化工进展 ›› 2024, Vol. 43 ›› Issue (9): 5217-5225.DOI: 10.16085/j.issn.1000-6613.2023-1376
• 资源与环境化工 • 上一篇
李松亚1,2(), 陈炳桦1, 刘彪1,2, 王林裴1,2, 王乐1,2, 谷得明1,2, 周一鸣1, 王笑艳1
收稿日期:
2023-08-10
修回日期:
2023-08-29
出版日期:
2024-09-15
发布日期:
2024-09-30
通讯作者:
李松亚
作者简介:
李松亚(1990—),男,博士,讲师,研究方向为水污染防治与修复。E-mail:20201013@huuc.edu.cn。
基金资助:
LI Songya1,2(), CHEN Binghua1, LIU Biao1,2, WANG Linpei1,2, WANG Le1,2, GU Deming1,2, ZHOU Yiming1, WANG Xiaoyan1
Received:
2023-08-10
Revised:
2023-08-29
Online:
2024-09-15
Published:
2024-09-30
Contact:
LI Songya
摘要:
群体感应是广泛存在于微生物间的信息交流机制,autoinducer-2(AI-2)作为一种“种间通讯”的群体感应信号分子,因其在调节细菌基因表达和聚集中的作用而受到越来越多的关注。颗粒污泥作为一种微生物聚集体,因其具有微生物量多、沉降性好、抗负荷冲击能力强等优点而得到广泛的关注和研究。大量的研究表明AI-2介导的群体感应在污泥颗粒化过程中发挥着重要调控作用。本文综述了AI-2信号分子的形成和介导的群体感应作用机制、AI-2的检测方法、AI-2形成中的影响因素与在颗粒污泥中的分布,总结了AI-2在颗粒化过程中的调控作用,最后对AI-2介导群体感应在颗粒污泥中的研究进行了展望,旨在为深入理解群体感应对污泥颗粒化的调控作用以及推进污泥颗粒化的工程应用提供理论参考。
中图分类号:
李松亚, 陈炳桦, 刘彪, 王林裴, 王乐, 谷得明, 周一鸣, 王笑艳. 污泥颗粒化过程中信号分子AI-2调控作用研究进展[J]. 化工进展, 2024, 43(9): 5217-5225.
LI Songya, CHEN Binghua, LIU Biao, WANG Linpei, WANG Le, GU Deming, ZHOU Yiming, WANG Xiaoyan. Research progress on the regulation of signal molecule AI-2 during sludge granulation[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5217-5225.
菌属 | 作用 | 群体感应调控作用 |
---|---|---|
Aeromonas | 尚不明确 | 生物膜形成 |
Arcobacter | 尚不明确 | 尚不明确 |
Bacillus | 尚不明确 | 孢子形成 |
Corynebacterium | 尚不明确 | 尚不明确 |
Vibrio | 潜在病原体 | 生物膜形成,毒性 |
表1 水和废水中的AI-2产生菌
菌属 | 作用 | 群体感应调控作用 |
---|---|---|
Aeromonas | 尚不明确 | 生物膜形成 |
Arcobacter | 尚不明确 | 尚不明确 |
Bacillus | 尚不明确 | 孢子形成 |
Corynebacterium | 尚不明确 | 尚不明确 |
Vibrio | 潜在病原体 | 生物膜形成,毒性 |
1 | ZENG Xiangyong, ZOU Yunman, ZHENG Jia, et al. Quorum sensing-mediated microbial interactions: Mechanisms, applications, challenges and perspectives[J]. Microbiological Research, 2023, 273: 127414. |
2 | 李松亚, 费学宁, 焦秀梅, 等. 废水处理中群体感应调控行为研究进展[J]. 应用生态学报, 2018, 29(3): 1015-1022. |
LI Songya, FEI Xuening, JIAO Xiumei, et al. Progress on the regulation of quorum sensing in wastewater treatment[J]. Chinese Journal of Applied Ecology, 2018, 29(3): 1015-1022. | |
3 | LIU Lanlan, ZENG Xiangyong, ZHENG Jia, et al. AHL-mediated quorum sensing to regulate bacterial substance and energy metabolism: A review[J]. Microbiological Research, 2022, 262: 127102. |
4 | LIU Yirong, HU Huizhi, LUO Feng. Roles of autoinducer-2 mediated quorum sensing in wastewater treatment[J]. Water Science and Technology, 2021, 84(4): 793-809. |
5 | WANG Meizhen, LIAN Yulu, WANG Yujie, et al. The role and mechanism of quorum sensing on environmental antimicrobial resistance[J]. Environmental Pollution, 2023, 322: 121238. |
6 | LIU Qixin, FENG Xuan, SHENG Zhiya, et al. Enhanced wastewater treatment performance by understanding the interaction between algae and bacteria based on quorum sensing[J]. Bioresource Technology, 2022, 354: 127161. |
7 | 李松亚, 王林裴, 吴俊峰, 等. 城市污水处理厂微生物群落特征与群体感应调控[J]. 环境工程学报, 2022, 16(11): 3705-3715. |
LI Songya, WANG Linpei, WU Junfeng, et al. Characteristics of microbial community in urban sewage treatment plant and its quorum sensing regulation[J]. Chinese Journal of Environmental Engineering, 2022, 16(11): 3705-3715. | |
8 | HUANG Jinhui, YI Kaixin, ZENG Guangming, et al. The role of quorum sensing in granular sludge: Impact and future application: A review[J]. Chemosphere, 2019, 236: 124310. |
9 | BASSLER B L, WRIGHT M, SHOWALTER R E, et al. Intercellular signalling in Vibrio harveyi: Sequence and function of genes regulating expression of luminescence[J]. Molecular Microbiology, 1993, 9(4): 773-786. |
10 | BASSLER B L, GREENBERG E P, STEVENS A M. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi [J]. Journal of Bacteriology, 1997, 179(12): 4043-4045. |
11 | SURETTE M G, MILLER M B, BASSLER B L. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: A new family of genes responsible for autoinducer production[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(4): 1639-1644. |
12 | XAVIER Karina B, BASSLER Bonnie L. LuxS quorum sensing: More than just a numbers game[J]. Current Opinion in Microbiology, 2003, 6(2): 191-197. |
13 | PEI Dehua, ZHU Jinge. Mechanism of action of S-ribosylhomocysteinase (LuxS)[J]. Current Opinion in Chemical Biology, 2004, 8(5): 492-497. |
14 | SCHAUDER S, SHOKAT K, SURETTE M G, et al. The LuxS family of bacterial autoinducers: Biosynthesis of a novel quorum-sensing signal molecule[J]. Molecular Microbiology, 2001, 41(2): 463-476. |
15 | ZHAO Jing, QUAN Chunshan, JIN Liming, et al. Production, detection and application perspectives of quorum sensing autoinducer-2 in bacteria[J]. Journal of Biotechnology, 2018, 268: 53-60. |
16 | CHEN Xin, SCHAUDER Stephan, POTIER Noelle, et al. Structural identification of a bacterial quorum-sensing signal containing boron[J]. Nature, 2002, 415(6871): 545-549. |
17 | MEIJLER Michael M, Louis G HOM, KAUFMANN Gunnar F, et al. Synthesis and biological validation of a ubiquitous quorum-sensing molecule[J]. Angewandte Chemie International Edition, 2004, 43(16): 2106-2108. |
18 | ROY Varnika, ADAMS Bryn L, BENTLEY William E. Developing next generation antimicrobials by intercepting AI-2 mediated quorum sensing[J]. Enzyme and Microbial Technology, 2011, 49(2): 113-123. |
19 | 魏光强, 王藤, 赵波, 等. 群体感应信号分子AI-2调控乳酸菌生物膜形成机制的研究进展[J]. 食品科学技术学报, 2023, 41(2): 141-153. |
WEI Guangqiang, WANG Teng, ZHAO Bo, et al. Research progress of formation mechanism of quorum sensing signal molecule AI-2 regulated lactic acid bacteria biofilm[J]. Journal of Food Science and Technology, 2023, 41(2): 141-153. | |
20 | MENG Fanqiang, ZHAO Mingwen, LU Zhaoxin. The LuxS/AI-2 system regulates the probiotic activities of lactic acid bacteria[J]. Trends in Food Science & Technology, 2022, 127: 272-279. |
21 | ARMBRUSTER Chelsie E, PANG Bing, Murrah Kyle, et al. RbsB (NTHI_0632) mediates quorum signal uptake in nontypeable Haemophilus influenzae strain 86-028NP[J]. Molecular Microbiology, 2011, 82(4): 836-850. |
22 | FAN Bolin, PAN Lixia, WANG Zhongliang, et al. The Streptococcus agalactiae ribose binding protein B (RbsB) mediates quorum sensing signal uptake via interaction with autoinducer-2 signals[J]. Journal of Ocean University of China, 2021, 20(5): 1285-1295. |
23 | ZHANG Lei, LI Shuyu, LIU Xiaozhen, et al. Sensing of autoinducer-2 by functionally distinct receptors in prokaryotes[J]. Nature Communications, 2020, 11(1): 5371. |
24 | SUN Supu, LIU Xiang, MA Buyun, et al. The role of autoinducer-2 in aerobic granulation using alternating feed loadings strategy[J]. Bioresource Technology, 2016, 201: 58-64. |
25 | BASSLER Bonnie L, WRIGHT Miriam, SILVERMAN Michael R. Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: Sequence and function of genes encoding a second sensory pathway[J]. Molecular Microbiology, 1994, 13(2): 273-286. |
26 | WINZER Klaus, HARDIE Kim R, BURGESS Nicola, et al. LuxS: Its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone[J]. Microbiology, 2002, 148(4): 909-922. |
27 | 燕彩玲, 李博, 顾悦, 等. 信号分子AI-2的检测方法研究进展[J]. 微生物学通报, 2016, 43(6): 1333-1338. |
YAN Cailing, LI Bo, GU Yue, et al. Methods for the determination of autoinducer-2—A review[J]. Microbiology China, 2016, 43(6): 1333-1338. | |
28 | JING Y, ZUO J, PHOUTHAPANE V, et al. An optimized method for detecting AI-2 signal molecule by a bioassay with Vibrio harveyi BB170[J]. Microbiology, 2021, 90(3): 383-391. |
29 | KEIZERS Marla, DOBRINDT Ulrich, BERGER Michael. A simple biosensor-based assay for quantitative autoinducer-2 analysis[J]. ACS Synthetic Biology, 2022, 11(2): 747-759. |
30 | RAJAMANI Sathish, ZHU Jinge, PEI Dehua, et al. A LuxP-FRET-based reporter for the detection and quantification of AI-2 bacterial quorum-sensing signal compounds[J]. Biochemistry, 2007, 46(13): 3990-3997. |
31 | RAUT Nilesh, JOEL Smita, PASINI Patrizia, et al. Bacterial autoinducer-2 detection via an engineered quorum sensing protein[J]. Analytical Chemistry, 2015, 87(5): 2608-2614. |
32 | CAMPAGNA Shawn R, GOODING Jessica R, Amanda L MAY. Direct quantitation of the quorum sensing signal, autoinducer-2, in clinically relevant samples by liquid chromatography-tandem mass spectrometry[J]. Analytical Chemistry, 2009, 81(15): 6374-6381. |
33 | XU Fang, SONG Xiangning, CAI Peijie, et al. Quantitative determination of AI-2 quorum-sensing signal of bacteria using high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Environmental Sciences, 2017, 52: 204-209. |
34 | SONG Xiangning, QIU Haibin, XIAO Xiang, et al. Determination of autoinducer-2 in biological samples by high-performance liquid chromatography with fluorescence detection using pre-column derivatization[J]. Journal of Chromatography A, 2014, 1361: 162-168. |
35 | 黄晓遇, 谭炳琰, 李淳峰, 等. 柱前衍生-固相萃取-高效液相色谱荧光测定生物脱氮反应器中痕量信号分子AI-2[J]. 环境工程学报, 2019, 13(1): 109-115. |
HUANG Xiaoyu, TAN Bingyan, LI Chunfeng, et al. Detection of AI-2 signal molecules of quorum sensing in biological nitrogen removal processes by pre-column derivatization-solid phase extraction-high performance liquid chromatography with fluorescence detector[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 109-115. | |
36 | LEE Kibaek, LEE Chung-Hak, CHOO Kwang-Ho. A facile HPLC-UV-based method for determining the concentration of the bacterial universal signal autoinducer-2 in environmental samples[J]. Applied Sciences, 2021, 11(19): 9116. |
37 | DING Yangcheng, FENG Huajun, HUANG Wenkun, et al. The effect of quorum sensing on anaerobic granular sludge in different pH conditions[J]. Biochemical Engineering Journal, 2015, 103: 270-276. |
38 | ZHANG Shenghua, YU Xin, GUO Feng, et al. Effect of interspecies quorum sensing on the formation of aerobic granular sludge[J]. Water Science and Technology, 2011, 64(6): 1284-1290. |
39 | 陈国科, 黄钧, 毕京芳, 等. 好氧颗粒污泥耐受高碳氮负荷过程中的群体感应[J]. 应用与环境生物学报, 2014, 20(1): 73-79. |
CHEN Guoke, HUANG Jun, BI Jingfang, et al. Quorum sensing of aerobic granular sludge tolerating high carbon and nitrogen loads[J]. Chinese Journal of Applied and Environmental Biology, 2014, 20(1): 73-79. | |
40 | LIU Xiang, SUN Supu, MA Buyun, et al. Understanding of aerobic granulation enhanced by starvation in the perspective of quorum sensing[J]. Applied Microbiology and Biotechnology, 2016, 100(8): 3747-3755. |
41 | DING Yangcheng, FENG Huajun, ZHAO Zhiqing, et al. The effect of quorum sensing on mature anaerobic granular sludge in unbalanced nitrogen supply[J]. Water, Air, & Soil Pollution, 2016, 227(9): 334. |
42 | DING Yangcheng, FENG Huajun, SHEN Dongsheng, et al. The effect of organic shock loads on the stability of anaerobic granular sludge[J]. Environmental Technology, 2017, 38(23): 3026-3033. |
43 | FENG Huajun, DING Yangcheng, WANG Meizhen, et al. Where are signal molecules likely to be located in anaerobic granular sludge?[J]. Water Research, 2014, 50: 1-9. |
44 | XIONG Yanghui, LIU Yu. Essential roles of eDNA and AI-2 in aerobic granulation in sequencing batch reactors operated at different settling times[J]. Applied Microbiology and Biotechnology, 2012, 93(6): 2645-2651. |
45 | SHROUT Joshua D, NERENBERG Robert. Monitoring bacterial twitter: Does quorum sensing determine the behavior of water and wastewater treatment biofilms?[J]. Environmental Science & Technology, 2012, 46(4): 1995-2005. |
46 | DAVIES David G, PARSEK Matthew R, PEARSON James P, et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm[J]. Science, 1998, 280(5361): 295-298. |
47 | LIU Shuli, ZHOU Miao, DAIGGER Glen T, et al. Granule formation mechanism, key influencing factors, and resource recycling in aerobic granular sludge (AGS) wastewater treatment: A review[J]. Journal of Environmental Management, 2023, 338: 117771. |
48 | WAN Chunli, FU Liya, LI Zhengwen, et al. Formation, application, and storage-reactivation of aerobic granular sludge: A review[J]. Journal of Environmental Management, 2022, 323: 116302. |
49 | JIANG Helong, Joo-Hwa TAY, MASZENAN Abdul Majid, et al. Enhanced phenol biodegradation and aerobic granulation by two coaggregating bacterial strains[J]. Environmental Science & Technology, 2006, 40(19): 6137-6142. |
50 | DING Yangcheng, FENG Huajun, HUANG Wenkun, et al. A sustainable method for effective regulation of anaerobic granular sludge: Artificially increasing the concentration of signal molecules by cultivating a secreting strain[J]. Bioresource Technology, 2015, 196: 273-278. |
51 | 吴桂荣. AI-2活化因子(硼)对厌氧氨氧化反应器污泥颗粒化及菌群结构的影响[D]. 广州: 广州大学, 2018. |
WU Guirong. Effect of AI-2 activating factor (boron) on sludge granulation and microbial community structure in anaerobic ammonium oxidation reactor[D].Guangzhou: Guangzhou University, 2018. | |
52 | XIONG Yanghui, LIU Yu. Involvement of ATP and autoinducer-2 in aerobic granulation[J]. Biotechnology and Bioengineering, 2010, 105(1): 51-58. |
53 | 陈重军, 曹茜斐, 邹馨怡, 等. 厌氧氨氧化颗粒污泥EPS的作用、成分及影响因素研究进展[J]. 环境工程学报, 2022, 16(2): 381-389. |
CHEN Chongjun, CAO Qianfei, ZOU Xinyi, et al. Review on function, composition and influencing factors of EPS in anammox granular sludge[J]. Chinese Journal of Environmental Engineering, 2022, 16(2): 381-389. | |
54 | XIONG Yanghui, LIU Yu. Importance of extracellular proteins in maintaining structural integrity of aerobic granules[J]. Colloids and Surfaces B: Biointerfaces, 2013, 112: 435-440. |
55 | LIU Xiaoying, LIU Jie, DENG Dongkun, et al. Investigation of extracellular polymeric substances (EPS) in four types of sludge: Factors influencing EPS properties and sludge granulation[J]. Journal of Water Process Engineering, 2021, 40: 101924. |
56 | 郑婧婧, 张智明, 徐向阳, 等. 污水处理好氧颗粒污泥生产运行中的结构与稳定性[J]. 应用与环境生物学报, 2021, 27(6): 1672-1685. |
ZHENG Jingjing, ZHANG Zhiming, XU Xiangyang, et al. Structure and stability of aerobic granular sludge during operation in wastewater treatment[J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(6): 1672-1685. | |
57 | LEE Kibaek, KIM Yea-Won, LEE Seonki, et al. Stopping autoinducer-2 chatter by means of an indigenous bacterium (Acinetobacter sp. DKY-1): A new antibiofouling strategy in a membrane bioreactor for wastewater treatment[J]. Environmental Science & Technology, 2018, 52(11): 6237-6245. |
58 | ZHANG Quan, FAN Niansi, FU Jinjin, et al. Role and application of quorum sensing in anaerobic ammonium oxidation (anammox) process: A review[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(6): 626-648. |
[1] | 赵瑞强, 周鑫, 牛冰心. 废水处理硝酸盐异化还原与厌氧氨氧化/反硝化耦合工艺构建[J]. 化工进展, 2024, 43(3): 1593-1605. |
[2] | 杨杰源, 朱易春, 赖雅芬, 张超, 田帅, 谢颖. 低强度超声波对高负荷厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2024, 43(2): 1098-1108. |
[3] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
[4] | 陈娜, 张肖静, 张楠, 马冰冰, 张涵, 杨浩洁, 张宏忠. 淬灭酶对亚硝化-混合自养脱氮系统的影响[J]. 化工进展, 2023, 42(7): 3816-3823. |
[5] | 郭之晗, 徐云翔, 李天皓, 黄子川, 刘文如, 沈耀良. 好氧颗粒污泥长期稳定运行研究进展[J]. 化工进展, 2022, 41(5): 2686-2697. |
[6] | 李冬, 高飞雁, 解一博, 李柱, 张杰. 有机负荷波动频次对好氧颗粒污泥的影响[J]. 化工进展, 2022, 41(12): 6680-6688. |
[7] | 张超, 师旭军, 张国珍, 武福平, 晏雯雯, 黄星星. 弹性填料对ABR去除重金属及颗粒污泥的影响[J]. 化工进展, 2020, 39(7): 2858-2866. |
[8] | 张斌超,曾敏静,张立楠,王洪欣,曾玉,黄思浓,吴俊峰,程媛媛,龙焙. 自养硝化颗粒污泥吸附铜离子性能及吸附等温线[J]. 化工进展, 2020, 39(4): 1583-1590. |
[9] | 葛大令, 周鑫, RONELRudy Koubode, 阴泽阳, 张伟. 微氧EGSBBR产甲烷系统快速启动与微生物群落特性[J]. 化工进展, 2020, 39(12): 5203-5210. |
[10] | 张立楠, 张斌超, 刘祖文, 宣鑫鹏, 程媛媛, 龙焙, 邢雨, 兰鑫, 曾敏静. 粒径对好氧颗粒污泥储存稳定性的影响[J]. 化工进展, 2019, 38(07): 3450-3457. |
[11] | 宣鑫鹏, 张立楠, 赵珏, 王智勇, 程媛媛, 龙焙. 膨胀颗粒污泥的恢复及其基质降解动力学[J]. 化工进展, 2018, 37(08): 3245-3251. |
[12] | 郝伟, 刘永军, 刘喆, 陆佳. 低有机负荷下不同载体对好氧污泥颗粒化的影响[J]. 化工进展, 2018, 37(08): 3222-3230. |
[13] | 赵珏, 程媛媛, 宣鑫鹏, 张立楠, 郑洋洋, 龙焙. 曝气深度对好氧颗粒污泥稳定性的影响[J]. 化工进展, 2018, 37(04): 1623-1630. |
[14] | 赵珏, 程媛媛, 宣鑫鹏, 龙焙, 郑洋洋, 陆晨露, 王智勇, 王华生. 好氧颗粒污泥的常温湿式储存及恢复[J]. 化工进展, 2018, 37(01): 381-388. |
[15] | 苏海佳, 王陆玺, 邓爽, 代雅洁, 王晨旭. 好氧颗粒污泥技术及研究进展[J]. 化工进展, 2016, 35(06): 1914-1922. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |