化工进展 ›› 2021, Vol. 40 ›› Issue (S1): 191-203.DOI: 10.16085/j.issn.1000-6613.2021-0337
代校军(), 成艳, 王晓晗, 黄文斌, 魏强(), 周亚松
收稿日期:
2021-02-19
修回日期:
2021-05-31
出版日期:
2021-10-25
发布日期:
2021-11-09
通讯作者:
魏强
作者简介:
代校军(1995—),男,硕士研究生,研究方向为石油与天然气化学。E-mail:基金资助:
DAI Xiaojun(), CHENG Yan, WANG Xiaohan, HUANG Wenbin, WEI Qiang(), ZHOU Yasong
Received:
2021-02-19
Revised:
2021-05-31
Online:
2021-10-25
Published:
2021-11-09
Contact:
WEI Qiang
摘要:
传统的SAPO-11分子筛颗粒尺寸较大,将其作为烷烃加氢异构化双功能催化剂的载体时,会增加烷烃分子在孔道内的停留时间,并降低载体的孔体积和酸中心利用率。小粒径SAPO-11分子筛孔道长度短,更便于烷烃分子扩散,并且具有更多暴露的孔口,提高了催化活性位的可及性。本文针对传统水热法合成的SAPO-11分子筛因颗粒尺寸较大而降低其孔体积和酸中心利用率,以及增加烷烃分子在孔道内的停留时间,使得烷烃分子在孔道内酸性位的作用下发生过度裂化等问题,综述了小粒径SAPO-11分子筛制备方法的最新研究进展及其优缺点,介绍了小粒径SAPO-11分子筛合成过程中的影响因素,并分析了小粒径SAPO-11分子筛合成技术中的关键要点和亟待解决的问题以及未来的发展趋势,指出未来应着重于具有良好热稳定性的小粒径多级孔SAPO-11分子筛的研究,并且应注重实现合成过程的方法绿色化、模板剂绿色化和溶剂绿色化。
中图分类号:
代校军, 成艳, 王晓晗, 黄文斌, 魏强, 周亚松. 小粒径SAPO-11分子筛合成的研究进展[J]. 化工进展, 2021, 40(S1): 191-203.
DAI Xiaojun, CHENG Yan, WANG Xiaohan, HUANG Wenbin, WEI Qiang, ZHOU Yasong. Research progress in the synthesis of small particle-size SAPO-11 molecular sieves[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 191-203.
1 | PENG C, LIU B, FENG X, et al. Engineering dual bed hydrocracking catalyst towards enhanced high-octane gasoline generation from light cycle oil[J]. Chemical Engineering Journal, 2020, 389: 123461. |
2 | 黄卫国, 方文秀, 康小洪. 正十六烷在Pt/SAPO-11上的临氢异构反应[J]. 石油化工, 2019, 48(8): 782-786. |
HUANG Weiguo, FANG Wenxiu, KANG Xiaohong. Hydroisomerization of n-hexadecane on Pt/SAPO-11 catalyst[J]. Petrochemical Technology, 2019, 48(8): 782-786. | |
3 | SHAMANAEVA (TIULIUKOVA) I A, PARKHOMCHUK E V. Influence of the precursor preparation procedure on the physicochemical properties of silicoaluminophosphate SAPO-11[J]. Petroleum Chemistry, 2019, 59(8): 854-859. |
4 | YU G, QIU M H, WANG T, et al. Optimization of the pore structure and acidity of SAPO-11 for highly efficient hydroisomerization on the long-chain alkane[J]. Microporous and Mesoporous Materials, 2021, 320: 111076. |
5 | WEN C L, HAN S L, XU J D, et al. A novel route to synthesize SAPO-11 molecular sieves with a high external surface area in the presence of ethylene glycol and supercritical carbon dioxide for 1-octene hydroisomerization to dimethylhexanes[J]. Journal of Catalysis, 2017, 356: 100-110. |
6 | TAO S, LI X L, LYU G, et al. Highly mesoporous SAPO-11 molecular sieves with tunable acidity: facile synthesis, formation mechanism and catalytic performance in hydroisomerization of n-dodecane[J]. Catalysis Science & Technology, 2017, 7(23): 5775-5784. |
7 | 杨妮, 彭礼波, 欧阳仟, 等. 多级孔SAPO-11的制备及其临氢异构性能[J]. 石油化工, 2018, 47(12): 1318-1325. |
YANG Ni, PENG Libo, OUYANG Qian, et al. Synthesis of hierarchical SAPO-11 and catalytic performance thereof in hydroisomerization[J]. Petrochemical Technology, 2018, 47(12): 1318-1325. | |
8 | CHEN Z, DONG Y Y, JIANG S Y, et al. Low-temperature synthesis of hierarchical architectures of SAPO-11 zeolite as a good hydroisomerization support[J]. Journal of Materials Science, 2017, 52(8): 4460-4471. |
9 | 崔楼伟, 何观伟, 顾建峰, 等. 小晶粒SAPO-11分子筛合成及其正己烷异构化催化性能[J]. 工业催化, 2018, 26(9): 35-40. |
CUI Louwei, HE Guanwei, GU Jianfeng, et al. Synthesis of small crystal SAPO-11 molecular sieve and its catalytic activity for n-hexane hydroisomerization[J]. Industrial Catalysis, 2018, 26(9): 35-40. | |
10 | GUO L, FAN Y, BAO X J, et al. Two-stage surfactant-assisted crystallization for enhancing SAPO-11 acidity to improve n-octane di-branched isomerization[J]. Journal of Catalysis, 2013, 301: 162-173. |
11 | ZHANG S Z, CHEN S L, DONG P, et al. Synthesis, characterization and hydroisomerization catalytic performance of nanosize SAPO-11 molecular sieves[J]. Catalysis Letters, 2007, 118(1/2): 109-117. |
12 | BÉRTOLO R, SILVA J M, RIBEIRO F, et al. Effects of oxidant acid treatments on carbon-templated hierarchical SAPO-11 materials: synthesis, characterization and catalytic evaluation in n-decane hydroisomerization[J]. Applied Catalysis A: General, 2014, 485: 230-237. |
13 | YADAV R, SAKTHIVEL A. Silicoaluminophosphate molecular sieves as potential catalysts for hydroisomerization of alkanes and alkenes[J]. Applied Catalysis A: General, 2014, 481: 143-160. |
14 | LIU P, REN J, SUN Y H. Acidity and isomerization activity of SAPO-11 synthesized by an improved hydrothermal method[J]. Chinese Journal of Catalysis, 2008, 29(4): 379-384. |
15 | ZHANG Q, MAYORAL A, TERASAKI O, et al. Amino acid-assisted construction of single-crystalline hierarchical nanozeolites via oriented-aggregation and intraparticle ripening[J]. Journal of the American Chemical Society, 2019, 141(9): 3772-3776. |
16 | ZHANG Q, CHEN G R, WANG Y R, et al. High-quality single-crystalline MFI-type nanozeolites: a facile synthetic strategy and MTP catalytic studies[J]. Chemistry of Materials, 2018, 30(80): 2750-2758. |
17 | 张胜振, 陈胜利, 董鹏, 等. 小晶粒SAPO-11分子筛的合成及其催化异构化性能[J]. 催化学报, 2007, 28(10): 857-864. |
ZHANG Shengzhen, CHEN Shengli, DONG Peng, et al. Synthesis and catalytic hydroisomerization performance of SAPO-11 molecular sieve with small crystals[J]. Chinese Journal of Catalysis, 2007, 28(10): 857-864. | |
18 | TAO S, LI X L, WANG X G, et al. Facile synthesis of hierarchical nanosized single-crystal aluminophosphate molecular sieves from highly homogeneous and concentrated precursors[J]. Angewandte Chemie International Edition, 2020, 59(9): 3455-3459. |
19 | REN L M, WU Q M, YANG C G, et al. Solvent-free synthesis of zeolites from solid raw materials[J]. Journal of the American Chemical Society, 2012, 134(37): 15173-15176. |
20 | IYOKI K, ITABASHI K, OKUBO T. Progress in seed-assisted synthesis of zeolites without using organic structure-directing agents[J]. Microporous and Mesoporous Materials, 2014, 189: 22-30. |
21 | YU G, CHEN X Q, XUE W J, et al. Melting-assisted solvent-free synthesis of SAPO-11 for improving the hydroisomerization performance of n-dodecane[J]. Chinese Journal of Catalysis, 2020, 41(4): 622-630. |
22 | 孙兵, 肖霞, 许中亮, 等. 绿色合成分子筛的研究进展[J]. 工业催化, 2020, 28(3): 1-10. |
SUN Bing, XIAO Xia, XU Zhongliang, et al. Advances in the green synthesis of molecular sieves[J]. Industrial Catalysis, 2020, 28(3): 1-10. | |
23 | 赵新红, 郝志鑫, 张晓晓, 等. 改进的无溶剂法制备FeAPO-11分子筛及其催化性能[J]. 石油学报(石油加工), 2019, 35(1): 166-175. |
ZHAO Xinhong, HAO Zhixin, ZHANG Xiaoxiao, et al. Preparation of FeAPO-11 molecular sieves via improved solvent-free method and their catalytic performances[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(1): 166-175. | |
24 | DU Y Y, FENG B, JIANG Y, et al. Solvent-free synthesis and n-hexadecane hydroisomerization performance of SAPO-11 catalyst[J]. European Journal of Inorganic Chemistry, 2018, 2018(22): 2599-2606. |
25 | LIU S Y, CHAO Z S. Synthesis of mesoporous chromium aluminophosphate (CrAlPO) via solid state reaction at low temperature[J]. Journal of Wuhan University of Technology(Mater. Sci. Ed.), 2012, 27(2): 337-345. |
26 | JIN Y Y, CHEN X, SUN Q, et al. Solvent-free syntheses of hierarchically porous aluminophosphate-based zeolites with AEL and AFI structures[J]. Chemistry—A European Journal, 2014, 20(52): 17616-17623. |
27 | YU G, CHEN X Q, XUE W J, et al. Melting-assisted solvent-free synthesis of SAPO-11 for improving the hydroisomerization performance of n-dodecane[J]. Chinese Journal of Catalysis, 2020, 41(4): 622-630. |
28 | ZHAO X H, ZHANG X X, HAO Z X, et al. Synthesis of FeAPO-5 molecular sieves with high iron contents via improved ionothermal method and their catalytic performances in phenol hydroxylation[J]. Journal of Porous Materials, 2018, 25(4): 1007-1016. |
29 | LI B, TIAN P, QI Y, et al. Study of crystallization process of SAPO-11 molecular sieve[J]. Chinese Journal of Catalysis, 2013, 34(3): 593-603. |
30 | 王大康, 罗明检. 无溶剂法合成分子筛的研究进展[J]. 化工科技, 2017, 25(4): 70-75. |
WANG Dakang, LUO Mingjian. Synthesis of zeolites by solvent-free method[J]. Science & Technology in Chemical Industry, 2017, 25(4): 70-75. | |
31 | LI M, WANG Y H, BAI L, et al. Solvent-free synthesis of SAPO-34 nanocrystals with reduced template consumption for methanol-to-olefins process[J]. Applied Catalysis A: General, 2017, 531: 203-211. |
32 | SEYED HASSAN S P, MAJID T. Ultrasonic and microwave pretreatment for hydrothermal synthesis of nanosized SAPO-34s and their catalytic performance in MTO reaction[J]. International Journal of Engineering, 2015, 28(3): 330-337. . |
33 | LIU Y X, ZHENG D J, LI B H, et al. Isomerization of α-pinene with a hierarchical mordenite molecular sieve prepared by the microwave assisted alkaline treatment[J]. Microporous and Mesoporous Materials, 2020, 299: 110117. |
34 | 罗小林, 陈亚芍, 常鹏梅, 等. 离子胶束诱导微波合成SAPO-11分子筛微球[J]. 物理化学学报, 2009, 25(1): 137-144. |
LUO Xiaolin, CHEN Yashao, CHANG Pengmei, et al. Synthesis of SAPO-11 molecular sieve microspheres using a microwave technique and mediated by ionic micelles[J]. Acta Physico-Chimica Sinica, 2009, 25(1): 137-144. | |
35 | BÉRTOLO R, SILVA J M, RIBEIRO M F, et al. Microwave synthesis of SAPO-11 materials for long chain n-alkanes hydroisomerization: effect of physical parameters and chemical gel composition[J]. Applied Catalysis A: General, 2017, 542: 28-37. |
36 | GHARIBEH M, TOMPSETT G A, CONNER W C, et al. Microwave synthesis of SAPO-11 and AlPO-11: aspects of reactor engineering[J]. ChemPhysChem, 2008, 9(17): 2580-2591. |
37 | 张燕, 李湘祁, 汤德平. 微波法合成有序介孔分子筛的研究进展[J]. 化工时刊, 2007, 21(11): 71-75. |
ZHANG Yan, LI Xiangqi, TANG Deping. Advances in the microwave synthesis of ordered mesoporous material[J]. Chemical Industry Times, 2007, 21(11): 71-75. | |
38 | 崔岩, 郭成玉, 王晓化, 等. 微波技术在沸石分子筛材料合成中的应用研究进展[J]. 工业催化, 2016, 24(3): 1-9. |
CUI Yan, GUO Chengyu, WANG Xiaohua, et al. Advance in microwave synthesis of zeolite materials[J]. Industrial Catalysis, 2016, 24(3): 1-9. | |
39 | CHEN B H, HUANG Y N.17O solid-state NMR spectroscopic studies of the involvement of water vapor in molecular sieve formation by dry-gel conversion[J]. Journal of the American Chemical Society, 2006, 128(19): 6437-6446. |
40 | 李浩, 王海彦, 孙娜, 等. 干凝胶法合成多级孔SAPO-11分子筛及其异构化性能[J]. 辽宁石油化工大学学报, 2018, 38(5): 9-13, 18. |
LI Hao, WANG Haiyan, SUN Na, et al. Synthesis of multistage pore SAPO-11 molecular sieve by dry gel method and its isomerization performance[J]. Journal of Liaoning Shihua University, 2018, 38(5): 9-13, 18. | |
41 | LIU Y X, ZHENG D J, YU H, et al. Rapid and green synthesis of SAPO-11 for deoxygenation of stearic acid to produce bio-diesel fractions[J]. Microporous and Mesoporous Materials, 2020, 303: 110280. |
42 | SONG C M, FENG Y, MA L L. Characterization and hydroisomerization performance of SAPO-11 molecular sieves synthesized by dry gel conversion[J]. Microporous and Mesoporous Materials, 2012, 147(1): 205-211. |
43 | GRENEV I V, GAVRILOV V Y. Silicon distribution in SAPO-11 molecular sieves: simulation and experimental adsorption study[J]. Microporous and Mesoporous Materials, 2020, 294: 109906. |
44 | LIU Y X, CUI X, HAN L, et al. Role of fluoride ions in synthesis and isomerization performance of superfine SAPO-11 zeolite[J]. Microporous and Mesoporous Materials, 2014, 198: 230-235. |
45 | YUAN Z S, CHENG Y C, MA S T, et al. Instant exactness synthesis and n-heptane hydroisomerization of high performance Ni/SAPO-11 catalyst[J]. Journal of Porous Materials, 2020, 27(5): 1455-1466. |
46 | HAN L, LIU Y X, SUBHAN F, et al. Particle effect of SAPO-11 promoter on isomerization reaction in FCC units[J]. Microporous and Mesoporous Materials, 2014, 194: 90-96. |
47 | TAO S, LI X L, GONG H M, et al. Confined-space synthesis of hierarchical MgAPO-11 molecular sieves with good hydroisomerization performance[J]. Microporous and Mesoporous Materials, 2018, 262: 182-190. |
48 | GRIFFE B, BRITO J L, SIERRAALTA A. Comparative theoretical study of Au1-3 and Cu1-3 clusters supported on SAPO-11 and their interactions with CO[J]. Journal of Computational Methods in Sciences and Engineering, 2017, 17(1): 89-96. |
49 | 刘艳惠, 任行涛, 杨光, 等. 不同晶化方式对SAPO-11分子筛的物化性质的影响[J]. 现代化工, 2014, 34(5): 100-102. |
LIU Yanhui, REN Xingtao, YANG Guang, et al. Effect of different crystallization ways on physical and chemical properties of SAPO-11[J]. Modern Chemical Industry, 2014, 34(5): 100-102. | |
50 | JIN D L, LI L Y, YE G H, et al. Manipulating the mesostructure of silicoaluminophosphate SAPO-11 via tumbling-assisted, oriented assembly crystallization: a pathway to enhance selectivity in hydroisomerization[J]. Catalysis Science & Technology, 2018, 8(19): 5044-5061. |
51 | CHEN Z, LI X Y, XU Y R, et al. Fabrication of nano-sized SAPO-11 crystals with enhanced dehydration of methanol to dimethyl ether[J]. Catalysis Communications, 2018, 103: 1-4. |
52 | LIU Y X, LIU W R, LYU Y C, et al. Intra-crystalline mesoporous SAPO-11 prepared by a grinding synthesis method as FCC promoters to increase iso-paraffin of gasoline[J]. Microporous and Mesoporous Materials, 2020, 305: 110320. |
53 | 肖寒, 于海斌, 刘红光, 等. 晶种硅烷化合成小粒径SAPO-11分子筛表征及其临氢异构化催化性能评价[J]. 石油炼制与化工, 2014, 45(1): 28-34. |
XIAO Han, YU Haibin, LIU Hongguang, et al. Hydroisomerization performance of small size SAPO-11 molecular sieve synthesized by silylanization of seed crystal[J]. Petroleum Processing and Petrochemicals, 2014, 45(1): 28-34. | |
54 | 吴海琳, 王海彦, 孙娜, 等. 醇-水体系SAPO-11分子筛的合成及其异构化性能[J]. 现代化工, 2019, 39(3): 87-90, 92. |
WU Hailin, WANG Haiyan, SUN Na, et al. Synthesis of SAPO-11 molecular sieve in alcohol-water system and its isomerization performance[J]. Modern Chemical Industry, 2019, 39(3): 87-90, 92. | |
55 | ZHANG S Z, CHEN S L, DONG P, et al. Characterization and hydroisomerization performance of SAPO-11 molecular sieves synthesized in different media[J]. Applied Catalysis A: General, 2007, 332(1): 46-55. |
56 | LIU Q Y, ZUO H L, WANG T J, et al. One-step hydrodeoxygenation of palm oil to isomerized hydrocarbon fuels over Ni supported on nano-sized SAPO-11 catalysts[J]. Applied Catalysis A: General, 2013, 468: 68-74. |
57 | JHA R, MODHERA B. Thermal gravimetric analysis study of silicoaluminophosphate synthesized from non-aqueous media for solar energy storage material[J]. Materials Today: Proceedings, 2017, 4(2): 774-778. |
58 | SHENG N, MA Y, ZHU Q W, et al. Synthesis of aluminophosphate molecular sieves in alkaline media[J]. Chemistry-A European Journal, 2020, 26(50): 11408-11411. |
59 | 张胜振, 陈胜利, 董鹏, 等. 含HF体系中SAPO-11分子筛的合成与表征[J]. 催化学报, 2006, 27(10): 868-874. |
ZHANG Shengzhen, CHEN Shengli, DONG Peng, et al. Synthesis and characterization of SAPO-11 molecular sieve in the presence of fluoride ions[J]. Chinese Journal of Catalysis, 2006, 27(10): 868-874. | |
60 | TIULIUKOVA I A, RUDINA N A, LYSIKOV A I, et al. Screw-like morphology of silicoaluminophosphate-11 (SAPO-11) crystallized in ethanol medium[J]. Materials Letters, 2018, 228: 61-64. |
61 | LIU Z, LIU L J, SONG H, et al. Hierarchical SAPO-11 preparation in the presence of glucose[J]. Materials Letters, 2015, 154: 116-119. |
62 | CHOI M, SRIVASTAVA R, RYOO R. Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks[J]. Chemical Communications, 2006(42): 4380. |
63 | GUO L, BAO X J, FAN Y, et al. Impact of cationic surfactant chain length during SAPO-11 molecular sieve synthesis on structure, acidity, and n-octane isomerization to di-methyl hexanes[J]. Journal of Catalysis, 2012, 294: 161-170. |
64 | ZHANG P, LIU H Y, YUE Y Y, et al. Direct synthesis of hierarchical SAPO-11 molecular sieve with enhanced hydroisomerization performance[J]. Fuel Processing Technology, 2018, 179: 72-85. |
65 | YANG L M, LI H W, FU J Y, et al. Synthesis of a novel nano-rod-shaped hierarchical silicoaluminophosphate SAPO-11 molecular sieve with enhanced hydroisomerization of oleic acid to iso-alkanes[J]. RSC Advances, 2019, 9(59): 34457-34464. |
66 | BLASCO T, CHICA A, CORMA A, et al. Changing the Si distribution in SAPO-11 by synthesis with surfactants improves the hydroisomerization/dewaxing properties[J]. Journal of Catalysis, 2006, 242(1): 153-161. |
67 | ZHANG F, LIU Y, SUN Q, et al. Design and preparation of efficient hydroisomerization catalysts by the formation of stable SAPO-11 molecular sieve nanosheets with 10—20nm thickness and partially blocked acidic sites[J]. Chemical Communications, 2017, 53(36): 4942-4945. |
68 | 韩磊, 崔晓, 刘欣梅. SAPO-11分子筛的粒度调控[J]. 无机化学学报, 2013, 29(3): 565-570. |
HAN Lei, CUI Xiao, LIU Xinmei. Particle size control for SAPO-11 molecular sieves[J]. Chinese Journal of Inorganic Chemistry, 2013, 29(3): 565-570. | |
69 | AGLIULLIN M R, KHAIRULLINA Z R, FAIZULLIN A V, et al. Selective crystallization of aluminophosphate molecular sieves with an AEL structure[J]. Catalysis in Industry, 2019, 11(1): 1-6. |
70 | 李山山, 王东军, 卜佳玉, 等. NiMo/SAPO-11加氢脱氧/异构双功能催化剂的制备及性能[J]. 石油化工, 2018, 47(6): 535-542. |
LI Shanshan, WANG Dongjun, BU Jiayu, et al. Preparation and performance of NiMo/SAPO-11 bifunctional catalyst for hydrodeoxygenation and isomerization[J]. Petrochemical Technology, 2018, 47(6): 535-542. | |
71 | XING G H, LIU S Y, GUAN Q X, et al. Investigation on hydroisomerization and hydrocracking of C15-C18n-alkanes utilizing a hollow tubular Ni-Mo/SAPO-11 catalyst with high selectivity of jet fuel[J]. Catalysis Today, 2019, 330: 109-116. |
72 | 吴海琳, 孙娜, 王海彦, 等. 陈化温度对导向剂法制备SAPO-11分子筛及异构化性能的影响[J]. 人工晶体学报, 2019, 48(2): 307-311. |
WU Hailin, SUN Na, WANG Haiyan, et al. Effect of aging temperatures on synthesis and isomerization properties of SAPO-11 molecular sieve[J]. Journal of Synthetic Crystals, 2019, 48(2): 307-311. | |
73 | LI L, SHEN K X, HUANG X, et al. SAPO-11 with preferential growth along the a-direction as an improved active catalyst in long-alkane isomerization reaction[J]. Microporous and Mesoporous Materials, 2021, 313: 110827. |
74 | LYU Y C, YU Z M, YANG Y, et al. Metal and acid sites instantaneously prepared over Ni/SAPO-11 bifunctional catalyst[J]. Journal of Catalysis, 2019, 374: 208-216. |
75 | AGLIULLIN M R, FAIZULLIN A V, KHAZIPOVA A N, et al. Synthesis of fine-crystalline SAPO-11 zeolites and analysis of their physicochemical and catalytic properties[J]. Kinetics and Catalysis, 2020, 61(4): 654-662. |
[1] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[2] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[3] | 赵巍, 赵德银, 李世瀚, 刘洪达, 孙进, 郭艳秋. 三嗪型天然气管道缓蚀型减阻剂合成与应用[J]. 化工进展, 2023, 42(S1): 391-399. |
[4] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[5] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[6] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[7] | 许中硕, 周盼盼, 王宇晖, 黄威, 宋新山. 硫铁矿介导的自养反硝化研究进展[J]. 化工进展, 2023, 42(9): 4863-4871. |
[8] | 陈翔宇, 卞春林, 肖本益. 温度分级厌氧消化工艺的研究进展[J]. 化工进展, 2023, 42(9): 4872-4881. |
[9] | 王晓晗, 周亚松, 于志庆, 魏强, 孙劲晓, 姜鹏. 不同晶粒尺寸Y分子筛的合成及其加氢裂化反应性能[J]. 化工进展, 2023, 42(8): 4283-4295. |
[10] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[11] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[12] | 杨子育, 朱玲, 王文龙, 于超凡, 桑义敏. 阴燃法处理含油污泥的研究及应用进展[J]. 化工进展, 2023, 42(7): 3760-3769. |
[13] | 韩恒文, 韩伟, 李明丰. 烯烃水合反应工艺与催化剂研究进展[J]. 化工进展, 2023, 42(7): 3489-3500. |
[14] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[15] | 王帅旗, 王从新, 王学林, 田志坚. 无溶剂快速合成ZSM-12分子筛[J]. 化工进展, 2023, 42(7): 3561-3571. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |