化工进展 ›› 2021, Vol. 40 ›› Issue (1): 477-486.DOI: 10.16085/j.issn.1000-6613.2020-0508
郦瑜杰1(), 张迪2, 刘陈2, 王志梅1, 廖力夫2, 肖锡林1,3()
收稿日期:
2020-04-03
出版日期:
2021-01-05
发布日期:
2021-01-12
通讯作者:
肖锡林
作者简介:
郦瑜杰(1997—),男,硕士研究生,研究方向为环境分析检测。E-mail:基金资助:
Yujie LI1(), Di ZHANG2, Chen LIU2, Zhimei WANG1, Lifu LIAO2, Xilin XIAO1,3()
Received:
2020-04-03
Online:
2021-01-05
Published:
2021-01-12
Contact:
Xilin XIAO
摘要:
随着全球变暖和能源问题的出现,对于核能这种清洁能源的开发和应用越发深入和广泛。铀作为一种核原料非常宝贵,然而以铀为主的核废料因其高放射性和生物毒性对人类的生命健康产生了威胁,因此如何实现对其痕量检测成为了人们关注的焦点。光化学传感器由于分析迅速、灵敏度高,能够及时检测排查铀等放射性元素。因此,研发拥有高选择性、高灵敏度和可重复使用的铀酰光化学检测传感器就显得尤为重要。本文主要阐述了近年来基于光化学技术的铀酰检测传感器的前沿进展,其中光化学技术主要包括紫外可见分光光度法(UV-vis)、荧光(fluorescence)分光光度法、表面增强拉曼散射法(SERS)等,并讨论了其各自检测特性,分析了优势与不足之处,初步探讨了光化学传感技术测铀的发展趋势及方向,为进一步设计铀酰光化学检测传感器提供了参考。
中图分类号:
郦瑜杰, 张迪, 刘陈, 王志梅, 廖力夫, 肖锡林. 用于铀酰离子检测的光化学分析传感器研究新进展[J]. 化工进展, 2021, 40(1): 477-486.
Yujie LI, Di ZHANG, Chen LIU, Zhimei WANG, Lifu LIAO, Xilin XIAO. Research progress of photochemical analysis sensors for uranyl ion detection[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 477-486.
方法名称 | 设备 | 线性范围 | 检出限 | 时间 | 回收率 | 参考文献 |
---|---|---|---|---|---|---|
磺基-Salophen | 荧光 | 0.03~4μmol·L-1 | 0.015μmol·L-1 | — | 97%~104% | [ |
SDS包裹的uranyl-salophen配合物 | 荧光 | 0.005~3.5μmol·L-1 | 0.003μmol·L-1 | 20min | 96%~103% | [ |
荧光传感器(TPE-BSA) | 荧光 | 0~0.3μmol·L-1 | 0.039μmol·L-1 | 10min | >100.3% | [ |
含偕氨肟基团的荧光聚合物 | 荧光 | 10~150nmol·L-1 | 10nmol·L-1 | 200s | 98%~108% | [ |
荧光共轭微孔聚合物(CMPAO) | 荧光 | 0~20μmol·L-1 | 1.7nmol·L-1 | — | >90% | [ |
DNA熵驱动扩增技术荧光探针 | 荧光 | 30pmol·L-1~5nmol·L-1 | 13pmol·L-1 | >60min | >95% | [ |
增强活性的39E DNA酶 | 荧光 | 13~37nmol·L-1 | 0.19nmol·L-1 | — | >90% | [ |
DNA酶修饰的磁珠 | 紫外 | 0.074~56pmol·L-1 | 3.7pmol·L-1 | 2.5h | 98%~105% | [ |
经Murexide功能化的磁性纳米颗粒 | 紫外 | 0.74~15μmol·L-1 | 3.7nmol·L-1 | 0.5h | 94%~101.2% | [ |
3-MPD功能化的金纳米颗粒 | 紫外 | 7.4~370pmol·L-1 | 1.1pmol·L-1 | 30min | >95% | [ |
基于偶氮胂Ⅲ在滤纸条上的显色探针 | 手机光学相机 | 0~0.22μmol·L-1 | 2.4nmol·L-1 | — | 97.30%~104.7% | [ |
碳点和CdTe量子点合成的比例荧光探针 | 手机光学相机 | — | 0.5μmol·L-1 | 实时 | 80%~100% | [ |
NG-ssDNA-RhG共轭体 | SERS | 5~125nmol·L-1 | 1.6nmol·L-1 | — | 94.7%~104 % | [ |
RhB标记的双链DNA | SERS | 0.1pmol·L-1~0.1μmol·L-1 | 3.71fmol·L-1 | 2h | 95.2%~106.3% | [ |
基于纳米粒子在改性硅片上的SERS探针 | SERS | 0.1μmol·L-1~1mmol·L-1 | 0.1μmol·L-1 | — | — | [ |
柠檬酸盐稳定的银纳米颗粒 | SERS | 0.2~5μmol·L-1 | 60nmol·L-1 | <10s | 86%~105% | [ |
纳米银修饰的拉曼光谱胶带 | SERS | 0.1~10μmol·L-1 | 0.1μmol·L-1 | — | — | [ |
表1 近年来基于光化学分析技术的UO22+传感方法一览表
方法名称 | 设备 | 线性范围 | 检出限 | 时间 | 回收率 | 参考文献 |
---|---|---|---|---|---|---|
磺基-Salophen | 荧光 | 0.03~4μmol·L-1 | 0.015μmol·L-1 | — | 97%~104% | [ |
SDS包裹的uranyl-salophen配合物 | 荧光 | 0.005~3.5μmol·L-1 | 0.003μmol·L-1 | 20min | 96%~103% | [ |
荧光传感器(TPE-BSA) | 荧光 | 0~0.3μmol·L-1 | 0.039μmol·L-1 | 10min | >100.3% | [ |
含偕氨肟基团的荧光聚合物 | 荧光 | 10~150nmol·L-1 | 10nmol·L-1 | 200s | 98%~108% | [ |
荧光共轭微孔聚合物(CMPAO) | 荧光 | 0~20μmol·L-1 | 1.7nmol·L-1 | — | >90% | [ |
DNA熵驱动扩增技术荧光探针 | 荧光 | 30pmol·L-1~5nmol·L-1 | 13pmol·L-1 | >60min | >95% | [ |
增强活性的39E DNA酶 | 荧光 | 13~37nmol·L-1 | 0.19nmol·L-1 | — | >90% | [ |
DNA酶修饰的磁珠 | 紫外 | 0.074~56pmol·L-1 | 3.7pmol·L-1 | 2.5h | 98%~105% | [ |
经Murexide功能化的磁性纳米颗粒 | 紫外 | 0.74~15μmol·L-1 | 3.7nmol·L-1 | 0.5h | 94%~101.2% | [ |
3-MPD功能化的金纳米颗粒 | 紫外 | 7.4~370pmol·L-1 | 1.1pmol·L-1 | 30min | >95% | [ |
基于偶氮胂Ⅲ在滤纸条上的显色探针 | 手机光学相机 | 0~0.22μmol·L-1 | 2.4nmol·L-1 | — | 97.30%~104.7% | [ |
碳点和CdTe量子点合成的比例荧光探针 | 手机光学相机 | — | 0.5μmol·L-1 | 实时 | 80%~100% | [ |
NG-ssDNA-RhG共轭体 | SERS | 5~125nmol·L-1 | 1.6nmol·L-1 | — | 94.7%~104 % | [ |
RhB标记的双链DNA | SERS | 0.1pmol·L-1~0.1μmol·L-1 | 3.71fmol·L-1 | 2h | 95.2%~106.3% | [ |
基于纳米粒子在改性硅片上的SERS探针 | SERS | 0.1μmol·L-1~1mmol·L-1 | 0.1μmol·L-1 | — | — | [ |
柠檬酸盐稳定的银纳米颗粒 | SERS | 0.2~5μmol·L-1 | 60nmol·L-1 | <10s | 86%~105% | [ |
纳米银修饰的拉曼光谱胶带 | SERS | 0.1~10μmol·L-1 | 0.1μmol·L-1 | — | — | [ |
1 | MACFARLANE A M, MILLER M. Nuclear energy and uranium resources[J]. Elements, 2007, 3(3): 185-192. |
2 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 铀矿冶辐射防护和环境保护规定: [S]. 北京: 中国标准出版社, 2009. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Regulations for radiation and environment protection in uranium mining and milling: [S]. Beijing: Standards Press of China, 2009. | |
3 | 胡家宁, 林娜, 高博, 等. 有机荧光探针在铀酰离子检测方面的研究进展[J]. 核化学与放射化学, 2018, 40(6): 337-348. |
HU Jianing, LIN Na, GAO Bo, et al. Progress of organic fluorescent probes in uranyl ion detection[J]. Journal of Nuclear and Radiochemistry, 2018, 40(6): 337-348. | |
4 | 丁正贵, 吕沈聪, 胡赞. 2018年秦山核电站周边饮用水中总α和总β放射性水平的监测与分析[J]. 中华放射医学与防护杂志, 2019, 39(7): 517-522. |
DING Zhenggui, Shencong LYU, HU Zan. Monitoring and analysis of total α and total β levels in drinking water around Qinshan Nuclear Power Plant in 2018[J]. Chinese Journal of Radiological Medicine and Protection, 2019, 39(7): 517-522. | |
5 | ZHOU P, GU B. Extraction of oxidized and reduced forms of uranium from contaminated soils: effects of carbonate concentration and pH[J]. Environmental Science & Technology, 2005, 39(12): 4435-4440. |
6 | MALOV A I. Estimation of uranium migration parameters in sandstone aquifers[J]. Journal of Environmental Radioactivity, 2016, 153: 61-67. |
7 | SIMONS D S, FASSETT J D. Measurement of uranium-236 in particles by secondary ion mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(2): 393-401. |
8 | BOWMAN J A, WILLIS J B. Applications of the nitrous oxide-acetylene flame in chemical analysis by atomic absorption spectrometry[J]. Analytical Chemistry, 1967, 39(11): 1210-1216. |
9 | BERNAS B. New method for decomposition and comprehensive analysis of silicates by atomic absorption spectrometry[J]. Analytical Chemistry, 1968, 40(11): 1682-1686. |
10 | POHL P. Hydride generation-recent advances in atomic emission spectrometry[J]. Trends in Analytical Chemistry, 2004, 23(2): 87-101. |
11 | LU G, HAES A J, FORBES T Z. Detection and identification of solids, surfaces, and solutions of uranium using vibrational spectroscopy[J]. Coord. Chem. Rev., 2018, 374: 314-344. |
12 | HE W, HUA D. Spectrographic sensors for uranyl detection in the environment[J]. Talanta, 2019, 201: 317-329. |
13 | MORSE P M, FESHBACH H. Methods of theoretical physics[J]. American Journal of Physics, 1954, 22(6): 410-413. |
14 | ALKHATEEB F M, KHANFAR N M, LOUDON D. Physicians’ adoption of pharmaceutical E-detailing: application of rogers’ innovation-diffusion model[J]. Services Marketing Quarterly, 2009, 31(1): 116-132. |
15 | TRUMPER R J P E. University students’ conceptions of basic astronomy concepts[J]. Physics Education, 2000, 35(1): 9-11. |
16 | FARZIN L, SHAMSIPUR M, SHEIBANI S, et al. A review on nanomaterial-based electrochemical, optical, photoacoustic and magnetoelastic methods for determination of uranyl cation[J]. Microchimica Acta, 2019, 186(5): 289-292. |
17 | DAHAGHIN Z, KILMARTIN P A, MOUSAVI H Z. Novel ion imprinted polymer electrochemical sensor for the selective detection of lead(Ⅱ)[J]. Food Chemistry, 2020, 303: 125374-125376. |
18 | WANG X, SUN W, GUO M. The effect of adding carbon nitride nanometer material on the properties of epoxy resin project[J]. MATEC Web of Conferences, 2016, 65: 2007-2011. |
19 | BEHAN M, KREJCAR O. Modern smart device-based concept of sensoric networks[J]. EURASIP Journal on Wireless Communications and Networking, 2013, 1: 155-157. |
20 | VALLET V R, WAHLGREN U, GRENTHE I. Probing the nature of chemical bonding in uranyl () complexes with quantum chemical methods[J]. The Journal of Physical Chemistry A, 2012, 116(50): 12373-12380. |
21 | AHRLAND S. On the complex chemistry of the uranyl ion[J]. Acta Chemica Scandinavica, 1951, 5: 199-219. |
22 | CHEN X, HE L, WANG Y, et al. Trace analysis of uranyl ion (UO22+) in aqueous solution by fluorescence turn-on detection via aggregation induced emission enhancement effect[J]. Analytica Chimica Acta, 2014, 847: 55-60. |
23 | 陈琳, 沈杏, 何云飞, 等. 基于磺基 salophen 配位反应荧光法测定铀酰[J]. 应用化工, 2014(5): 936-938. |
CHEN Lin, SHEN Xing, HE Yunfei, et al. Determination of uranium by fluorescence method based on the coordination reaction of sulfo-salophen[J]. Applied Chemical Industry, 2014(5): 936-938. | |
24 | 苏昌霖, 廖力夫, 郦志阳, 等. 基于Uranyl-salophen-SDS 体系荧光光谱法检测铀[J]. 南华大学学报(自然科学版), 2019, 33(4): 67-72. |
SU Changlin, LIAO Lifu, LI Zhiyang, et al. Determination of uranium by fluorescence spectrophotometry in Uranyl-salophen-SDS system[J]. Journal of University of South China (Science and Technology), 2019, 33 (4): 67-72. | |
25 | 陈明, 孙景志, 秦安军, 等. 聚集诱导发光特性的杂环分子体系研究进展[J]. 科学通报, 2016, 61: 304-314. |
CHEN Ming, SUN Jingzhi, QIN Anjun, et al. Progress on heterocycle-based luminogens with aggregation-induced emission characteristics[J]. Chinese Science Bulletin, 2016, 61: 304-314. | |
26 | LIN N, REN W, HU J, et al. A novel tetraphenylethene-based fluorescent sensor for uranyl ion detection with aggregation-induced emission character[J]. Dyes and Pigments, 2019, 166: 182-188. |
27 | KIM H N, GUO Z, ZHU W, et al. Recent progress on polymer-based fluorescent and colorimetric chemosensors[J]. Chemical Society Reviews, 2011, 40(1): 79-93. |
28 | MA J, HE W, HAN X, et al. Amidoximated fluorescent polymer based sensor for detection of trace uranyl ion in aqueous solution[J]. Talanta, 2017, 168: 10-15. |
29 | S-H CHOI, NHO Y C. Adsorption of UO22+ by polyethylene adsorbents with amidoxime, carboxyl, and amidoxime/carboxyl group[J]. Radiation Physics and Chemistry, 2000, 57(2): 187-193. |
30 | XU M, WANG T, GAO P, et al. Highly fluorescent conjugated microporous polymers for concurrent adsorption and detection of uranium[J]. Journal of Materials Chemistry A, 2019, 7(18): 11214-11222. |
31 | CIMATTI I, YI X, SESSOLI R, et al. Chemical tailoring of single molecule magnet behavior in films of dy(Ⅲ) dimers[J]. Applied Surface Science, 2018, 432: 7-14. |
32 | YUN W, WU H, YANG Z, et al. A dynamic, ultra-sensitive and “turn-on” strategy for fluorescent detection of uranyl based on DNAzyme and entropy-driven amplification initiated circular cleavage amplification[J]. Analytica Chimica Acta, 2019, 1068: 104-110. |
33 | FENG M, GU C, SUN Y, et al. Enhancing catalytic activity of uranyl-dependent dnazyme by flexible linker insertion for more sensitive detection of uranyl ion[J]. Analytical Chemistry, 2019, 91(10): 6608-6615. |
34 | BROWN A K, LIU J, HE Y, et al. Biochemical characterization of a uranyl ion-specific DNAzyme[J]. ChemBioChem, 2009, 10(3): 486-492. |
35 | DAVIDSON A G. Ultraviolet-visible absorption spectrophotometry[J]. Practical Pharmaceutical Chemistry, 1988, 4: 301-302. |
36 | BEHERA S, GHANTY S, AHMAD F, et al. UV-visible spectrophotometric method development and validation of assay of paracetamol tablet formulation[J]. J. Anal. Bioanal. Techniques, 2012, 3(6): 151-157. |
37 | 肖锡林, 张迪, 王志梅, 等. 四齿席夫碱类光学探针用于检测铀和含磷酸基团生物分子的研究进展[J]. 南华大学学报(自然科学版), 2019, 33(5): 1-12. |
XIAO Xilin, ZHANG Di, WANG Zhimei, et al. Research progress of tetradentate Schiff base optical probes for detecting uranium and biomolecules containing phosphate groups[J]. Journal of University of South China (Science and Technology), 2019, 33(5): 1-12. | |
38 | LEE J H, WANG Z, LIU J, et al. Highly sensitive and selective colorimetric sensors for uranyl (UO22+): Development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems[J]. Journal of the American Chemical Society, 2008, 130(43): 14217-14226. |
39 | POORAHONG S, NIAMMUSIK A, CHAYKLEANG P, et al. A scanner-based colorimetric mercuric ion detection using Tween-20-stabilized AuNPs solution in 96-well plates[J]. Journal of Environmental Science and Health, Part A, 2017, 52(11): 1082-1088. |
40 | DUTTA R K, KUMAR A. Highly sensitive and selective method for detecting ultratrace levels of aqueous uranyl ions by strongly photoluminescent-responsive amine-modified cadmium sulfide quantum dots[J]. Analytical Chemistry, 2016, 88(18): 9071-9078. |
41 | CHENG X, YU X, CHEN L, et al. Visual detection of ultra-trace levels of uranyl ions using magnetic bead-based DNAzyme recognition in combination with rolling circle amplification[J]. Microchimica Acta, 2017, 184(11): 4259-4267. |
42 | VEITCH N C. Horseradish peroxidase: a modern view of a classic enzyme[J]. Phytochemistry, 2004, 65(3): 249-259. |
43 | ZHANG H, LIN L, ZENG X, et al. Magnetic beads-based DNAzyme recognition and AuNPs-based enzymatic catalysis amplification for visual detection of trace uranyl ion in aqueous environment[J]. Biosensors and Bioelectronics, 2016, 78: 73-79. |
44 | ZHANG K, LYU S, LIN Z, et al. Bio-bar-code-based photoelectrochemical immunoassay for sensitive detection of prostate-specific antigen using rolling circle amplification and enzymatic biocatalytic precipitation[J]. Biosensors and Bioelectronics, 2018, 101: 159-166. |
45 | ZHANG Y, WANG L, LUO F, et al. An electrochemiluminescence biosensor for Kras mutations based on locked nucleic acid functionalized DNA walkers and hyperbranched rolling circle amplification[J]. Chemical Communications, 2017, 53(20): 2910-2913. |
46 | WANG B, POTTER S J, LIN Y, et al. Rapid and sensitive detection of severe acute respiratory syndrome coronavirus by rolling circle amplification[J]. Journal of Clinical Microbiology, 2005, 43(5): 2339-2344. |
47 | OYMAK T. Solid-phase extraction method by magnetic nanoparticles functionalized with murexide for trace U(Ⅵ) from sea water prior to spectrophotometric determination[J]. Acta Chim. Slov., 2019, 66(1): 78-84. |
48 | SADEGHI S, SHEIKHZADEH E. Solid phase extraction using silica gel modified with murexide for preconcentration of uranium (Ⅵ) ions from water samples[J]. Journal of Hazardous Materials, 2009, 163(2/3): 861-868. |
49 | SAHA A, NEOGY S, RAO D R M, et al. Colorimetric and visual determination of ultratrace uranium concentrations based on the aggregation of amidoxime functionalized gold nanoparticles[J]. Microchimica Acta, 2019, 186(3): 183-185. |
50 | GALLEGOS D, LONG K D, YU H, et al. Label-free biodetection using a smartphone[J]. Lab on a Chip, 2013, 13(11): 2124-2132. |
51 | OWENS J D, HOUSTON M, LUEBKE D, et al. GPU computing[J]. Proceedings of the IEEE, 2008, 96(5): 879-899. |
52 | STAPLE G, WERBACH K. The end of spectrum scarcity [spectrum allocation and utilization][J]. IEEE Spectrum, 2004, 41(3): 48-52. |
53 | DENA A S A, BAYOUMI E E. Lab-on-paper optical sensor for smartphone-based quantitative estimation of uranyl ions[J]. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318(2): 1439-1445. |
54 | SAVVIN S B. Analytical use of arsenazo Ⅲ: Determination of thorium, zirconium, uranium and rare earth elements[J]. Talanta, 1961, 8(9): 673-685. |
55 | CHANG Y C, REID J F. RGB calibration for color image analysis in machine vision[J]. IEEE Transactions on Image Processing, 1996, 5(10): 1414-1422. |
56 | CAMGÖZ N, YENER C, GÜVENÇ D. Effects of hue, saturation, and brightness on preference[J]. Color Research & Application, 2002, 27(3): 199-207. |
57 | CHEN X, MEI Q, YU L, et al. Rapid and on-site detection of uranyl ions via ratiometric fluorescence signals based on a smartphone platform[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42225-42232. |
58 | YUN W, WU H, LIU X, et al. Ultra-sensitive fluorescent and colorimetric detection of UO22+ based on dual enzyme-free amplification strategies[J]. Sensors and Actuators B: Chemical, 2018, 255: 1920-1926. |
59 | YANG W C. Mobile phone battery charge with USB interface: US6184652[P]. 2001-02-06. |
60 | HILLEBRAND S, SCHOFFEN J R, MANDAJI M, et al. Performance of an ultraviolet light‐emitting diode‐induced fluorescence detector in capillary electrophoresis[J]. Electrophoresis, 2002, 23(15): 2445-2448. |
61 | CHEN K C, LI Y L, WU C W, et al. Glucose sensor using U-shaped optical fiber probe with gold nanoparticles and glucose oxidase[J]. Sensors, 2018, 18(4): 1217-1220. |
62 | VOLET N, YI X, YANG Q F, et al. Micro‐resonator soliton generated directly with a diode laser[J]. Laser & Photonics Reviews, 2018, 12(5): 307-312. |
63 | QUANG L X, LIM C, SEONG G H, et al. A portable surface-enhanced Raman scattering sensor integrated with a lab-on-a-chip for field analysis[J]. Lab on a Chip, 2008, 8(12): 2214-2219. |
64 | BOZIO R, GIRLANDO A, PECILE C. Vibrational analysis of spectra of quinonoid molecular ions. Part 3.—Vibrational spectra and assignment of 7, 7', 8, 8'-tetracyanoquinodimethane radical anion[J]. Journal of the Chemical Society, 1975, 71: 1237-1254. |
65 | 蒋如铭. 正确理解多原子分子的对称性及与极性的关系[J]. 化学教育, 1984, 5(4): 23-26. |
JIANG Ruming. Correctly understand the symmetry of polyatomic molecules and the relationship with polarity[J]. Chinese Journal of Chemical Education, 1984, 5(4): 23-26. | |
66 | SWAMY K M K, EOM S, LIU Y, et al. Rhodamine derivatives bearing thiourea groups serve as fluorescent probes for selective detection of ATP in mitochondria and lysosomes[J]. Sensors and Actuators B: Chemical, 2019, 281: 350-358. |
67 | JIANG Z, YAO D, WEN G, et al. A label-free nanogold DNAzyme-cleaved surface-enhanced resonance Raman scattering method for trace UO22+ using rhodamine 6G as probe[J]. Plasmonics, 2013, 8(2): 803-810. |
68 | 姜交来, 王芸, 肖吉群, 等. 基于DNA酶的铀酰离子传感方法[J]. 核化学与放射化学, 2018, 40(2): 89-99. |
JIANG Jiaolai, WANG YUN, XIAO Jiqun, et al. Uranyl ion sensing methods based on DNAzyme[J]. Journal of Nuclear and Radiochemistry, 2018, 40(2): 89-99. | |
69 | 刘莎莎. 表面增强拉曼光谱化学增强的理论研究[D]. 大连: 大连理工大学, 2009. |
LIU Shasha. Theoretical study on contribution of chemical enhancement to surface-enhanced Raman scattering spectra[D]. Dalian: Dalian University of Technology, 2009. | |
70 | HE X, WANG S, LIU Y, et al. Ultra-sensitive detection of uranyl ions with a specially designed high-efficiency SERS-based microfluidic device[J]. Science China Chemistry, 2019, 62(8): 1064-1071. |
71 | OSHIMA G, NAGASAWA K. Fluorometric method for determination of mercury () with Rhodamine B[J]. Chemical and Pharmaceutical Bulletin, 1970, 18(4): 687-692. |
72 | WANG S, JIANG J, WU H, et al. Self-assembly of silver nanoparticles as high active surface-enhanced Raman scattering substrate for rapid and trace analysis of uranyl (Ⅵ) ions[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 180: 23-28. |
73 | MOSIER-BOSS P A. Review of SERS substrates for chemical sensing[J]. Nanomaterials, 2017, 7(6): 142-146. |
74 | DING S Y, WU D Y, YANG Z L, et al. Some progresses in mechanistic studies on surface-enhanced Raman scattering[J]. Chemical Journal of Chinese Universities, 2008, 29: 2569-2581. |
75 | JIANG J, WANG S, DENG H, et al. Rapid and sensitive detection of uranyl ion with citrate-stabilized silver nanoparticles by the surface-enhanced Raman scattering technique[J]. Royal Society Open Science, 2018, 5(11):1-8. |
76 | JIANG J, ZHAO F, SHI S, et al. In situ surface-enhanced Raman spectroscopy detection of uranyl ions with silver nanorod-decorated tape[J]. ACS Omega, 2019, 4(7): 12319-12324. |
77 | BAO L, MAHURIN S M, HAIRE R G, et al. Silver-doped sol-gel film as a surface-enhanced Raman scattering substrate for detection of uranyl and neptunyl ions[J]. Analytical Chemistry, 2003, 75(23): 6614-6620. |
78 | LI W, WANG J, XIE Y, et al. Water-based fluorescent paint: Presenting a novel approach to study and solve the aggregation caused quench (ACQ) effect in traditional fluorescent materials[J]. Progress in Organic Coatings, 2018, 120: 1-9. |
79 | ANSHARI M, ALAS Y, GUAN L S. Developing online learning resources: big data, social networks, and cloud computing to support pervasive knowledge[J]. Education and Information Technologies, 2016, 21(6): 1663-1677. |
[1] | 王少凡, 周颖, 郝康安, 黄安荣, 张如菊, 吴翀, 左晓玲. 具有pH响应性的自愈合蓝光水凝胶[J]. 化工进展, 2023, 42(9): 4837-4846. |
[2] | 徐国彬, 刘洪豪, 李洁, 郭家奇, 王琪. ZnO量子点水性喷墨荧光墨水制备及性能[J]. 化工进展, 2023, 42(6): 3114-3122. |
[3] | 张芳, 郭鹍鹏, 梁春平, 尤雪瑞, 张志超. 一种具有聚集诱导发光效应有机荧光小分子的设计合成及功能应用[J]. 化工进展, 2023, 42(6): 3097-3104. |
[4] | 申琪, 薛雨源, 杨涛伟, 张妍, 李胜任. 木质素荧光研究进展[J]. 化工进展, 2022, 41(5): 2672-2685. |
[5] | 严成飞, 余彩莉, 张发爱. 松香基荧光水性聚氨酯的制备及性能[J]. 化工进展, 2022, 41(11): 6061-6067. |
[6] | 安宁, 高云玲. 反应型HClO/ClO-荧光探针的研究进展[J]. 化工进展, 2021, 40(6): 3346-3362. |
[7] | 温芳, 张勃, 吕鹏鹏. 发光材料在防眩光交通监控补光照明中的应用[J]. 化工进展, 2020, 39(S1): 206-211. |
[8] | 李丽妹, 王梅阁, 杨秋生, 段中余. 均三嗪衍生物比色识别Cu2+及荧光识别Zn2+[J]. 化工进展, 2020, 39(8): 3287-3292. |
[9] | 张松华,熊明诚,王梓,林凤采,王婷,林咏梅,黄彪. 基于机械力化学作用制备荧光纳米纤维素[J]. 化工进展, 2020, 39(4): 1405-1413. |
[10] | 陈翠忠, 李俊峰, 蓝明菊, 额热艾汗, 谢可飞, 徐威龙, 刘雅茹, 孙洪伟. 碳氮比对SBR系统硝化过程及EPS三维荧光光谱特性的影响[J]. 化工进展, 2020, 39(12): 5275-5282. |
[11] | 田振, 许戈文, 黄毅萍, 鲍俊杰, 熊潜生, 孙文, 兰芬芬, 姚周. 微波合成含氮掺杂碳量子点改性水性聚氨酯的制备与性能[J]. 化工进展, 2020, 39(10): 4127-4133. |
[12] | 阳鹏飞,黎杰鑫,朱春霞. 磁性纳米材料处理含铀废水的研究进展[J]. 化工进展, 2020, 39(1): 206-215. |
[13] | 刘航,杨威,鞠鑫,姚雪梅,扶教龙,李良智. 表面活性剂与离子液体对β-葡萄糖苷酶的协同影响[J]. 化工进展, 2020, 39(1): 341-347. |
[14] | 于雪,包青青,姜超,张思霞,张丰旗,陈驰,陶娅妮,张跃伟. 花菁类近红外荧光探针在生物检测中的应用研究进展[J]. 化工进展, 2019, 38(12): 5492-5503. |
[15] | 张光华,刘丹,王帆,郭明媛,唐进霞. 用于高得率浆纸张增白的二苯乙烯型水性聚氨酯荧光乳液的合成及其性能[J]. 化工进展, 2019, 38(11): 5084-5090. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |