化工进展 ›› 2021, Vol. 40 ›› Issue (1): 463-476.DOI: 10.16085/j.issn.1000-6613.2020-0474
杨建成1,2(), 王诗宁1, 杨硕1, 杨明涛1, 沈伯雄1,2(), 张笑1
收稿日期:
2020-03-27
出版日期:
2021-01-05
发布日期:
2021-01-12
通讯作者:
沈伯雄
作者简介:
杨建成(1981—),男,博士,硕士生导师,研究方向为烟气污染控制理论及技术。E-mail:基金资助:
Jiancheng YANG1,2(), Shining WANG1, Shuo YANG1, Mingtao YANG1, Boxiong SHEN1,2(), Xiao ZHANG1
Received:
2020-03-27
Online:
2021-01-05
Published:
2021-01-12
Contact:
Boxiong SHEN
摘要:
挥发性有机化合物(VOCs)对环境和人体健康均具有严重危害,而吸附法作为有效的VOCs脱除技术已得到广泛应用。在众多吸附剂中,金属有机框架材料(MOFs)以其极大的比表面积、可调节的孔径和可修饰性等优势,在VOCs脱除领域展示出良好的应用前景。本文首先介绍了在吸附过程中涉及到的吸附机理,从影响因素角度回顾了近年MOFs在VOCs吸附方面的研究进展。按照吸附质与吸附剂的几何结构、改性官能团、MOFs的金属位点、酸碱、水和碳材料复合等多个方面剖析了吸附过程中的影响因素,并将其分为内部影响因素和外部影响因素两大部分。针对影响因素归纳了提高吸附量的主要方法,并对MOFs吸附VOCs的吸附量进行了汇总。最后总结并展望了未来应用MOFs吸附VOCs的研究发展方向,期望为深入研究VOCs脱除技术提供有价值的参考。
中图分类号:
杨建成, 王诗宁, 杨硕, 杨明涛, 沈伯雄, 张笑. 金属有机框架材料吸附VOCs影响因素研究进展[J]. 化工进展, 2021, 40(1): 463-476.
Jiancheng YANG, Shining WANG, Shuo YANG, Mingtao YANG, Boxiong SHEN, Xiao ZHANG. Influence factors of VOCs adsorption on metal-organic frameworks: the reviews[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 463-476.
吸附剂 | 吸附质 | 相互作用力 | 参考文献 |
---|---|---|---|
MIL-101 | 苯 | π-π | [ |
甲苯 | π-π、阳离子-π | [ | |
丙酮 | 静电力、范德华力 | [ | |
HKUST-1 | 丙酮 | 静电力、范德华力 | [ |
苯 | π-π | [ | |
HKUST-1/ZSM-5复合材料 | 苯 | 阳离子-π | [ |
UiO-66(NH2) | 甲苯 | 弱氢键 | [ |
ZIF-67 | 甲苯 | 弱氢键 | [ |
CMP-200-In/Mg | CH4、C2H4 | 范德华力 | [ |
C2H3Cl、C2H2Cl2、CH2Cl2、CHCl3 | 卤素键、静电力 | [ | |
MOF-177 | 苯 | π-π | [ |
丙酮 | 静电力、范德华力 | [ |
表1 不同MOFs材料与吸附剂间主要的相互作用力
吸附剂 | 吸附质 | 相互作用力 | 参考文献 |
---|---|---|---|
MIL-101 | 苯 | π-π | [ |
甲苯 | π-π、阳离子-π | [ | |
丙酮 | 静电力、范德华力 | [ | |
HKUST-1 | 丙酮 | 静电力、范德华力 | [ |
苯 | π-π | [ | |
HKUST-1/ZSM-5复合材料 | 苯 | 阳离子-π | [ |
UiO-66(NH2) | 甲苯 | 弱氢键 | [ |
ZIF-67 | 甲苯 | 弱氢键 | [ |
CMP-200-In/Mg | CH4、C2H4 | 范德华力 | [ |
C2H3Cl、C2H2Cl2、CH2Cl2、CHCl3 | 卤素键、静电力 | [ | |
MOF-177 | 苯 | π-π | [ |
丙酮 | 静电力、范德华力 | [ |
吸附剂 | BET比表面积/m2·g-1 | Langmuir比表面积/m2·g-1 | 孔容积/cm3·g-1 | 孔尺寸/? |
---|---|---|---|---|
HKUST-1 | 1568.5 | 2081.4 | 0.75 | 9~10 |
MOF-177 | 2970 | 4170 | 1.11 | 9.4 |
MIL-101 | 2925 | 4977 | 1.56 | 笼子30~40,窗口12~16 |
BUT-66 | 1096 | 1291 | 0.46 | 孔道6,窗口4 |
BUT-67 | 984 | 1141 | 0.41 | 孔道7,窗口5.5 |
AC | 1600 | — | 2 | 4~4.6 |
PAF-1 | 2380 | 3209 | 1.99 | 7~12(三维孔) |
ZIF-8 | 1510 | 2008 | 0.85 | 笼子12.5,窗口3.3 |
HZSM-5 | 550 | — | 0.2 | — |
Carboxen 1000 | 1017 | 1213 | 0.61 | 10~12 |
表2 MOFs和几种其他典型吸附剂的几何性质
吸附剂 | BET比表面积/m2·g-1 | Langmuir比表面积/m2·g-1 | 孔容积/cm3·g-1 | 孔尺寸/? |
---|---|---|---|---|
HKUST-1 | 1568.5 | 2081.4 | 0.75 | 9~10 |
MOF-177 | 2970 | 4170 | 1.11 | 9.4 |
MIL-101 | 2925 | 4977 | 1.56 | 笼子30~40,窗口12~16 |
BUT-66 | 1096 | 1291 | 0.46 | 孔道6,窗口4 |
BUT-67 | 984 | 1141 | 0.41 | 孔道7,窗口5.5 |
AC | 1600 | — | 2 | 4~4.6 |
PAF-1 | 2380 | 3209 | 1.99 | 7~12(三维孔) |
ZIF-8 | 1510 | 2008 | 0.85 | 笼子12.5,窗口3.3 |
HZSM-5 | 550 | — | 0.2 | — |
Carboxen 1000 | 1017 | 1213 | 0.61 | 10~12 |
吸附剂 | 吸附质 | 吸附量/mmol·g-1 | 温度/K | 压力/kPa | 参考文献 |
---|---|---|---|---|---|
MIL-Z1 | 苯① | 3.35 | 298 | 1 | [ |
苯② | 2.94 | 298 | 1 | [ | |
苯③ | 2.63 | 298 | 1 | [ | |
HKUST-1 | 苯 | 9.1 | 298 | 0.05 | [ |
苯④ | 6.55 | 308 | 0.15 | [ | |
苯 | 9.97 | 298 | 0.0521 | [ | |
水 | 26~31 | 298 | 0.25-0.3 | [ | |
甲苯 | 1.72 | 293 | 101.3 | [ | |
甲苯 | 6.6 | 298 | P/P0>0.1 | [ | |
BUT-66 | 苯 | 2.54 | 298 | 0.012 | [ |
Carboxen 1000 | 苯 | 2.27 | 298 | 0.012 | [ |
PDVB | 甲苯 | 5.215 | 298 | 101.3 | [ |
乙酸乙酯 | 1.31 | 298 | 101.3 | [ | |
ZIF-8/PDVB | 甲苯 | 5.9707 | 298 | 101.3 | [ |
乙酸乙酯 | 1.668 | 298 | 101.3 | [ | |
ZIF-8 | 甲苯 | 0.84 | 298 | 101.3 | [ |
乙酸乙酯 | 1.1 | 298 | 101.3 | [ | |
苯 | 0.03 | 298 | 0.012 | [ | |
MCM-41 | 苯 | 10.49 | 298 | 10 | [ |
MIL-101 | 苯 | 15.84 | 298 | 10 | [ |
对二甲苯 | 10.9 | 288 | 0.6 | [ | |
甲苯 | 0.626 | 298 | 101.3 | [ | |
甲苯 | 22.96 | 298 | 101.3 | [ | |
甲苯 | 15.1 | 298 | P/P0>0.1 | [ | |
PAF-1 | 苯 | 20.59 | 298 | 10 | [ |
CPM-200-In/Mg | 甲醛 | 13 | 293 | 100 | [ |
CPM-200-In/Mg-NH2(site2) | 甲醛 | 13.67 | 298 | 100 | [ |
CPM-5 | 甲苯 | 4.22 | 298 | 101.3 | [ |
438-MOF | 甲醛 | 7.333 | 293 | 100 | [ |
活性炭 | 甲醛 | 0.3 | 293 | 100 | [ |
MOF-177 | 丙酮 | 10.155 | 298 | 100 | [ |
苯 | 10.256 | 298 | 100 | [ | |
甲苯 | 6.359 | 298 | 100 | [ | |
乙苯 | 2.557 | 298 | 100 | [ | |
二甲苯 | 2.01~2.557 | 298 | 100 | [ | |
苯乙烯 | 2.25 | 298 | 100 | [ | |
MIL-100 | 甲烷 | 0.36 | 298 | 100 | [ |
乙烷 | 2.22 | 298 | 100 | [ | |
丙烷 | 6.78 | 298 | 100 | [ | |
UiO-66 | 甲苯 | 1.8 | 293 | 101.3 | [ |
二氯甲烷 | 6.0 | 298 | 44 | [ | |
UiO-66(NH2) | 甲苯 | 2.739 | 293 | 101.3 | [ |
ZIF-67 | 甲苯 | 2.43 | 293 | 101.3 | [ |
4A Zeolite | 甲苯 | 0.334 | 293 | 101.3 | [ |
颗粒活性炭 | 二甲苯 | 1.88 | 298 | 101.3 | [ |
UL-ZSM5 | 二甲苯 | 3.5 | 303 | 0.6 | [ |
MIL-53 | 甲苯 | 7.93 | 298 | 101.3 | [ |
表3 MOFs与其他多孔材料吸附VOCs吸附量
吸附剂 | 吸附质 | 吸附量/mmol·g-1 | 温度/K | 压力/kPa | 参考文献 |
---|---|---|---|---|---|
MIL-Z1 | 苯① | 3.35 | 298 | 1 | [ |
苯② | 2.94 | 298 | 1 | [ | |
苯③ | 2.63 | 298 | 1 | [ | |
HKUST-1 | 苯 | 9.1 | 298 | 0.05 | [ |
苯④ | 6.55 | 308 | 0.15 | [ | |
苯 | 9.97 | 298 | 0.0521 | [ | |
水 | 26~31 | 298 | 0.25-0.3 | [ | |
甲苯 | 1.72 | 293 | 101.3 | [ | |
甲苯 | 6.6 | 298 | P/P0>0.1 | [ | |
BUT-66 | 苯 | 2.54 | 298 | 0.012 | [ |
Carboxen 1000 | 苯 | 2.27 | 298 | 0.012 | [ |
PDVB | 甲苯 | 5.215 | 298 | 101.3 | [ |
乙酸乙酯 | 1.31 | 298 | 101.3 | [ | |
ZIF-8/PDVB | 甲苯 | 5.9707 | 298 | 101.3 | [ |
乙酸乙酯 | 1.668 | 298 | 101.3 | [ | |
ZIF-8 | 甲苯 | 0.84 | 298 | 101.3 | [ |
乙酸乙酯 | 1.1 | 298 | 101.3 | [ | |
苯 | 0.03 | 298 | 0.012 | [ | |
MCM-41 | 苯 | 10.49 | 298 | 10 | [ |
MIL-101 | 苯 | 15.84 | 298 | 10 | [ |
对二甲苯 | 10.9 | 288 | 0.6 | [ | |
甲苯 | 0.626 | 298 | 101.3 | [ | |
甲苯 | 22.96 | 298 | 101.3 | [ | |
甲苯 | 15.1 | 298 | P/P0>0.1 | [ | |
PAF-1 | 苯 | 20.59 | 298 | 10 | [ |
CPM-200-In/Mg | 甲醛 | 13 | 293 | 100 | [ |
CPM-200-In/Mg-NH2(site2) | 甲醛 | 13.67 | 298 | 100 | [ |
CPM-5 | 甲苯 | 4.22 | 298 | 101.3 | [ |
438-MOF | 甲醛 | 7.333 | 293 | 100 | [ |
活性炭 | 甲醛 | 0.3 | 293 | 100 | [ |
MOF-177 | 丙酮 | 10.155 | 298 | 100 | [ |
苯 | 10.256 | 298 | 100 | [ | |
甲苯 | 6.359 | 298 | 100 | [ | |
乙苯 | 2.557 | 298 | 100 | [ | |
二甲苯 | 2.01~2.557 | 298 | 100 | [ | |
苯乙烯 | 2.25 | 298 | 100 | [ | |
MIL-100 | 甲烷 | 0.36 | 298 | 100 | [ |
乙烷 | 2.22 | 298 | 100 | [ | |
丙烷 | 6.78 | 298 | 100 | [ | |
UiO-66 | 甲苯 | 1.8 | 293 | 101.3 | [ |
二氯甲烷 | 6.0 | 298 | 44 | [ | |
UiO-66(NH2) | 甲苯 | 2.739 | 293 | 101.3 | [ |
ZIF-67 | 甲苯 | 2.43 | 293 | 101.3 | [ |
4A Zeolite | 甲苯 | 0.334 | 293 | 101.3 | [ |
颗粒活性炭 | 二甲苯 | 1.88 | 298 | 101.3 | [ |
UL-ZSM5 | 二甲苯 | 3.5 | 303 | 0.6 | [ |
MIL-53 | 甲苯 | 7.93 | 298 | 101.3 | [ |
复合材料 | 组合 | 吸附质 | 吸附量/mmol·g-1 | 温度/K | 参考文献 |
---|---|---|---|---|---|
MIL-101@GO | MIL-101与氧化石墨 | 正戊烷 | 13.4 | 298 | [ |
正己烷 | 11.9 | 298 | [ | ||
正庚烷 | 10.7 | 298 | [ | ||
正辛烷 | 9.3 | 298 | [ | ||
丙酮 | 20.1 | 288 | [ | ||
MIL-101/TC-40 | MIL-101与烟草茎 | 丙酮 | 19.58 | 288 | [ |
MIL-101/TC-30 | MIL-101与烟草茎 | 丙酮 | 19.33 | 288 | [ |
MC-500-6 | HKUST-1与葡萄糖 | 苯 | 12.8 | 298 | [ |
KC-SB | MOF-5与葡萄糖、蔗糖 | 正己烷 | 10 | 298 | [ |
表4 复合材料吸附VOCs吸附量
复合材料 | 组合 | 吸附质 | 吸附量/mmol·g-1 | 温度/K | 参考文献 |
---|---|---|---|---|---|
MIL-101@GO | MIL-101与氧化石墨 | 正戊烷 | 13.4 | 298 | [ |
正己烷 | 11.9 | 298 | [ | ||
正庚烷 | 10.7 | 298 | [ | ||
正辛烷 | 9.3 | 298 | [ | ||
丙酮 | 20.1 | 288 | [ | ||
MIL-101/TC-40 | MIL-101与烟草茎 | 丙酮 | 19.58 | 288 | [ |
MIL-101/TC-30 | MIL-101与烟草茎 | 丙酮 | 19.33 | 288 | [ |
MC-500-6 | HKUST-1与葡萄糖 | 苯 | 12.8 | 298 | [ |
KC-SB | MOF-5与葡萄糖、蔗糖 | 正己烷 | 10 | 298 | [ |
1 | WORLD HEALTH O. Indoor air quality: organic pollutants[J]. Environmental Technology Letters, 1989, 10(9): 855-858. |
2 | ZHANG X, XUE Z, LI H, et al. Ambient volatile organic compounds pollution in China[J]. Journal of Environmental Sciences, 2017, 55: 69-75. |
3 | ZHANG X, GAO B, CREAMER A E, et al. Adsorption of VOCs onto engineered carbon materials: a review[J]. Journal of Hazardous Materials, 2017, 338: 102-123. |
4 | ZHENG C H, SHEN J L, ZHANG Y X, et al. Quantitative assessment of industrial VOC emissions in China: historical trend, spatial distribution, uncertainties, and projection[J]. Atmospheric Environment, 2017, 150: 116-125. |
5 | WEI W, WANG S X, HAO J M, et al. Trends of chemical speciation profiles of anthropogenic volatile organic compounds emissions in China, 2005—2020 [J]. Frontiers of Environmental Science & Engineering, 2012, 8(1): 27-41. |
6 | 杨新兴, 李世莲, 尉鹏, 等. 环境中的VOCs及其危害[J]. 前沿科学, 2013, 7(28): 21-35. |
YANG X X, LI S L, WEI P, et al. Volatile organic compounds in the environment and their harms[J]. Frontier Science, 2013, 7(28): 21-35. | |
7 | BERNSTEIN J A, ALEXIS N, BACCHUS H, et al. The health effects of non-industrial indoor air pollution[J]. The Journal of Allergy and Clinical Immunology, 2008, 121(3): 585-591. |
8 | KAMAL M S, RAZZAK S A, HOSSAIN M M. Catalytic oxidation of volatile organic compounds (VOCs)—A review[J]. Atmospheric Environment, 2016, 140:117-134. |
9 | XU Z N, HUANG X, NIE W, et al. Influence of synoptic condition and holiday effects on VOCs and ozone production in the Yangtze River delta region, China[J]. Atmospheric Environment, 2017, 168: 112-124. |
10 | EHN M, THORNTON J A, KLEIST E, et al. A large source of low-volatility secondary organic aerosol[J]. Nature, 2014, 506(7489): 476-479. |
11 | ZAITAN H, MANERO M H, VALDES H. Application of high silica zeolite ZSM-5 in a hybrid treatment process based on sequential adsorption and ozonation for VOCs elimination[J]. Journal of Environmental Sciences, 2016, 41: 59-68. |
12 | BLÄKER C, PASEL C, LUCKAS M, et al. Investigation of load-dependent heat of adsorption of alkanes and alkenes on zeolites and activated carbon[J]. Microporous and Mesoporous Materials, 2017, 241: 1-10. |
13 | 吕双春, 葛云丽, 赵倩, 等. 高硅分子筛的合成及其在VOCs吸附去除领域的应用[J]. 环境化学, 2017, 36(7): 1492-1505. |
LYU S C, GE Y L, ZHAO Q, et al. Synthesis of high silica molecular sieves and their application in VOCs adsorption removal[J]. Environmental Chemistry, 2017, 36(7): 1492-1505. | |
14 | BAUR G B, BESWICK O, SPRING J, et al. Activated carbon fibers for efficient VOC removal from diluted streams: the role of surface functionalities[J]. Adsorption, 2015, 21(4): 255-264. |
15 | BAUR G B, YURANOV I, RENKEN A, et al. Activated carbon fibers for efficient VOC removal from diluted streams: the role of surface morphology[J]. Adsorption, 2015, 21(6/7): 479-488. |
16 | LI X Q, ZHANG L, YANG Z Q, et al. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: a review[J]. Separation and Purification Technology, 2020, 235: 116213. |
17 | TWUMASI E, FORSLUND M, NORBERG P, et al. Carbon-silica composites prepared by the precipitation method. Effect of the synthesis parameters on textural characteristics and toluene dynamic adsorption[J]. Journal of Porous Materials, 2011, 19(3): 333-343. |
18 | 胡莹. 活性炭再生技术研究与发展[J]. 煤炭与化工, 2018, 41(4): 136-139. |
HU Y. Research and development on activated carbon regeneration technologies[J]. Coal and Chemical Industry, 2018, 41(4): 136-139. | |
19 | 李莹, 张红星, 闫柯乐, 等. MOFs材料对挥发性有机物VOCs的吸附研究[J]. 广州化工, 2016, 44(8): 27-29. |
LI Y, ZHANG H X, YAN K L, et al. Research progress on VOCs adsorption of metal-organic frameworks (MOFs)[J]. Guangzhou Chemical Industry, 2016, 44(8): 27-29. | |
20 | FARHA O K, ERYAZICI I, JEONG N C, et al. Metal-organic framework materials with ultrahigh surface areas: is the sky the limit?[J]. Journal of the American Chemical Society, 2012, 134(36): 15016-15021. |
21 | HK C, DY S P, JAHEON K, et al. A route to high surface area, porosity and inclusion of large molecules in crystals[J]. Nature, 2004, 427(6974): 523-527. |
22 | STEPHEN R C, ANTEK G F, ADMA J M. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores[J]. Journal of the American Chemical Society, 2008, 130(33): 10870-10871. |
23 | FRANCISCO D L, ANA M C, SOFIA C. Selective separation of BTEX mixtures using metal-organic frameworks[J]. The Journal of Physical Chemistry C, 2014, 118(24): 13126-13136. |
24 | EDDAOUDII M, LI H, YAGHI O M. Highly porous and stable metal organic frameworks structure[J]. Journal of the American Chemical Society, 2000, 122(7): 1391-1397. |
25 | YANG K, SUN Q, XUE F, et al. Adsorption of volatile organic compounds by metal-organic frameworks MIL-101: influence of molecular size and shape[J]. Journal of Hazardous Materials, 2011, 195: 124-131. |
26 | VELLINGIRI K, KUMAR P, DEEP A, et al. Metal-organic frameworks for the adsorption of gaseous toluene under ambient temperature and pressure[J]. Chemical Engineering Journal, 2017, 307: 1116-1126. |
27 | BRITT D, TRANCHEMONTAGNE D, YAGHI O M. Metal-organic frameworks with high capacity and selectivity for harmful gases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(33): 11623-11627. |
28 | XIE L H, LIU X, HE L, et al. Metal-organic frameworks for the capture of trace aromatic volatile organic compounds[J]. Chem., 2018, 4(8): 1911-1927. |
29 | MA S, ZHOU H C. Gas storage in porous metal-organic frameworks for clean energy applications[J]. Chem. Commun., 2010, 46(1): 44-53. |
30 | 张景梅, 高歌. 金属有机框架多孔材料(MOFs)的制备及其应用研究[J]. 现代化工, 2018, 38(11): 53-57. |
ZHANG J M, GAO G. Preparation and application of metal-organic frameworks(MOFs) porous materials[J]. Modern Chemical Industry, 2018, 38(11): 53-57. | |
31 | WANG B, XIE L H, WANG X, et al. Applications of metal-organic frameworks for green energy and environment: new advances in adsorptive gas separation, storage and removal[J]. Green Energy & Environment, 2018, 3(3): 191-228. |
32 | HUANG C, SONG M, GU Z, et al. Probing the adsorption characteristic of metal-organic framework MIL-101 for volatile organic compounds by quartz crystal microbalance[J]. Environmental Science & Technology, 2011, 45(10): 4490-4496. |
33 | LIU X L, CHEN G H, WANG X J, et al. Theoretical study on the gas adsorption capacity and selectivity of CPM-200-In/Mg and CPM-200-In/Mg-X (-X=-NH2, -OH, -N, -F)[J]. Physical Chemistry Chemical Physics, 2017, 19(44): 29963-29974. |
34 | 王曦, 麦裕良, 张俊杰, 等. MOFs材料对气态硫化合物的吸附研究进展[J]. 现代化工, 2018, 38(7): 62-66. |
WANG X, MAI Y L, ZHANG J J, et al. Research progress on adsorption of gaseous sulfur compounds by metal-organic frameworks[J]. Modern Chemical Industry, 2018, 38(7): 62-66. | |
35 | JIANG J, SANDLER S I. Monte carlo simulation for the adsorption and separation of linear and branched alkanes in IRMOF-1[J]. Langmuir, 2006, 22:5702-5707. |
36 | YANG K, XUE F, SUN Q, et al. Adsorption of volatile organic compounds by metal-organic frameworks MOF-177[J]. Journal of Environmental Chemical Engineering, 2013, 1(4): 713-718. |
37 | LOW J J, BENIN A I, JAKUBCZAK P, et al. Virtual high throughput screening confirmed experimentally, porous coordination polymer hydration[J]. American Chemical Society, 2009, 131: 15834-15842. |
38 | ZHAO Z, WANG S, YANG Y, et al. Competitive adsorption and selectivity of benzene and water vapor on the microporous metal organic frameworks (HKUST-1)[J]. Chemical Engineering Journal, 2015, 259: 79-89. |
39 | BAHRI M, HAGHIGHAT F, KAZEMIAN H, et al. A comparative study on metal organic frameworks for indoor environment application: adsorption evaluation[J]. Chemical Engineering Journal, 2017, 313: 711-723. |
40 | TRENS P, BELARBI H, SHEPHERD C, et al. Coadsorption of n-hexane and benzene vapors onto the chromium terephthalate-based porous material MIL-101(Cr) an experimental and computational study[J]. The Journal of Physical Chemistry C, 2012, 116(49): 25824-25831. |
41 | ZHAO Z, LI X, LI Z. Adsorption equilibrium and kinetics of p-xylene on chromium-based metal organic framework MIL-101[J]. Chemical Engineering Journal, 2011, 173(1): 150-157. |
42 | SAINI V K, PIRES J. Development of metal organic fromwork-199 immobilized zeolite foam for adsorption of common indoor VOCs[J]. Journal of Environmental Sciences, 2017, 55: 321-330. |
43 | YUAN B, WANG X, ZHOU X, et al. Novel room-temperature synthesis of MIL-100(Fe) and its excellent adsorption performances for separation of light hydrocarbons[J]. Chemical Engineering Journal, 2019, 355: 679-686. |
44 | SHAFIEI M, ALIVAND M S, RASHIDI A, et al. Synthesis and adsorption performance of a modified micro-mesoporous MIL-101(Cr) for VOCs removal at ambient conditions[J]. Chemical Engineering Journal, 2018, 341: 164-174. |
45 | XU F, XIAN S, XIA Q, et al. Effect of textural properties on the adsorption and desorption of toluene on the metal-organic frameworks HKUST-1 and MIL-101[J]. Adsorption Science & Technology, 2013, 31(4): 325-339. |
46 | 陈建东, 许伟城, 吴军良, 等. 金属有机框架ZIF-8/聚二乙烯基苯纳米复合材料的合成及其吸附VOCs的性能[J]. 环境科学学报, 2017, 37(5): 1877-1883. |
CHEN J D, XU W C, WU J L, et al. Synthesis of metal-organic framework ZIF-8/polydivinylbenzene nanohybrid composite and its adsorption property of VOCs[J]. Acta Scientiae Circumstantiae, 2017, 37(5): 1877-1883. | |
47 | GREATHOUSE J A, OCKWIG N W, CRISCENTI L J, et al. Computational screening of metal-organic frameworks for large-molecule chemical sensing[J]. Physical Chemistry Chemical Physics, 2010, 12(39): 12621-12629. |
48 | HORCAJADA P, SERRE C, MAURIN G, et al. Flexible porous metal-organic frameworks for a controlled drug delivery[J]. Journal of the American Chemical Society, 2008, 130: 6774-6780. |
49 | ZHU Meiping HU P, TONG Z, et al. Enhanced hydrophobic MIL(Cr) metal-organic framework with high capacity and selectivity for benzene VOCs capture from high humid air[J]. Chemical Engineering Journal, 2017, 313: 1122-1131. |
50 | ZHOU L, ZHANG X, CHEN Y. Modulated synthesis of zirconium metal–organic framework UiO-66 with enhanced dichloromethane adsorption capacity[J]. Materials Letters, 2017, 197: 167-170. |
51 | LI L, WANG S B, FENG Q C, et al. Removal of o-xylene from off-gas by a combination of bioreactor and adsorption[J]. Asia-Pacific Journal of Chemical Engineering, 2008, 3(5): 489-496. |
52 | HUANG Q, VINH-THANG H, MALEKIAN A, et al. Adsorption of n-heptane, toluene and o-xylene on mesoporous UL-ZSM5 materials[J]. Microporous and Mesoporous Materials, 2006, 87(3): 224-234. |
53 | 吴永标, 刘德飞, 吴颖, 等. MOF-5上甲醇、乙醛和丙酮吸附机理的密度泛函理论研究[J]. 化工学报, 2013, 64(8): 2891-2897. |
WU Y B, LIU D F, WU Y, et al. Adsorpation mechanism of methanol, acetaldehyde and acetone on MOF-5 with density functional theory[J]. CIESC Journal, 2013, 64(8): 2891-2897. | |
54 | MA F J, LIU S X, LIANG D D, et al. Adsorption of volatile organic compounds in porous metal-organic frameworks functionalized by polyoxometalates[J]. Journal of Solid State Chemistry, 2011, 184(11): 3034-3039. |
55 | 李竞草, 吴冬霞, 常丽萍, 等. 疏水性金属-有机骨架材料的研究进展[J]. 化工进展, 2020, 39(1): 224-232. |
LI J C, WU D X, CHANG L P, et al. Research progress of hydrophobic metal-organic framework materials[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 224-232. | |
56 | XIAN S K, YU Y, XIAO J, et al. Competitive adsorption of water vapor with VOCs dichloroethane, ethyl acetate and benzene on MIL-101(Cr) in humid atmosphere[J]. Royal Socirty of Chemistry Advances, 2015, 5(3): 1827-1834. |
57 | KALMUTZKI M J, DIERCKS C S, YAGHI O M. Metal-organic frameworks for water harvesting from air[J]. Advanced Materials, 2018, 30(37): 1704304. |
58 | CHEN T H, POPOV I, ZENASNI O, et al. Superhydrophobic perfluorinated metal-organic frameworks[J]. Chemical Communications, 2013, 49(61): 6846-6848. |
59 | BELLAROSA L, GUTIERREZ-SEVILLANO J J, CALERO S, et al. How ligands improve the hydrothermal stability and affect the adsorption in the IRMOF family[J]. Physical Chemistry Chemical Physics, 2013, 15(40): 17696-17704. |
60 | NGUYEN J G, COHEN S M. Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification[J]. Journal of the American Chemical Society, 2010, 132: 4560-4561. |
61 | GAO M L, ZHAO S Y, CHEN Z Y, et al. Superhydrophobic/superoleophilic MOF composites for oil-water separation[J]. Inorganic Chemistry, 2019, 58(4): 2261-2264. |
62 | ZHANG L, HU H Y. A systematic investigation of decomposition of nano Zn4O(C8H4O4)3 metal-organic framework[J]. The Journal of Physical Chemistry C, 2010, 114(6): 2566-2572. |
63 | JIAO L, SEOW J Y R, SKINNER W S, et al. Metal-organic frameworks: structures and functional applications[J]. Materials Today, 2019, 27: 43-68. |
64 | CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851. |
65 | FENG D, GU Z Y, LI J R, et al. Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts[J]. Angewandte Chemie: International Ed., 2012, 51(41): 10307-10310. |
66 | LYU X L, WANG K, WANG B, et al. A base-resistant metalloporphyrin metal-organic framework for C-H bond halogenation[J]. Journal of the American Chemical Society, 2017, 139(1): 211-217. |
67 | KANG I J, KHAN N A, HAQUE E, et al. Chemical and thermal stability of isotypic metal-organic frameworks: effect of metal ions[J]. Chemistry, 2011, 17(23): 6437-6442. |
68 | WANG W J, LI Z, ZHANG S H, et al. From porous aromatic frameworks to nanoporous carbons: a novel solid-phase microextraction coating[J]. Talanta, 2018, 190: 327-334. |
69 | SUN X J, LI Y J, XI H X, et al. Adsorption performance of a MIL-101(Cr)/graphite oxide composite for a series of n-alkanes[J]. Royal Socirty of Chemistry Advances, 2014, 4(99): 56216-56223. |
70 | ZHOU X, HUANG W Y, SHI J, et al. A novel MOF/graphene oxide composite GrO@MIL-101 with high adsorption capacity for acetone[J]. Journal of Materials Chemistry A, 2014, 2(13): 4722-4730. |
71 | SUN X J, XIA Q B, ZHAO Z X, et al. Synthesis and adsorption performance of MIL-101(Cr)/graphite oxide composites with high capacities of n-hexane[J]. Chemical Engineering Journal, 2014, 239: 226-232. |
72 | LI D H, LI L Q, CHEN R F, et al. A MIL-101 composite doped with porous carbon from tobacco stem for enhanced acetone uptake at normal temperature[J]. Industrial & Engineering Chemistry Research, 2018, 57(18): 6226-6235. |
73 | WANG C P, YIN H, TIAN P J, et al. Remarkable adsorption performance of MOF-199 derived porous carbons for benzene vapor[J]. Environmental Research, 2020, 184: 109323. |
74 | SUN X J, WU T T, YAN Z M, et al. Novel MOF-5 derived porous carbons as excellent adsorption materials for n-hexane[J]. Journal of Solid State Chemistry, 2019, 271: 354-360. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[3] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[4] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[5] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[6] | 张婷婷, 左旭乾, 田玲娣, 王世猛. 化工园区挥发性有机物排放清单及因子库构建方法[J]. 化工进展, 2023, 42(S1): 549-557. |
[7] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[10] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[11] | 许中硕, 周盼盼, 王宇晖, 黄威, 宋新山. 硫铁矿介导的自养反硝化研究进展[J]. 化工进展, 2023, 42(9): 4863-4871. |
[12] | 陈翔宇, 卞春林, 肖本益. 温度分级厌氧消化工艺的研究进展[J]. 化工进展, 2023, 42(9): 4872-4881. |
[13] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[14] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[15] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |