化工进展 ›› 2023, Vol. 42 ›› Issue (8): 3926-3942.DOI: 10.16085/j.issn.1000-6613.2023-0464
收稿日期:
2023-03-24
修回日期:
2023-05-27
出版日期:
2023-08-15
发布日期:
2023-09-19
通讯作者:
邢卫红
作者简介:
潘宜昌(1983—),男,研究员,研究方向气体分离膜。E-mail:panyc@njtech.edu.cn。
基金资助:
PAN Yichang(), ZHOU Rongfei, XING Weihong()
Received:
2023-03-24
Revised:
2023-05-27
Online:
2023-08-15
Published:
2023-09-19
Contact:
XING Weihong
摘要:
热法精馏分离同碳数烃混合物是当前石油化工行业中最耗能的过程之一。膜分离技术具有投资成本和操作费用低、节能降耗和集成度高等优点,可实现低能耗的膜法流程再造。以沸石分子筛和金属有机骨架材料(MOF)为代表的先进微孔膜较传统聚合物膜,具有更高的分离性能;渗透性和分离选择性可提升一至两个数量级,展现出优异的应用前景。本文综述了先进微孔膜在提升渗透性、分离选择性与分离过程稳定性3个方面的研究进展,深入探讨了膜层厚度、孔道取向、骨架柔性和晶间缺陷等微结构调控与同碳数烃分离性能间的构效关系。并且分析了面向同碳数烃高效分离应用的几种沸石膜和MOF膜面积放大制备的瓶颈问题,提出了晶种/成核位点均一性分布在先进微孔膜放大制备中的关键作用。最后对进一步加快新型先进微孔膜材料开发进程以应对石化行业多元化分离体系,以及加大膜工艺技术开发力度以匹配石化行业主流程工艺要求进行了展望。
中图分类号:
潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942.
PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942.
膜种类 | 制备方法 | 支撑体 | 厚度/µm | 参考文献 |
---|---|---|---|---|
沸石分子 筛膜(MFI) | 低温快速合成 | α-氧化铝管 | 0.6 | [ |
二次生长 | α-氧化铝片 | 0.3~0.4 | [ | |
干凝胶法+微波法 | 氧化铝中空纤维 | 0.4 | [ | |
无凝胶二次生长法 | SiO2片 | 0.2 | [ | |
无凝胶二次生长法 | 烧结石英纤维 | 0.1 | [ | |
微波二次生长法 | α-氧化铝片 | 0.38 | [ | |
MOF膜 (ZIF-8) | 二次生长 | α-氧化铝片 | 2.5 | [ |
电化学 | 阳极氧化铝片 | 0.2 | [ | |
反扩散 | Torlon中空纤维 | 2 | [ | |
凝胶气相沉积 | PVDF中空纤维 | 0.017 | [ | |
界面诱导 | 聚砜 | 0.045 | [ |
表1 不同制备方法制备的超薄先进微孔膜
膜种类 | 制备方法 | 支撑体 | 厚度/µm | 参考文献 |
---|---|---|---|---|
沸石分子 筛膜(MFI) | 低温快速合成 | α-氧化铝管 | 0.6 | [ |
二次生长 | α-氧化铝片 | 0.3~0.4 | [ | |
干凝胶法+微波法 | 氧化铝中空纤维 | 0.4 | [ | |
无凝胶二次生长法 | SiO2片 | 0.2 | [ | |
无凝胶二次生长法 | 烧结石英纤维 | 0.1 | [ | |
微波二次生长法 | α-氧化铝片 | 0.38 | [ | |
MOF膜 (ZIF-8) | 二次生长 | α-氧化铝片 | 2.5 | [ |
电化学 | 阳极氧化铝片 | 0.2 | [ | |
反扩散 | Torlon中空纤维 | 2 | [ | |
凝胶气相沉积 | PVDF中空纤维 | 0.017 | [ | |
界面诱导 | 聚砜 | 0.045 | [ |
膜类型 | 支撑体类型 | 制备方法 | 膜面积/cm2 | C3H6或n-C4H10渗透速率①/10-8mol·m-2·s-1·Pa-1 | 分离因子 | 参考文献 | |
---|---|---|---|---|---|---|---|
单个膜 | 膜组件 | ||||||
沸石分子筛膜(MFI) | 不锈钢管状支撑体 | 原位合成法 | 15.7 | — | 4 | 18 | [ |
α-Al2O3管状支撑体 | 二次生长法 | 94 | — | 1 | 78 | [ | |
TiO2管状支撑体 | 二次生长法 | 78.5 | — | 1.6 | 6 | [ | |
α-Al2O3管状支撑体 | 二次生长法 | 180 | 3800 | 13 | 45 | [ | |
19通道α-Al2O3支撑体 | 二次生长法 | 84 | — | 10.3 | 51 | [ | |
19通道α-Al2O3支撑体 | 二次生长法 | 270 | — | 6.4 | 32 | [ | |
61通道α-Al2O3支撑体 | 二次生长法 | 190 | — | 8.1 | 28 | [ | |
MOF膜 (ZIF-8) | PVDF中空纤维 | 凝胶-气相沉积法 | 11.3 | 340 | 28 | 70 | [ |
陶瓷管状支撑体 | 晶种-二次生长法 | 24.5 | — | 1.3 | 67 | [ | |
陶瓷管状支撑体 | 电化学合成法 | — | — | 0.6 | 63 | [ | |
陶瓷管状支撑体 | 前体辅助生长法 | 25 | 157 | 1.08 | 55 | [ | |
陶瓷平板支撑体 | 浸涂-热转换法 | 100 | 300 | 0.24 | 38 | [ |
表2 先进微孔膜的放大制备与分离性能
膜类型 | 支撑体类型 | 制备方法 | 膜面积/cm2 | C3H6或n-C4H10渗透速率①/10-8mol·m-2·s-1·Pa-1 | 分离因子 | 参考文献 | |
---|---|---|---|---|---|---|---|
单个膜 | 膜组件 | ||||||
沸石分子筛膜(MFI) | 不锈钢管状支撑体 | 原位合成法 | 15.7 | — | 4 | 18 | [ |
α-Al2O3管状支撑体 | 二次生长法 | 94 | — | 1 | 78 | [ | |
TiO2管状支撑体 | 二次生长法 | 78.5 | — | 1.6 | 6 | [ | |
α-Al2O3管状支撑体 | 二次生长法 | 180 | 3800 | 13 | 45 | [ | |
19通道α-Al2O3支撑体 | 二次生长法 | 84 | — | 10.3 | 51 | [ | |
19通道α-Al2O3支撑体 | 二次生长法 | 270 | — | 6.4 | 32 | [ | |
61通道α-Al2O3支撑体 | 二次生长法 | 190 | — | 8.1 | 28 | [ | |
MOF膜 (ZIF-8) | PVDF中空纤维 | 凝胶-气相沉积法 | 11.3 | 340 | 28 | 70 | [ |
陶瓷管状支撑体 | 晶种-二次生长法 | 24.5 | — | 1.3 | 67 | [ | |
陶瓷管状支撑体 | 电化学合成法 | — | — | 0.6 | 63 | [ | |
陶瓷管状支撑体 | 前体辅助生长法 | 25 | 157 | 1.08 | 55 | [ | |
陶瓷平板支撑体 | 浸涂-热转换法 | 100 | 300 | 0.24 | 38 | [ |
1 | WEI Ruicong, LIU Xiaowei, LAI Zhiping. MOF or COF membranes for olefin/paraffin separation: Current status and future research directions[J]. Advanced Membranes, 2022, 2: 100035. |
2 | SHOLL David S, LIVELY Ryan P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
3 | YANG Lifeng, QIAN Siheng, WANG Xiaobing, et al. Energy-efficient separation alternatives: Metal-organic frameworks and membranes for hydrocarbon separation[J]. Chemical Society Reviews, 2020, 49(15): 5359-5406. |
4 | MANISH Kumar, STONE Howard A. Membrane science emerging as a convergent scientific field with molecular origins and understanding, and global impact[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(37): e2106494118. |
5 | DOU Haozhen, XU Mi, WANG Baoyu, et al. Microporous framework membranes for precise molecule/ion separations[J]. Chemical Society Reviews, 2021, 50(2): 986-1029. |
6 | HOU Junjun, LIU Pengchao, JIANG Meihuizi, et al. Olefin/paraffin separation through membranes: From mechanisms to critical materials[J]. Journal of Materials Chemistry A, 2019, 7(41): 23489-23511. |
7 | KOROS William J, ZHANG Chen. Materials for next-generation molecularly selective synthetic membranes[J]. Nature Materials, 2017, 16(3): 289-297. |
8 | ROY Abhishek, VENNA Surendar R, ROGERS Gerard, et al. Membranes for olefin-paraffin separation: An industrial perspective[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(37): e2022194118. |
9 | ZHOU Rongfei, PAN Yichang, XING Weihong, et al. Advanced microporous membranes for H2/CH4 separation: Challenges and perspectives[J]. Advanced Membranes, 2021, 1: 100011. |
10 | HOU Jue, ZHANG Huacheng, SIMON George P, et al. Polycrystalline advanced microporous framework membranes for efficient separation of small molecules and ions[J]. Advanced Materials, 2020, 32(18): 1902009. |
11 | SHI Dongchen, YU Xin, FAN Weidong, et al. Polycrystalline zeolite and metal-organic framework membranes for molecular separations[J]. Coordination Chemistry Reviews, 2021, 437: 213794. |
12 | 柳波, 潘宜昌, 周荣飞, 等. 面向氢气/甲烷分离分子筛膜微结构调控的研究进展[J]. 化工学报, 2021, 72(12): 6073-6085. |
LIU Bo, PAN Yichang, ZHOU Rongfei, et al. Research progress on microstructure regulation of molecular sieving membranes for H2/CH4 separation[J]. CIESC Journal, 2021, 72(12): 6073-6085. | |
13 | RANGNEKAR N, MITTAL N, ELYASSI B, et al. Zeolite membranes–a review and comparison with MOFs[J]. Chemical Society Reviews, 2015, 44(20): 7128-7154. |
14 | ALGIERI Catia, DRIOLI Enrico. Zeolite membranes: Synthesis and applications[J]. Separation and Purification Technology, 2021, 278: 119295. |
15 | 潘宜昌, 邢卫红. 丙烯/丙烷分离的ZIF-8膜研究进展[J]. 化工进展, 2020, 39(6): 2036-2048. |
PAN Yichang, XING Weihong. Recent progress of ZIF-8 membrane for propylene/propane separation[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2036-2048. | |
16 | CHENG Youdong, SHUVO JIT Datta, ZHOU Sheng, et al. Advances in metal-organic framework-based membranes[J]. Chemical Society Reviews, 2022, 51(19): 8300-8350. |
17 | ZHANG Chao, WU Baiheng, MA Mengqi, et al. Ultrathin metal/covalent-organic framework membranes towards ultimate separation[J]. Chemical Society Reviews, 2019, 48(14): 3811-3841. |
18 | XOMERITAKIS George, NAIR Sankar, TSAPATSIS Michael. Transport properties of alumina-supported MFI membranes made by secondary (seeded) growth[J]. Microporous and Mesoporous Materials, 2000, 38(1): 61-73. |
19 | QIU Heng'e, XU Ning, KONG Lin, et al. Fast synthesis of thin Silicalite-1 zeolite membranes at low temperature[J]. Journal of Membrane Science, 2020, 611: 118361. |
20 | LEE Pyung-Soo, ZHANG Xueyi, STOEGER Jared A, et al. Sub-40 nm zeolite suspensions via disassembly of three-dimensionally ordered mesoporous-imprinted silicalite-1[J]. Journal of the American Chemical Society, 2011, 133(3): 493-502. |
21 | KIDA Koji, MAETA Yasushi, YOGO Katsunori. Pure silica CHA-type zeolite membranes for dry and humidified CO2/CH4 mixtures separation[J]. Separation and Purification Technology, 2018, 197: 116-121. |
22 | CARREON Moises A, LI Shiguang, FALCONER John L, et al. Alumina-supported SAPO-34 membranes for CO2/CH4 separation[J]. Journal of the American Chemical Society, 2008, 130(16): 5412-5413. |
23 | TANG Xiaoxue, ZHANG Ye, MENG Danni, et al. Efficient synthesis of thin SSZ-13 membranes by gel-less method[J]. Journal of Membrane Science, 2021, 620: 118920. |
24 | LIU Bo, KITA Hidetoshi, YOGO Katsunori. Preparation of Si-rich LTA zeolite membrane using organic template-free solution for methanol dehydration[J]. Separation and Purification Technology, 2020, 239: 116533. |
25 | LU Xiaofei, YANG Yanwei, ZHANG Junjia, et al. Solvent-free secondary growth of highly b-oriented MFI zeolite films from anhydrous synthetic powder[J]. Journal of the American Chemical Society, 2019, 141(7): 2916-2919. |
26 | PHAM Tung Cao Thanh, NGUYEN Thanh Huu, YOON Kyung Byung. Gel-free secondary growth of uniformly oriented silica MFI zeolite films and application for xylene separation[J]. Angewandte Chemie International Edition, 2013, 52(33): 8693-8698. |
27 | DAKHCHOUNE Mostapha, VILLALOBOS Luis Francisco, SEMINO Rocio, et al. Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets[J]. Nature Materials, 2021, 20(3): 362-369. |
28 | WANG Bin, WU Tangyin, YU Miao, et al. Highly ordered nanochannels in a nanosheet-directed thin zeolite nanofilm for precise and fast CO2 separation[J]. Small, 2020, 16(41): 2002836. |
29 | VAROON Kumar, ZHANG Xueyi, ELYASSI Bahman, et al. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane[J]. Science, 2011, 334(6052): 72-75. |
30 | AGRAWAL Kumar Varoon, TOPUZ Berna, PHAM Tung Cao Thanh, et al. Oriented MFI membranes by gel-less secondary growth of sub-100nm MFI-nanosheet seed layers[J]. Advanced Materials, 2015, 27(21): 3243-3249. |
31 | LIU Yi, LI Mingrun, CHEN Zhigang, et al. Hierarchy control of MFI zeolite membrane towards superior butane isomer separation performance[J]. Angewandte Chemie International Edition, 2021, 60(14): 7659-7663. |
32 | PAN Yichang, LAI Zhiping. Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions[J]. Chemical Communications, 2011, 47(37): 10275-10277. |
33 | ZHOU Sheng, WEI Yanying, LI Libo, et al. Paralyzed membrane: Current-driven synthesis of a metal-organic framework with sharpened propene/propane separation[J]. Science Advances, 2018, 4(10): eaau1393. |
34 | BROWN Andrew J, BRUNELLI Nicholas A, KIWON Eum, et al. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes[J]. Science, 2014, 345(6192): 72-75. |
35 | LI Wanbin, SU Pengcheng, LI Zhanjun, et al. Ultrathin metal-organic framework membrane production by gel-vapour deposition[J]. Nature Communications, 2017, 8: 406. |
36 | QIAO Zhihua, LIANG Yueyao, ZHANG Zhengqing, et al. Ultrathin low-crystallinity MOF membranes fabricated by interface layer polarization induction[J]. Advanced Materials, 2020, 32(34): 2002165. |
37 | WANG Jianyu, WANG Yan, LIU Yutao, et al. Ultrathin ZIF-8 membrane through inhibited Ostwald ripening for high-flux C3H6/C3H8 separation[J]. Advanced Functional Materials, 2022, 32(47): 2208064. |
38 | BARANKOVA Eva, TAN Xiaoyu, VILLALOBOS Luis Francisco, et al. A metal chelating porous polymeric support: The missing link for a defect-free metal-organic framework composite membrane[J]. Angewandte Chemie International Edition, 2017, 56(11): 2965-2968. |
39 | PENG Yuan, LI Yanshuo, BAN Yujie, et al. Metal-organic framework nanosheets as building blocks for molecular sieving membranes[J]. Science, 2014, 346(6215): 1356-1359. |
40 | YANG Fan, MU Hao, WANG Chongqing, et al. Morphological map of ZIF-8 crystals with five distinctive shapes: Feature of filler in mixed-matrix membranes on C3H6/C3H8 separation[J]. Chemistry of Materials, 2018, 30(10): 3467-3473. |
41 | HOU Qianqian, WU Ying, ZHOU Sheng, et al. Inside cover: Ultra-tuning of the aperture size in stiffened ZIF-8_Cm frameworks with mixed-linker strategy for enhanced CO2/CH4 separation (angew. chem. int. Ed. 1/2019)[J]. Angewandte Chemie International Edition, 2019, 58(1): 2. |
42 | HOU Qianqian, ZHOU Sheng, WEI Yanying, et al. Balancing the grain boundary structure and the framework flexibility through bimetallic metal-organic framework (MOF) membranes for gas separation[J]. Journal of the American Chemical Society, 2020, 142(21): 9582-9586. |
43 | WEI Ruicong, CHI Hengyu, LI Xiang, et al. Aqueously cathodic deposition of ZIF-8 membranes for superior propylene/propane separation[J]. Advanced Functional Materials, 2020, 30(7): 1907089. |
44 | ZHOU Sheng, SHEKHAH Osama, JIA Jiangtao, et al. Electrochemical synthesis of continuous metal-organic framework membranes for separation of hydrocarbons[J]. Nature Energy, 2021, 6(9): 882-891. |
45 | ZHOU Sheng, SHEKHAH Osama, Adrian RAMÍREZ, et al. Asymmetric pore windows in MOF membranes for natural gas valorization[J]. Nature, 2022, 606(7915): 706-712. |
46 | LI Yichuan, ZHU Guofu, WANG Yu, et al. Preparation, mechanism and applications of oriented MFI zeolite membranes: A review[J]. Microporous and Mesoporous Materials, 2021, 312: 110790. |
47 | LU Xiaofei, WANG Hongsheng, YANG Yanwei, et al. Microstructural manipulation of MFI-type zeolite films/membranes: Current status and perspectives[J]. Journal of Membrane Science, 2022, 662: 120931. |
48 | WANG Zhengbao, YAN Yushan. Controlling crystal orientation in zeolite MFI thin films by direct in situ crystallization[J]. Chemistry of Materials, 2001, 13(3): 1101-1107. |
49 | ZHANG F Z, FUJI M, TAKAHASHI M. Preparation of b-oriented MFI zeolite membranes on porous α-alumina substrates precoated with mesoporous silica sublayer[J]. Journal of Materials Science, 2005, 40(9): 2729-2732. |
50 | LAI Zhiping, BONILLA Griselda, DIAZ Isabel, et al. Microstructural optimization of a zeolite membrane for organic vapor separation[J]. Science, 2003, 300(5618): 456-460. |
51 | WANG Qing, WU Amei, ZHONG Shenglai, et al. Highly (h0h)-oriented silicalite-1 membranes for butane isomer separation[J]. Journal of Membrane Science, 2017, 540: 50-59. |
52 | WU Amei, TANG Congyong, ZHONG Shenglai, et al. Synthesis optimization of (h0h)-oriented silicalite-1 membranes for butane isomer separation[J]. Separation and Purification Technology, 2019, 214: 51-60. |
53 | SUN Kuo, LIU Bo, ZHONG Shenglai, et al. Fast preparation of oriented silicalite-1 membranes by microwave heating for butane isomer separation[J]. Separation and Purification Technology, 2019, 219: 90-99. |
54 | JEON Mi Young, KIM Donghun, KUMAR Prashant, et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets[J]. Nature, 2017, 543(7647): 690-694. |
55 | KIM Donghun, JEON Mi Young, STOTTRUP Benjamin L, et al. Para-xylene ultra-selective zeolite MFI membranes fabricated from nanosheet monolayers at the air-water interface[J]. Angewandte Chemie International Edition, 2018, 57(2): 480-485. |
56 | KIM Donghun, GHOSH Supriya, AKTER Nusnin, et al. Twin-free, directly synthesized MFI nanosheets with improved thickness uniformity and their use in membrane fabrication[J]. Science Advances, 2022, 8(14): eabm8162. |
57 | LIU Yi, QIANG Weili, JI Taotao, et al. Uniform hierarchical MFI nanosheets prepared via anisotropic etching for solution-based sub-100-nm-thick oriented MFI layer fabrication[J]. Science Advances, 2020, 6(7): eaay5993. |
58 | LIU Yi, LU Jinming, LIU Yi. Single-mode microwave heating-induced concurrent out-of-plane twin growth suppression and in-plane epitaxial growth promotion of b-oriented MFI film under mild reaction conditions[J]. Chemistry-an Asian Journal, 2020, 15(8): 1277-1280. |
59 | WEI Ruicong, LIU Xiaowei, ZHOU Zongyao, et al. Carbon nanotube supported oriented metal organic framework membrane for effective ethylene/ethane separation[J]. Science Advances, 2022, 8(7): eabm6741. |
60 | WANG Chongqing, YANG Fan, SHENG Luqian, et al. Zinc-substituted ZIF-67 nanocrystals and polycrystalline membranes for propylene/propane separation[J]. Chemical Communications, 2016, 52(85): 12578-12581. |
61 | Kiwon EUM, HAYASHI Mikio, DE MELLO Matheus Dorneles, et al. ZIF-8 membrane separation performance tuning by vapor phase ligand treatment[J]. Angewandte Chemie International Edition, 2019, 58(46): 16390-16394. |
62 | SONG Eryue, WEI Kaifeng, LIAN Haiqian, et al. Improved propylene/propane separation performance under high temperature and pressures on in situ ligand-doped ZIF-8 membranes[J]. Journal of Membrane Science, 2021, 617: 118655. |
63 | KNEBEL A, GEPPERT B, VOLGMANN K, et al. Defibrillation of soft porous metal-organic frameworks with electric fields[J]. Science, 2017, 358(6361): 347-351. |
64 | BABU Deepu J, HE Guangwei, HAO Jian, et al. Restricting lattice flexibility in polycrystalline metal-organic framework membranes for carbon capture[J]. Advanced Materials, 2019, 31(28): 1900855. |
65 | HAO Jian, BABU Deepu J, LIU Qi, et al. Mechanistic study on thermally induced lattice stiffening of ZIF-8[J]. Chemistry of Materials, 2021, 33(11): 4035-4044. |
66 | QU Kai, HUANG Kang, XU Jipeng, et al. High-efficiency CO2/N2 separation enabled by rotation of electrostatically anchored flexible ligands in metal-organic framework[J]. Angewandte Chemie International Edition, 2022, 61(49): e202213333. |
67 | LIU Yi, BAN Yujie, YANG Weishen. Microstructural engineering and architectural design of metal-organic framework membranes[J]. Advanced Materials, 2017, 29(31): 1606949. |
68 | PENG Yong, LU Huibin, WANG Zhengbao, et al. Microstructural optimization of MFI-type zeolite membranes for ethanol-water separation[J]. Journal of Materials Chemistry A, 2014, 2(38): 16093-16100. |
69 | Jessica O’BRIEN-ABRAHAM, KANEZASHI Masakoto, LIN Y S. A comparative study on permeation and mechanical properties of random and oriented MFI-type zeolite membranes[J]. Microporous and Mesoporous Materials, 2007, 105(1/2): 140-148. |
70 | HONG Sungwon, KIM Dongjae, RICHTER Hannes, et al. Quantitative elucidation of the elusive role of defects in polycrystalline MFI zeolite membranes on xylene separation performance[J]. Journal of Membrane Science, 2019, 569: 91-103. |
71 | KIM Eunjoo, CHOI Jungkyu, TSAPATSIS Michael. On defects in highly a-oriented MFI membranes[J]. Microporous and Mesoporous Materials, 2013, 170: 1-8. |
72 | CHOI Jungkyu, JEONG Hae-Kwon, SNYDER Mark A, et al. Grain boundary defect elimination in a zeolite membrane by rapid thermal processing[J]. Science, 2009, 325(5940): 590-593. |
73 | CHANG Na, TANG Hongbo, BAI Lu, et al. Optimized rapid thermal processing for the template removal of SAPO-34 zeolite membranes[J]. Journal of Membrane Science, 2018, 552: 13-21. |
74 | LEE Minseong, LEE Gihoon, JEONG Yanghwan, et al. Understanding and improving the modular properties of high-performance SSZ-13 membranes for effective flue gas treatment[J]. Journal of Membrane Science, 2022, 646: 120246. |
75 | HENG Samuel, LAU Prudence Pui Sze, YEUNG King Lun, et al. Low-temperature ozone treatment for organic template removal from zeolite membrane[J]. Journal of Membrane Science, 2004, 243(1/2): 69-78. |
76 | WANG Lin, ZHANG Chun, GAO Xuechao, et al. Preparation of defect-free DDR zeolite membranes by eliminating template with ozone at low temperature[J]. Journal of Membrane Science, 2017, 539: 152-160. |
77 | KWON Hyuk Taek, JEONG Hae-Kwon. In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation[J]. Journal of the American Chemical Society, 2013, 135(29): 10763-10768. |
78 | LIAN Haiqian, SONG Eryue, BAO Bin, et al. Highly steam-stable CHA-type zeolite imidazole framework ZIF-302 membrane for hydrogen separation[J]. Separation and Purification Technology, 2022, 281: 119875. |
79 | SHENG Luqian, WANG Chongqing, YANG Fan, et al. Enhanced C3H6/C3H8 separation performance on MOF membranes through blocking defects and hindering framework flexibility by silicone rubber coating[J]. Chemical Communications, 2017, 53(55): 7760-7763. |
80 | LI Jinfu, LIAN Haiqian, WEI Kaifeng, et al. Synthesis of tubular ZIF-8 membranes for propylene/propane separation under high-pressure[J]. Journal of Membrane Science, 2020, 595: 117503. |
81 | HUA Jingxian, LI Chang, TAO Hongxu, et al. Improved C3H6/C3H8 separation performance on ZIF-8 membranes through enhancing PDMS contact-dependent confinement effect[J]. Journal of Membrane Science, 2021, 636: 119613. |
82 | PARK Sunghwan, CHO Kie Yong, JEONG Hae-Kwon. Enhancing the propylene/propane separation performances of ZIF-8 membranes by post-synthetic surface polymerization[J]. Journal of Materials Chemistry A, 2022, 10(4): 1940-1947. |
83 | HAYASHI Mikio, LEE Dennis T, DE MELLO Matheus Dorneles, et al. ZIF-8 membrane permselectivity modification by manganese(Ⅱ) acetylacetonate vapor treatment[J]. Angewandte Chemie International Edition, 2021, 60(17): 9316-9320. |
84 | BAN Yujie, YANG Weishen. Multidimensional building blocks for molecular sieve membranes[J]. Accounts of Chemical Research, 2022, 55(21): 3162-3177. |
85 | MORIGAMI Yoshio, KONDO Masakazu, Jun ABE, et al. The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane[J]. Separation and Purification Technology, 2001, 25(1/2/3): 251-260. |
86 | BERNAL M P, CORONAS J, MENÉNDEZ M, et al. On the effect of morphological features on the properties of MFI zeolite membranes[J]. Microporous and Mesoporous Materials, 2003, 60(1/2/3): 99-110. |
87 | LI Yongsheng, ZHANG Xiongfu, WANG Jinqu. Preparation for ZSM-5 membranes by a two-stage varying-temperature synthesis[J]. Separation and Purification Technology, 2001, 25(1/2/3): 459-466. |
88 | RICHTER Hannes, Hartwig VOß, VOIGT Ingolf, et al. High-flux ZSM-5 membranes with an additional non-zeolite pore system by alcohol addition to the synthesis batch and their evaluation in the 1-butene/i-butene separation[J]. Separation and Purification Technology, 2010, 72(3): 388-394. |
89 | MIN Byunghyun, YANG Shaowei, KORDE Akshay, et al. Continuous zeolite MFI membranes fabricated from 2D MFI nanosheets on ceramic hollow fibers[J]. Angewandte Chemie International Edition, 2019, 58(24): 8201-8205. |
90 | LI Yanmei, WANG Yulei, GUO Mingyang, et al. High-performance 7-channel monolith supported SSZ-13 membranes for high-pressure CO2/CH4 separations[J]. Journal of Membrane Science, 2021, 629: 119277. |
91 | HUANG Weijie, HE Zibo, LIU Bo, et al. Large surface-to-volume-ratio and ultrahigh selectivity SSZ-13 membranes on 61-channel monoliths for efficient separation of CO2/CH4 mixture[J]. Separation and Purification Technology, 2023, 311: 123285. |
92 | ZHOU Junjing, WU Shijie, LIU Bo, et al. Scalable fabrication of highly selective SSZ-13 membranes on 19-channel monolithic supports for efficient CO2 capture[J]. Separation and Purification Technology, 2022, 293: 121122. |
93 | WANG Bin, WU Haolin, CUI Liyun, et al. Scalable synthesis and modular properties of tubular silicalite-1 membranes for industrial butane isomer separation[J]. Separation and Purification Technology, 2023, 313: 123496. |
94 | WU Jiyang, WU Haolin, WANG Bin, et al. One-step scalable fabrication of highly selective monolithic zeolite MFI membranes for efficient butane isomer separation[J]. ACS Applied Materials & Interfaces, 2022, 14(18): 21198-21206. |
95 | MA Bin, ZHU Yancai, HONG Hongliang, et al. Improved silicalite-1 membranes on 61-channel monolithic supports for n-butane/i-butane separation[J]. Separation and Purification Technology, 2022, 300: 121828. |
96 | Choi Jungkyu, Ghosh Shubhajit, King Lisa, et al. MFI zeolite membranes from a- and randomly oriented monolayers[J]. Adsorption, 2006, 12(5): 339-360. |
97 | SHIRAZI Mohammad Mahdi A, KARGARI Ali, ISMAIL Ahmad Fauzi, et al. Computational Fluid Dynamic (CFD) opportunities applied to the membrane distillation process: State-of-the-art and perspectives[J]. Desalination, 2016, 377: 73-90. |
98 | 于艳, 樊耀波, 徐国良, 等. 计算流体力学对膜生物反应器水力学特征的模拟研究[J]. 膜科学与技术, 2011, 31(4): 9-16. |
YU Yan, FAN Yaobo, XU Guoliang, et al. Hydraulic simulation of MBR with computational fluid dynamics[J]. Membrane Science and Technology, 2011, 31(4): 9-16. | |
99 | WANG Jiacheng, GAO Xuechao, JI Guozhao, et al. CFD simulation of hollow fiber supported NaA zeolite membrane modules[J]. Separation and Purification Technology, 2019, 213: 1-10. |
100 | KLEMOLA Kimmo T, ILME Jarno K. Distillation efficiencies of an industrial-scale i-butane/n-butane fractionator[J]. Industrial & Engineering Chemistry Research, 1996, 35(12): 4579-4586. |
101 | MITTAL Nitish, BAI Peng, KELLOWAY Adam, et al. A mathematical model for zeolite membrane module performance and its use for techno-economic evaluation of improved energy efficiency hybrid membrane-distillation processes for butane isomer separations[J]. Journal of Membrane Science, 2016, 520: 434-449. |
102 | 张晨昕. 分离CO2膜传质机理及其过程模拟研究[D]. 天津: 天津大学, 2014. |
ZHANG Chenxin. Mass transport mechanism investigation and process simulation for CO2 separation membrane[D]. Tianjin: Tianjin University, 2014. | |
103 | 许家友. CO2膜分离过程的模拟及优化[D]. 天津: 天津大学, 2019. |
XU Jiayou. Simulation and optimization of membrane processes for CO2 separation[D]. Tianjin: Tianjin University, 2019. | |
104 | ZHAO Yali, YANG Xiayi, LUO Jiayu, et al. Fast-current-driven synthesis of ultrathin ZIF-8 membrane on ceramic tube for propene/propane separation[J]. AIChE Journal, 2023, 69(4): e17934. |
105 | LIAN Haiqian, YANG Yu, CHEN Jinfeng, et al. Highly durable ZIF-8 tubular membranes via precursor-assisted processing for propylene/propane separation[J]. Journal of Membrane Science, 2022, 660: 120813. |
106 | MA Qiang, MO Kai, GAO Shushu, et al. Ultrafast semi-solid processing of highly durable ZIF-8 membranes for propylene/propane separation[J]. Angewandte Chemie International Edition, 2020, 59(49): 21909-21914. |
107 | LEE Moon Joo, ABDUL HAMID Mohamad Rezi, LEE Jongmyeong, et al. Ultrathin zeolitic-imidazolate framework ZIF-8 membranes on polymeric hollow fibers for propylene/propane separation[J]. Journal of Membrane Science, 2018, 559: 28-34. |
108 | LIAN Haiqian, BAO Bin, CHEN Jinfeng, et al. Controllable synthesis of ZIF-8 interlocked membranes for propylene/propane separation[J]. Separation and Purification Technology, 2022, 300: 121811. |
109 | SUN Jingze, YU Chen, JEONG Hae-Kwon. Propylene-selective thin zeolitic imidazolate framework membranes on ceramic tubes by microwave seeding and solvothermal secondary growth[J]. Crystals, 2018, 8(10): 373. |
110 | AMEDI Hamid Reza, AGHAJANI Masoud. Economic estimation of various membranes and distillation for propylene and propane separation[J]. Industrial & Engineering Chemistry Research, 2018, 57(12): 4366-4376. |
111 | ALCHEIKHHAMDON Yousif, PINNAU Ingo, HOORFAR Mina, et al. Propylene-propane separation using Zeolitic-Imidazolate Framework (ZIF-8) membranes: Process techno-commercial evaluation[J]. Journal of Membrane Science, 2019, 591: 117252. |
[1] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[2] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[3] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[4] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[5] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[6] | 贺美晋. 分子管理在炼油领域分离技术中的应用和发展趋势[J]. 化工进展, 2023, 42(S1): 260-266. |
[7] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[8] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[9] | 徐杰, 夏隆博, 罗平, 邹栋, 仲兆祥. 面向膜蒸馏过程的全疏膜制备及其应用进展[J]. 化工进展, 2023, 42(8): 3943-3955. |
[10] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[11] | 王兰江, 梁瑜, 汤琼, 唐明兴, 李学宽, 刘雷, 董晋湘. 快速热解铂前体合成高分散的Pt/HY催化剂及其萘深度加氢性能[J]. 化工进展, 2023, 42(8): 4159-4166. |
[12] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[13] | 周龙大, 赵立新, 徐保蕊, 张爽, 刘琳. 电场-旋流耦合强化多相介质分离研究进展[J]. 化工进展, 2023, 42(7): 3443-3456. |
[14] | 陆诗建, 刘苗苗, 杨菲, 张俊杰, 陈思铭, 刘玲, 康国俊, 李清方. 改良型CO2湿壁塔内气液两相流动规律及传质特性[J]. 化工进展, 2023, 42(7): 3457-3467. |
[15] | 冯江涵, 宋钫. 阴离子交换膜电解池的研究进展[J]. 化工进展, 2023, 42(7): 3501-3509. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |