化工进展 ›› 2023, Vol. 42 ›› Issue (9): 4863-4871.DOI: 10.16085/j.issn.1000-6613.2022-2013
收稿日期:
2022-10-28
修回日期:
2022-12-11
出版日期:
2023-09-15
发布日期:
2023-09-28
通讯作者:
宋新山
作者简介:
许中硕(1988—),女,硕士,讲师,研究方向为污水生物脱氮。E-mail:xuzhongshuo@dhu.edu.cn。
基金资助:
XU Zhongshuo(), ZHOU Panpan, WANG Yuhui, HUANG Wei, SONG Xinshan()
Received:
2022-10-28
Revised:
2022-12-11
Online:
2023-09-15
Published:
2023-09-28
Contact:
SONG Xinshan
摘要:
硫铁矿介导的自养反硝化是一种经济、高效和绿色的生物处理技术,具有节省外加有机碳源、同步脱氮除磷、减少污泥产量和CO2排放量等优势,是近年来污水处理领域研究的前沿和焦点。本文系统总结了自然生境中硫铁矿介导的自养反硝化现象以及基于硫铁矿构建的生物处理技术现状;分析了硫铁矿特性、添加量、pH以及温度等关键因素对其效能的影响;阐述了硫铁氧化耦合硝氮还原的功能微生物及其生物化学机制;探讨了硫铁矿生物利用性和铁沉积物抑制作用等关键难点,并提出了相应的潜在对策。综上所述,本文概述了硫铁矿介导的自养反硝化技术的现状、影响因素、生物机制以及关键难点四方面内容,以促进对硫铁矿介导的自养反硝化的深度理解,进而推动其在污水处理领域的实际应用。
中图分类号:
许中硕, 周盼盼, 王宇晖, 黄威, 宋新山. 硫铁矿介导的自养反硝化研究进展[J]. 化工进展, 2023, 42(9): 4863-4871.
XU Zhongshuo, ZHOU Panpan, WANG Yuhui, HUANG Wei, SONG Xinshan. Advances in sulfur iron ore mediated autotrophic denitrification[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4863-4871.
1 | 曲久辉, 赵进才, 任南琪, 等. 城市污水再生与循环利用的关键基础科学问题[J]. 中国基础科学, 2017, 19(1): 6-12. |
QU Jiuhui, ZHAO Jincai, REN Nanqi, et al. Critical fundamental scientific problems in reclamation and reuse of municipal wastewater[J]. China Basic Science, 2017, 19(1): 6-12. | |
2 | 胡洪营. 聚焦矛盾精准施策全面提升污水资源化利用水平[J]. 给水排水, 2021, 57(2): 1-3. |
HU Hongying. Focusing on key issues and precise measures to comprehensively upgrade wastewater utilization[J]. Water & Wastewater Engineering, 2021, 57(2): 1-3. | |
3 | HU Yuansheng, WU Guangxue, LI Ruihua, et al. Iron sulphides mediated autotrophic denitrification: An emerging bioprocess for nitrate pollution mitigation and sustainable wastewater treatment[J]. Water Research, 2020, 179: 115914. |
4 | YANG Y, CHEN T H, SUMONA M, et al. Utilization of iron sulfides for wastewater treatment: a critical review[J]. Reviews in Environmental Science and Bio/Technology, 2017, 16(2): 289-308. |
5 | GARCIA-GIL L J, GOLTERMAN H L. Kinetics of FeS-mediated denitrification in sediments from the Camargue (Rhone delta, southern France)[J]. FEMS Microbiology Ecology, 1993, 13(2): 85-91. |
6 | POSTMA D, BOESEN C, KRISTIANSEN H, et al. Nitrate reduction in an unconfined sandy aquifer: Water chemistry, reduction processes, and geochemical modeling[J]. Water Resources Research, 1991, 27(8): 2027-2045. |
7 | TESORIERO A J, LIEBSCHER H, COX S E. Mechanism and rate of denitrification in an agricultural watershed: Electron and mass balance along groundwater flow paths[J]. Water Resources Research, 2000, 36(6): 1545-1559. |
8 | GOLTERMAN H L. Influence of FeS on denitrification in shallow waters[J]. SIL Proceedings, 1922-2010, 1991, 24(5): 3025-3028. |
9 | JØRGENSEN C J, JACOBSEN O S, ELBERLING B, et al. Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment[J]. Environmental Science & Technology, 2009, 43(13): 4851-4857. |
10 | TORRENTÓ C, URMENETA J, OTERO N, et al. Enhanced denitrification in groundwater and sediments from a nitrate-contaminated aquifer after addition of pyrite[J]. Chemical Geology, 2011, 287(1/2): 90-101. |
11 | VACLAVKOVA S, JØRGENSEN C J, JACOBSEN O S, et al. The importance of microbial iron sulfide oxidation for nitrate depletion in anoxic danish sediments[J]. Aquatic Geochemistry, 2014, 20(4): 419-435. |
12 | YAN R W, KAPPLER A, HORN M A, et al. Towards a standardized protocol for studying chemolithoautotrophic denitrification with pyrite at circumneutral pH[J]. Applied Geochemistry, 2021, 130: 104995. |
13 | ZHANG Y C, SLOMP C P, BROERS H P, et al. Isotopic and microbiological signatures of pyrite-driven denitrification in a sandy aquifer[J]. Chemical Geology, 2012, 300/301: 123-132. |
14 | JAKUS N, MELLAGE A, HÖSCHEN Cet al. Anaerobic neutrophilic pyrite oxidation by a chemolithoautotrophic nitrate-reducing iron(Ⅱ)-oxidizing culture enriched from a fractured aquifer[J]. Environmental Science & Technology, 2021, 55(14): 9876-9884. |
15 | LI Ruihua, GUAN Mengsha, WANG Wei. Simultaneous arsenite and nitrate removal from simulated groundwater based on pyrrhotite autotrophic denitrification[J]. Water Research, 2021, 189: 116662. |
16 | LI Ruihua, NIU Jianmin, ZHAN Xinmin, et al. Simultaneous removal of nitrogen and phosphorus from wastewater by means of FeS-based autotrophic denitrification[J]. Water Science and Technology, 2013, 67(12): 2761-2767. |
17 | XU Zhongshuo, LI Yanan, ZHOU Panpan, et al. New insights on simultaneous nitrate and phosphorus removal in pyrite-involved mixotrophic denitrification biofilter for a long-term operation: Performance change and its underlying mechanism[J]. Science of the Total Environment, 2022, 845: 157403. |
18 | GE Xiaoyan, CAO Xin, SONG Xinshan, et al. Bioenergy generation and simultaneous nitrate and phosphorus removal in a pyrite-based constructed wetland-microbial fuel cell[J]. Bioresource Technology, 2020, 296: 122350. |
19 | GE Zhibin, WEI Dongyang, ZHANG Jing, et al. Natural pyrite to enhance simultaneous long-term nitrogen and phosphorus removal in constructed wetland: Three years of pilot study[J]. Water Research, 2019, 148: 153-161. |
20 | XU Zhongshuo, QIAO Wenwen, SONG Xinshan, et al. Pathways regulating the enhanced nitrogen removal in a pyrite based vertical-flow constructed wetland[J]. Bioresource Technology, 2021, 325: 124705. |
21 | CHEN Yifan, SHAO Zhiyu, KONG Zheng, et al. Study of pyrite based autotrophic denitrification system for low-carbon source stormwater treatment[J]. Journal of Water Process Engineering, 2020, 37: 101414. |
22 | CAPUA F D, MASCOLO M C, PIROZZI F, et al. Simultaneous denitrification, phosphorus recovery and low sulfate production in a recirculated pyrite-packed biofilter (RPPB)[J]. Chemosphere, 2020, 255: 126977. |
23 | LIANG Ying, WEI Dongyang, HU Junsong, et al. Glyphosate and nutrients removal from simulated agricultural runoff in a pilot pyrrhotite constructed wetland[J]. Water Research, 2020, 168: 115154. |
24 | KONG Zheng, SONG Yunqian, SHAO Zhiyu, et al. Biochar-pyrite bi-layer bioretention system for dissolved nutrient treatment and by-product generation control under various stormwater conditions[J]. Water Research, 2021, 206: 117737. |
25 | LI Haibo, LI Yaofeng, GUO Jianbo, et al. Effect of calcinated pyrite on simultaneous ammonia, nitrate and phosphorus removal in the BAF system and the Fe2+ regulatory mechanisms: Electron transfer and biofilm properties[J]. Environmental Research, 2021, 194: 110708. |
26 | SI Zhihao, SONG Xinshan, WANG Yuhui, et al. Natural pyrite improves nitrate removal in constructed wetlands and makes wetland a sink for phosphorus in cold climates[J]. Journal of Cleaner Production, 2020: 124304. |
27 | YANG Y, CHEN T H, MORRISON L, et al. Nanostructured pyrrhotite supports autotrophic denitrification for simultaneous nitrogen and phosphorus removal from secondary effluents[J]. Chemical Engineering Journal, 2017, 328: 511-518. |
28 | GARCIA-GIL L J, SALA-GENOHER L, ESTEVA J V, et al. Distribution of iron in Lake Banyoles in relation to the ecology of purple and green sulfur bacteria[J]. Hydrobiologia, 1990, 192(2/3): 259-270. |
29 | HAAIJER S C M, LAMERS L P M, SMOLDERS A J P, et al. Iron sulfide and pyrite as potential electron donors for microbial nitrate reduction in freshwater wetlands[J]. Geomicrobiology Journal, 2007, 24(5): 391-401. |
30 | ZHANG Y W, WEI D Y, MORRISON L, et al. Nutrient removal through pyrrhotite autotrophic denitrification: Implications for eutrophication control[J]. Science of the Total Environment, 2019, 662: 287-296. |
31 | 沈思文, 邱江坤, 杨亦诺, 等. 磁黄铁矿和石灰石改性硫磺发泡材料的脱氮除磷性能研究[J]. 环境科学学报, 2022, 42(3): 141-150. |
SHEN Siwen, QIU Jiangkun, YANG Yinuo, et al. Nitrogen and phosphorus removal performance of the pyrrhotite and limestone modified sulfur foaming material[J]. Acta Scientiae Circumstantiae, 2022, 42(3): 141-150. | |
32 | PANG Yunmeng, WANG Jianlong. Insight into the mechanism of chemoautotrophic denitrification using pyrite (FeS2) as electron donor[J]. Bioresource Technology, 2020, 318: 124105. |
33 | TORRENTÓ C, CAMA J, URMENETA J, et al. Denitrification of groundwater with pyrite and Thiobacillus denitrificans [J]. Chemical Geology, 2010, 278(1/2): 80-91. |
34 | WANG Yanfei, WU Guangxue, ZHENG Xiaona, et al. Synergistic ammonia and nitrate removal in a novel pyrite-driven autotrophic denitrification biofilter[J]. Bioresource Technology, 2022, 355: 127223. |
35 | WOLTHERS M, CHARLET L, VAN DER LINDE P R, et al. Surface chemistry of disordered mackinawite (FeS)[J]. Geochimica et Cosmochimica Acta, 2005, 69(14): 3469-3481. |
36 | BELZILE N, CHEN Yuwei, CAI Meifang, et al. A review on pyrrhotite oxidation[J]. Journal of Geochemical Exploration, 2004, 84(2): 65-76. |
37 | MURPHY R, STRONGIN D R. Surface reactivity of pyrite and related sulfides[J]. Surface Science Reports, 2009, 64(1): 1-45. |
38 | PARK J H, KIM S H, DELAUNE R D, et al. Enhancement of nitrate removal in constructed wetlands utilizing a combined autotrophic and heterotrophic denitrification technology for treating hydroponic wastewater containing high nitrate and low organic carbon concentrations[J]. Agricultural Water Management, 2015, 162: 1-14. |
39 | TROUVE C, CHAZAL P M, GUEROUX B, et al. Denitrification by new strains of Thiobacillus denitrificans under non-standard physicochemical conditions. Effect of temperature, pH, and sulphur source[J]. Environmental Technology, 1998, 19(6): 601-610. |
40 | YAN Ruiwen, KAPPLER A, MUEHE E M, et al. Effect of reduced sulfur species on chemolithoautotrophic pyrite oxidation with nitrate[J]. Geomicrobiology Journal, 2018, 36(1): 19-29. |
41 | LI Ruihua, ZHANG Yongwei, GUAN Mengsha. Investigation into pyrite autotrophic denitrification with different mineral properties[J]. Water Research, 2022, 221: 118763. |
42 | 李雅倩, 邹雪华, 刘海波, 等. 不同磁黄铁矿自养反硝化脱氮除磷作用[J]. 环境科学学报, 2022, 42(10): 233-240. |
LI Yaqian, ZOU Xuehua, LIU Haibo, et al. Autotrophic denitrification over different pyrrhotites for simultaneous nitrate and phosphate removal[J]. Acta Scientiae Circumstantiae, 2022, 42(10): 233-240. | |
43 | AQUILINA L, ROQUES C, BOISSON A, et al. Autotrophic denitrification supported by biotite dissolution in crystalline aquifers (1): New insights from short-term batch experiments[J]. Science of the Total Environment, 2018, 619/620: 842-853. |
44 | TONG Shuang, RODRIGUEZ-GONZALEZ L C, PAYNE K A, et al. Effect of pyrite pretreatment, particle size, dose, and biomass concentration on particulate pyrite autotrophic denitrification of nitrified domestic wastewater[J]. Environmental Engineering Science, 2018, 35(8): 875-886. |
45 | CHU Yifan, LIU Wei, TAN Qiyang, et al. Vertical-flow constructed wetland based on pyrite intensification: Mixotrophic denitrification performance and mechanism[J]. Bioresource Technology, 2022, 347: 126710. |
46 | LI Ruihua, MORRISON L, COLLINS G, et al. Simultaneous nitrate and phosphate removal from wastewater lacking organic matter through microbial oxidation of pyrrhotite coupled to nitrate reduction[J]. Water Research, 2016, 96: 32-41. |
47 | 李金龙. 基于Fe基质生物载体的低C/N比污水自养反硝化脱氮研究[D]. 北京: 北京交通大学, 2018. |
LI Jinlong. Autotrophic denitrification based iron-dependent biocarriers for low C/N wastewater[D]. Beijing: Beijing Jiaotong University, 2018. | |
48 | JAKUS N, BLACKWELL N, OSENBRUCK K, et al. Nitrate removal by a novel lithoautotrophic nitrate-reducing, iron(Ⅱ)-oxidizing culture enriched from a pyrite-rich limestone aquifer[J]. Applied and Environmental Microbiology, 2021, 87(16): e0046021. |
49 | CAPUA F D, LAKANIEMI A M, PUHAKKA J A, et al. High-rate thiosulfate-driven denitrification at pH lower than 5 in fluidized-bed reactor[J]. Chemical Engineering Journal, 2017, 310: 282-291. |
50 | FU Xinrong, HOU Rongrong, YANG Peng, et al. Application of external carbon source in heterotrophic denitrification of domestic sewage: A review[J]. Science of the Total Environment, 2022, 817: 153061. |
51 | 蒲娇阳. 硫铁矿自养反硝化去除地下水中硝酸盐的研究[D]. 北京: 中国地质大学(北京), 2015. |
PU Jiaoyang. Study on nitrate removal from groundwater by pyrite-based autotrophic denitrification[D]. Beijing: China University of Geosciences, 2015. | |
52 | XU Baokun, SHI Liangsheng, ZHONG Hua, et al. The performance of pyrite-based autotrophic denitrification column for permeable reactive barrier under natural environment[J]. Bioresource Technology, 2019, 290: 121763. |
53 | POKORNA D, ZABRANSKA J. Sulfur-oxidizing bacteria in environmental technology[J]. Biotechnology Advances, 2015, 33(6): 1246-1259. |
54 | ZHOU Jun, WANG Hongyu, YANG Kai, et al. Autotrophic denitrification by nitrate-dependent Fe(Ⅱ) oxidation in a continuous up-flow biofilter[J]. Bioprocess and Biosystems Engineering, 2016, 39(2): 277-284. |
55 | KISKIRA K, PAPIRIO S, VAN HULLEBUSCH E D, et al. Fe(Ⅱ)-mediated autotrophic denitrification: A new bioprocess for iron bioprecipitation/biorecovery and simultaneous treatment of nitrate-containing wastewaters[J]. International Biodeterioration & Biodegradation, 2017, 119: 631-648. |
56 | BYRNE-BAILEY K G, WEBER K A, COATES J D. Draft genome sequence of the anaerobic, nitrate-dependent, Fe(Ⅱ)-oxidizing bacterium pseudogulbenkiania ferrooxidans strain 2002[J]. Journal of Bacteriology, 2012, 194(9): 2400-2401. |
57 | SU Junfeng, CHENG Ce, HUANG Tinglin, et al. Characterization of coupling autotrophic denitrification with iron cycle bacterium Enterobacter sp. CC76 and its application of groundwater[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 66: 106-114. |
58 | PENG Chao, SUNDMAN A, BRYCE C, et al. Oxidation of Fe(Ⅱ)–organic matter complexes in the presence of the mixotrophic nitrate-reducing Fe(Ⅱ)-oxidizing bacterium Acidovorax sp. BoFeN1 [J]. Environmental Science & Technology, 2018, 52(10): 5753-5763. |
59 | HAAIJER S C M, VAN DER WELLE M E W, SCHMID M C, et al. Evidence for the involvement of betaproteobacterial Thiobacilli in the nitrate-dependent oxidation of iron sulfide minerals[J]. FEMS Microbiology Ecology, 2006, 58(3): 439-448. |
60 | TORRENTÓ C, URMENETA J, EDWARDS K J, et al. Characterization of attachment and growth of Thiobacillus denitrificans on pyrite surfaces[J]. Geomicrobiology Journal, 2012, 29(4): 379-388. |
61 | BOSCH J, LEE K Y, JORDAN G, et al. Anaerobic, nitrate-dependent oxidation of pyrite nanoparticles by Thiobacillus denitrificans [J]. Environmental Science & Technology, 2012, 46(4): 2095-2101. |
62 | 周翔, 张玉, 孙超越, 等. 脱氮硫杆菌利用FeS自养反硝化过程研究[J]. 大连理工大学学报, 2019, 59(5): 455-461. |
ZHOU Xiang, ZHANG Yu, SUN Chaoyue, et al. Study of autotrophic denitrification process conducted by Thiobacillus denitrificans utilizing FeS[J]. Journal of Dalian University of Technology, 2019, 59(5): 455-461. | |
63 | 朱良. FeS2驱动的硫自养反硝化深度脱氮除磷技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
ZHU Liang. Advanced denitrification and phosphorus removal by sulfur-based autotrophic dentrification driven by FeS2 [D]. Harbin: Harbin Institute of Technology, 2021. | |
64 | PU Jiaoyang, FENG Chuanping, LIU Ying,et al. Pyrite-based autotrophic denitrification for remediation of nitrate contaminated groundwater[J]. Bioresource Technology, 2014, 173: 117-123. |
65 | 刘斌, 何杰, 李学艳. 黄铁矿生物滤池氮磷同步深度处理特性及微生物群落结构[J]. 环境工程, 2022, 40(3): 32-37, 138. |
LIU Bin, HE Jie, LI Xueyan. Characteristics of simultaneous treatment of nitrogen and phosphorus in pyrite biofilter and its microbial community[J]. Environmental Engineering, 2022, 40(3): 32-37, 138. | |
66 | ILBERT M, BONNEFOY V. Insight into the evolution of the iron oxidation pathways[J]. Biochimica et Biophysica Acta: Bioenergetics, 2013, 1827(2): 161-175. |
67 | TOMINSKI C, HEYER H, LÖSEKANN-BEHRENS T, et al. Growth and population dynamics of the anaerobic Fe(Ⅱ)-oxidizing and nitrate-reducing enrichment culture KS[J]. Applied and Environmental Microbiology, 2018, 84(9): 02173-02117. |
68 | PANG Yunmeng, WANG JianLong, LI Shengjie, et al. Activity of autotrophic Fe(Ⅱ)-oxidizing denitrifiers in freshwater lake sediments[J]. ACS ES&T Water, 2021, 1(7): 1566-1576. |
69 | SENKO J M, DEWERS T A, KRUMHOLZ L R. Effect of oxidation rate and Fe(Ⅱ) state on microbial nitrate-dependent Fe(Ⅲ) mineral formation[J]. Applied and Environmental Microbiology, 2005, 71(11): 7172-7177. |
70 | PANG Yunmeng, WANG Jianlong. Various electron donors for biological nitrate removal: A review[J]. Science of the Total Environment, 2021, 794: 148699. |
71 | 褚雨秋. 基于铁自养反硝化微生物的市政污水深度脱氮效能研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
CHU Yuqiu. Advanced denitrification efficiency of municipal wastewater based on iron autotrophic denitrifying microorganisms[D]. Harbin: Harbin Institute of Technology, 2021. | |
72 | BOSCH J, MECKENSTOCK R U. Rates and potential mechanism of anaerobic nitrate-dependent microbial pyrite oxidation[J]. Biochemical Society Transactions, 2012, 40(6): 1280-1283. |
73 | DONATI E R, SAND W. Mechanisms and biochemical fundamentals of bacterial metal sulfide oxidation[J]. Microbial Processing of Metal Sulfides, 2007: 35-58. |
74 | 武彪, 温建康, 王淀佐. 黄铁矿表面XPS分析与生物浸出机制研究[J]. 稀有金属, 2017, 41(6): 720-724. |
WU Biao, WEN Jiankang, WANG Dianzuo. XPS analysis and mechanism of pyrite biooxidation[J]. Chinese Journal of Rare Metals, 2017, 41(6): 720-724. | |
75 | SHI Liang, DONG Hailiang, REGUERA G, et al. Extracellular electron transfer mechanisms between microorganisms and minerals[J]. Nature Reviews Microbiology, 2016, 14(10): 651-662. |
76 | BAKEN S, SALAETS P, DESMET N, et al. Oxidation of iron causes removal of phosphorus and arsenic from streamwater in groundwater-fed lowland catchments[J]. Environmental Science & Technology, 2015, 49(5): 2886-2894. |
77 | LI Ruihua, KELLY C, KEEGAN R, et al. Phosphorus removal from wastewater using natural pyrrhotite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 427: 13-18. |
78 | SAND W, GEHRKE T, JOZSA P G, et al. (Bio)chemistry of bacterial leaching—direct vs. indirect bioleaching[J]. Hydrometallurgy, 2001, 59(2/3): 159-175. |
79 | BRANTLEY S L, KUBICKI J D, WHITE A F, et al. Microbiological controls on geochemical kinetics 2: Case study on microbial oxidation of metal sulfide minerals and future prospects[J]. Kinetics of Water: Rock Interaction, 2008: 417-467. |
80 | MOSES C O, NORDSTROM D K, HERMAN J S, et al. Aqueous pyrite oxidation by dissolved oxygen and by ferric iron[J]. Geochimica et Cosmochimica Acta, 1987, 51(6): 1561-1571. |
81 | LIU Tong, HU Yutian, CHEN Nan, et al. High redox potential promotes oxidation of pyrite under neutral conditions: Implications for optimizing pyrite autotrophic denitrification[J]. Journal of Hazardous Materials, 2021, 416: 125844. |
82 | NORDHOFF M, TOMINSKI C, HALAMA M, et al. Insights into nitrate-reducing Fe(Ⅱ) oxidation mechanisms through analysis of cell-mineral associations, cell encrustation, and mineralogy in the chemolithoautotrophic enrichment culture KS[J]. Applied and Environmental Microbiology, 2017, 83(13): 00752-00717. |
83 | YI Q, WU S L, SOUTHAM G, et al. Acidophilic iron- and sulfur-oxidizing bacteria, Acidithiobacillus ferrooxidans, drives alkaline pH neutralization and mineral weathering in Fe ore tailings[J]. Environmental Science & Technology, 2021, 55(12): 8020-8034. |
84 | CHAKRABORTY A, RODEN E E, SCHIEBER J, et al. Enhanced growth of Acidovorax sp. strain 2AN during nitrate-dependent Fe(Ⅱ) oxidation in batch and continuous-flow systems[J]. Applied and Environmental Microbiology, 2011, 77(24): 8548-8556. |
85 | SCHÄDLER S, BURKHARDT C, HEGLER F, et al. Formation of cell-iron-mineral aggregates by phototrophic and nitrate-reducing anaerobic Fe( Ⅱ )-oxidizing bacteria[J]. Geomicrobiology Journal, 2009, 26(2): 93-103. |
86 | TIAN Tian, ZHOU Ke, LI Yusheng, et al. Recovery of iron-dependent autotrophic denitrification activity from cell-iron mineral aggregation-induced reversible inhibition by low-intensity ultrasonication[J]. Environmental Science & Technology, 2022, 56(1): 595-604. |
87 | WANG Ru, XU Shaoyi, ZHANG Meng, et al. Iron as electron donor for denitrification: The efficiency, toxicity and mechanism[J]. Ecotoxicology and Environmental Safety, 2020, 194: 110343. |
88 | LIANG Liyuan, MCCARTHY J F, JOLLEY L W, et al. Iron dynamics: Transformation of Fe(Ⅱ)/Fe(Ⅲ) during injection of natural organic matter in a sandy aquifer[J]. Geochimica et Cosmochimica Acta, 1993, 57(9): 1987-1999. |
89 | ZHANG Zhengzhe, CHENG Yafei, ZHOU Yuhuang, et al. A novel strategy for accelerating the recovery of an anammox reactor inhibited by copper(Ⅱ): EDTA washing combined with biostimulation via low-intensity ultrasound[J]. Chemical Engineering Journal, 2015, 279: 912-920. |
90 | YANG Yafei, XIAO Cancan, YU Qing, et al. Using Fe(Ⅱ)/Fe(Ⅲ) as catalyst to drive a novel anammox process with no need of anammox bacteria[J]. Water Research, 2021, 189: 116626. |
[1] | 陈翔宇, 卞春林, 肖本益. 温度分级厌氧消化工艺的研究进展[J]. 化工进展, 2023, 42(9): 4872-4881. |
[2] | 杨子育, 朱玲, 王文龙, 于超凡, 桑义敏. 阴燃法处理含油污泥的研究及应用进展[J]. 化工进展, 2023, 42(7): 3760-3769. |
[3] | 朱紫旋, 陈俊江, 张星星, 李祥, 刘文如, 吴鹏. 基于短程反硝化厌氧氨氧化新型污水生物脱氮工艺的研究进展[J]. 化工进展, 2023, 42(4): 2091-2100. |
[4] | 苏景振, 詹健. 生物炭对水环境中微塑料的去除研究进展[J]. 化工进展, 2023, 42(10): 5445-5458. |
[5] | 郭之晗, 徐云翔, 李天皓, 黄子川, 刘文如, 沈耀良. 好氧颗粒污泥长期稳定运行研究进展[J]. 化工进展, 2022, 41(5): 2686-2697. |
[6] | 刘锋, 张雪智, 王苏琴, 冯震, 葛丹丹, 杨洋. 硫代硫酸盐驱动自养反硝化耦合厌氧氨氧化强化总氮去除[J]. 化工进展, 2022, 41(2): 990-997. |
[7] | 陈诗雨, 许志成, 杨婧, 徐浩, 延卫. 微生物燃料电池在废水处理中的研究进展[J]. 化工进展, 2022, 41(2): 951-963. |
[8] | 潘柔杏, 于庆君, 唐晓龙, 易红宏, 高凤雨, 赵顺征, 周远松, 刘媛媛. 被动NOx吸附剂在柴油车冷启动排放控制中的研究进展[J]. 化工进展, 2022, 41(1): 400-417. |
[9] | 张莉红, 李杰, 王亚娥, 谢慧娜, 赵炜, 李婧. Feammox: 一种新型自养生物脱氮技术[J]. 化工进展, 2022, 41(1): 391-399. |
[10] | 代校军, 成艳, 王晓晗, 黄文斌, 魏强, 周亚松. 小粒径SAPO-11分子筛合成的研究进展[J]. 化工进展, 2021, 40(S1): 191-203. |
[11] | 刘畅, 陈旭, 杨江. CO2腐蚀及其缓蚀剂应用研究进展[J]. 化工进展, 2021, 40(11): 6305-6314. |
[12] | 肖康, 王琼. 吸附法净化室内甲醛研究进展[J]. 化工进展, 2021, 40(10): 5747-5771. |
[13] | 耿雅雯, 刘锋, 冯震, 陈俊, 张雪智. 硫自养/异养协同反硝化深度脱氮处理三氯蔗糖生产废水[J]. 化工进展, 2021, 40(10): 5829-5836. |
[14] | 杨建成, 王诗宁, 杨硕, 杨明涛, 沈伯雄, 张笑. 金属有机框架材料吸附VOCs影响因素研究进展[J]. 化工进展, 2021, 40(1): 463-476. |
[15] | 李孟, 李炜, 张帅, 李雨薇, 刘芳, 赵朝成, 王永强. MOF及其复合材料吸附去除VOCs应用研究进展[J]. 化工进展, 2021, 40(1): 415-426. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |