ameni, LESAGE Geoffroy, HANNACHI Ahmed, et al. Minimum COD needs for denitrification: From biological models to experimental set-up[J]. Desalination and Water Treatment, 2017, 61: 326-334.
|
28 |
ZAMAN Masuduz, KIM Mingu, NAKHLA George. Simultaneous nitrification-denitrifying phosphorus removal (SNDPR) at low DO for treating carbon-limited municipal wastewater[J]. Science of the Total Environment, 2021, 760: 143387.
|
29 |
KANG Abbass Jafari, YUAN Qiuyan. Long-term stability and nutrient removal efficiency of aerobic granules at low organic loads[J]. Bioresource Technology, 2017, 234: 336-342.
|
30 |
YUAN Quan, GONG Hui, XI Hao, et al. Strategies to improve aerobic granular sludge stability and nitrogen removal based on feeding mode and substrate[J]. Journal of Environmental Sciences, 2019, 84: 144-154.
|
31 |
KOWALKOWSKI T, KRAKOWSKA A, ZŁOCH M, et al. Cadmium-affected synthesis of exopolysaccharides by rhizosphere bacteria[J]. Journal of Applied Microbiology, 2019, 127(3): 713-723.
|
32 |
郑少奎, 罗焇湝. EBPR工艺污泥中聚磷菌多样性与除磷潜力评价方法[J]. 环境科学研究, 2022, 35(10): 2338-2347.
|
|
ZHENG Shaokui, LUO Xiaojie. PAO phylogenetic diversity in activated sludge and its contribution to phosphorus removal by EBPR process[J]. Research of Environmental Sciences, 2022, 35(10): 2338-2347.
|
33 |
马切切, 袁林江, 牛泽栋, 等. 活性污泥微生物群落结构及与环境因素响应关系分析[J]. 环境科学, 2021, 42(8): 3886-3893.
|
|
MA Qieqie, YUAN Linjiang, NIU Zedong, et al. Microbial community structure of activated sludge and its response to environmental factors[J]. Environmental Science, 2021, 42(8): 3886-3893.
|