化工进展 ›› 2023, Vol. 42 ›› Issue (8): 3943-3955.DOI: 10.16085/j.issn.1000-6613.2023-0741
收稿日期:
2023-05-06
修回日期:
2023-06-29
出版日期:
2023-08-15
发布日期:
2023-09-19
通讯作者:
邹栋,仲兆祥
作者简介:
徐杰(1999—),女,硕士研究生,从事膜蒸馏分离材料的制备与应用。E-mail:jiaojiaoxu@njtech.edu.cn。
基金资助:
XU Jie(), XIA Longbo, LUO Ping, ZOU Dong(), ZHONG Zhaoxiang()
Received:
2023-05-06
Revised:
2023-06-29
Online:
2023-08-15
Published:
2023-09-19
Contact:
ZOU Dong, ZHONG Zhaoxiang
摘要:
水资源短缺成为全球共同面临的问题,膜蒸馏法(MD)凭借其优点被广泛应用于海水淡化和高含盐废水处理。然而,膜浸润、膜污染等问题仍然阻碍着膜蒸馏技术的大规模应用。近年来,全疏膜可以排斥各种液体,极大地提高了膜蒸馏的渗透性能、抗污染性能和稳定性能。本文在面向膜蒸馏应用过程的理论框架内,从膜的表面粗糙度、表面自由能、接触角以及液体进入压力等方面综述了全疏膜抗浸润、抗污染的基本原理。从可重入粗糙表面的构筑和氟化两个基本步骤总结了全疏膜的制备过程,概括了全疏膜目前潜在的应用领域。最后对全疏膜面临的挑战和未来研究方向进行了研讨。本文对膜蒸馏过程中聚合物膜结构的设计、制备及应用过程具有重要的指导意义。
中图分类号:
徐杰, 夏隆博, 罗平, 邹栋, 仲兆祥. 面向膜蒸馏过程的全疏膜制备及其应用进展[J]. 化工进展, 2023, 42(8): 3943-3955.
XU Jie, XIA Longbo, LUO Ping, ZOU Dong, ZHONG Zhaoxiang. Progress in preparation and application of omniphobic membranes for membrane distillation process[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3943-3955.
基膜 | 膜蒸馏形式 | 进料液 | 初始通量 /kg·m-2·h-1 | 除盐率 | 应用 | 参考文献 |
---|---|---|---|---|---|---|
PVDF纳米纤维膜 | DCMD | 含150μL/L十六烷基三甲基溴化铵稳定矿物油水乳状液的3.5% NaCl溶液 | 21.5±1.2 | 99.99% | 处理含油废水 | [ |
玻璃纤维膜 | DCMD | 含0.3mmol/L SDS的1mol/L NaCl溶液 | 11.4±0.9 | 99.99% | 废水脱盐 | [ |
PVDF平板膜 | DCMD | 生物预处理焦化废水 | 18.3 | — | 处理焦化废水 | [ |
PVDF平板膜 | DCMD | 含0.2mmol/L SDS的35g/L NaCl溶液 | 12.4 | >99% | 处理反渗透浓缩液 | [ |
PVDF纳米纤维膜 | DCMD | 含SDS/矿物油的3.5% NaCl溶液 | 17.0/20.0 | 约100% | 海水淡化 | [ |
PVDF-HFP纳米 纤维膜 | DCMD | 含SDS/矿物油的3.5% NaCl溶液 | 21.3 | 99.9% | 工业废水回用 | [ |
静电纺丝PVDF膜 | 空气隙膜蒸馏(AGMD) | 含SDS的煤层气水为原料 | 15.3±0.8 | 约100% | 处理煤层气采出水中的RO盐水 | [ |
石英纤维膜 | DCMD | 含SDS的1mol/L NaCl溶液 | 19.0±1.9 | — | 处理高盐含油废水 | [ |
带正电荷的尼龙膜 | 真空膜接触器 | 甲烷饱和水溶液 | — | 甲烷回收率≥90% | 回收厌氧废水中的溶解甲烷 | [ |
平板PVDF膜 | DCMD | SDS∶十六烷∶NaCl在水中按240∶2400∶10000(mg/L)的浓度比超高速混合制备乳液,模拟含油废水 | 11.86 | — | 石油和天然气工业产生的 乳化废水 | [ |
中空纤维PVDF膜 | 真空膜蒸馏(VMD) | 含SDS的3.5% NaCl溶液 | 14.6 | — | 处理页岩气采出水 | [ |
陶瓷中空纤维膜 | DCMD | 采用含3.5% NaCl和10mg/L腐殖酸的进料 水溶液 | 4.32 | — | 海水淡化 | [ |
氧化铝中空纤维膜 | DCMD | 含2.0mmol/L SDS的 1mol/L NaCl溶液 | 14.4 | >99.99% | 低表面张力废水脱盐 | [ |
PVDF平板膜 | DCMD | 采用含0.4mmol/L SDS/DTAC(十二烷基 三甲基氯化铵)的3.5% NaCl溶液 | 27.0 | 99.99% | 低表面张力废水脱盐 | [ |
微柱状的PVDF膜 | DCMD | 14.7mmol/L CaSO4溶液/合成酪蛋白溶液 | 24.3/18.1 | — | 含微溶性盐和有机物的废水处理 | [ |
PVDF-HFP纳米 纤维膜 | DCMD | 含0.4mmol/L SDS的3.5% NaCl溶液 | 10.5 | — | 处理含低表面张力物质的 含盐废水 | [ |
PVDF纤维膜 | DCMD | 含SDS和十六烷的3.5% NaCl溶液 | 18.0 | 99.99% | 页岩气废水的可持续回收 | [ |
PVDF平板膜 | DCMD | 含NaCl 100g/L或50mg/L腐殖酸或不同电荷表面活性剂的35g/L NaCl溶液 | 36.3 | 约100% | 含有机物和表面活性剂的 复杂含盐废水处理 | [ |
聚丙烯平板膜 | DCMD | 含0.6mmol/L SDBS的50g/L NaCl溶液 | 45 | >99.5% | 含有表面活性物质的高盐度水体处理 | [ |
PVDF平板膜 | DCMD | 含SDS/油类的3.5% NaCl溶液 | 24.29/24.74 | >99% | 含表面活性剂的油性含盐 废水处理 | [ |
表1 全疏膜的应用
基膜 | 膜蒸馏形式 | 进料液 | 初始通量 /kg·m-2·h-1 | 除盐率 | 应用 | 参考文献 |
---|---|---|---|---|---|---|
PVDF纳米纤维膜 | DCMD | 含150μL/L十六烷基三甲基溴化铵稳定矿物油水乳状液的3.5% NaCl溶液 | 21.5±1.2 | 99.99% | 处理含油废水 | [ |
玻璃纤维膜 | DCMD | 含0.3mmol/L SDS的1mol/L NaCl溶液 | 11.4±0.9 | 99.99% | 废水脱盐 | [ |
PVDF平板膜 | DCMD | 生物预处理焦化废水 | 18.3 | — | 处理焦化废水 | [ |
PVDF平板膜 | DCMD | 含0.2mmol/L SDS的35g/L NaCl溶液 | 12.4 | >99% | 处理反渗透浓缩液 | [ |
PVDF纳米纤维膜 | DCMD | 含SDS/矿物油的3.5% NaCl溶液 | 17.0/20.0 | 约100% | 海水淡化 | [ |
PVDF-HFP纳米 纤维膜 | DCMD | 含SDS/矿物油的3.5% NaCl溶液 | 21.3 | 99.9% | 工业废水回用 | [ |
静电纺丝PVDF膜 | 空气隙膜蒸馏(AGMD) | 含SDS的煤层气水为原料 | 15.3±0.8 | 约100% | 处理煤层气采出水中的RO盐水 | [ |
石英纤维膜 | DCMD | 含SDS的1mol/L NaCl溶液 | 19.0±1.9 | — | 处理高盐含油废水 | [ |
带正电荷的尼龙膜 | 真空膜接触器 | 甲烷饱和水溶液 | — | 甲烷回收率≥90% | 回收厌氧废水中的溶解甲烷 | [ |
平板PVDF膜 | DCMD | SDS∶十六烷∶NaCl在水中按240∶2400∶10000(mg/L)的浓度比超高速混合制备乳液,模拟含油废水 | 11.86 | — | 石油和天然气工业产生的 乳化废水 | [ |
中空纤维PVDF膜 | 真空膜蒸馏(VMD) | 含SDS的3.5% NaCl溶液 | 14.6 | — | 处理页岩气采出水 | [ |
陶瓷中空纤维膜 | DCMD | 采用含3.5% NaCl和10mg/L腐殖酸的进料 水溶液 | 4.32 | — | 海水淡化 | [ |
氧化铝中空纤维膜 | DCMD | 含2.0mmol/L SDS的 1mol/L NaCl溶液 | 14.4 | >99.99% | 低表面张力废水脱盐 | [ |
PVDF平板膜 | DCMD | 采用含0.4mmol/L SDS/DTAC(十二烷基 三甲基氯化铵)的3.5% NaCl溶液 | 27.0 | 99.99% | 低表面张力废水脱盐 | [ |
微柱状的PVDF膜 | DCMD | 14.7mmol/L CaSO4溶液/合成酪蛋白溶液 | 24.3/18.1 | — | 含微溶性盐和有机物的废水处理 | [ |
PVDF-HFP纳米 纤维膜 | DCMD | 含0.4mmol/L SDS的3.5% NaCl溶液 | 10.5 | — | 处理含低表面张力物质的 含盐废水 | [ |
PVDF纤维膜 | DCMD | 含SDS和十六烷的3.5% NaCl溶液 | 18.0 | 99.99% | 页岩气废水的可持续回收 | [ |
PVDF平板膜 | DCMD | 含NaCl 100g/L或50mg/L腐殖酸或不同电荷表面活性剂的35g/L NaCl溶液 | 36.3 | 约100% | 含有机物和表面活性剂的 复杂含盐废水处理 | [ |
聚丙烯平板膜 | DCMD | 含0.6mmol/L SDBS的50g/L NaCl溶液 | 45 | >99.5% | 含有表面活性物质的高盐度水体处理 | [ |
PVDF平板膜 | DCMD | 含SDS/油类的3.5% NaCl溶液 | 24.29/24.74 | >99% | 含表面活性剂的油性含盐 废水处理 | [ |
1 | SAIFAOUI D, NACHTANE M, TARFAOUI M, et al. Heat recovery from sulfuric acid plants for seawater desalination using RO and MED systems[J]. Applied Water Science, 2020, 10(4): 99. |
2 | SELLAMI Ahlem, Mongi BEN ALI, KAIROUANI Lakdar. Pareto-optimization of MSF-OT/TVC desalination plant using surface response methodology and genetic algorithm[J]. Desalination and Water Treatment, 2020, 204: 10-21. |
3 | CHAMANI Hooman, WOLOSZYN Joanne, MATSUURA Takeshi, et al. Pore wetting in membrane distillation: A comprehensive review[J]. Progress in Materials Science, 2021, 122: 100843. |
4 | TOMCZAK Wirginia, GRYTA Marek. Membrane distillation of saline water contaminated with oil and surfactants[J]. Membranes, 2021, 11(12): 988. |
5 | KIM Bomin, CHOI Yongjun, CHOI Jihyeok, et al. Effect of surfactant on wetting due to fouling in membrane distillation membrane: Application of response surface methodology (RSM) and artificial neural networks (ANN)[J]. Korean Journal of Chemical Engineering, 2020, 37(1): 1-10. |
6 | HUANG Shilin, RAS Robin H A, TIAN Xuelin. Antifouling membranes for oily wastewater treatment: Interplay between wetting and membrane fouling[J]. Current Opinion in Colloid & Interface Science, 2018, 36: 90-109. |
7 | YIN Yiming, KALAM Sifat, LIVINGSTON Joshua L, et al. The use of anti-scalants in gypsum scaling mitigation: Comparison with membrane surface modification and efficiency in combined reverse osmosis and membrane distillation[J]. Journal of Membrane Science, 2022, 643: 120077. |
8 | CHEN Zoulong, RANA Dipak, MATSUURA Takeshi, et al. Study on the structure and vacuum membrane distillation performance of PVDF composite membranes: I. Influence of blending[J]. Separation and Purification Technology, 2014, 133: 303-312. |
9 | ALKHUDHIRI Abdullah, DARWISH Naif, HILAL Nidal. Membrane distillation: A comprehensive review[J]. Desalination, 2012, 287: 2-18. |
10 | LI Jun, REN Longfei, HUANG Manhong, et al. Facile preparation of omniphobic PDTS-ZnO-PVDF membrane with excellent anti-wetting property in direct contact membrane distillation (DCMD)[J]. Journal of Membrane Science, 2022, 650: 120404. |
11 | XIAO Zechun, GUO Hong, HE Hailong, et al. Unprecedented scaling/fouling resistance of omniphobic polyvinylidene fluoride membrane with silica nanoparticle coated micropillars in direct contact membrane distillation[J]. Journal of Membrane Science, 2020, 599: 117819. |
12 | YOUNG Thomas. III. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95: 65-87. |
13 | WENZEL Robert N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. |
14 | CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. |
15 | ZHANG Songnan, HUANG Jianying, CHEN Zhong, et al. Bioinspired special wettability surfaces: From fundamental research to water harvesting applications[J]. Small, 2017, 13(3): 1602992. |
16 | YOUNG Thomas, KELLAND Philip, YOUNG Thomas. A course of lectures on natural philosophy and the mechanical arts, by Thomas Young[M]. London: Printed for Taylor and Walton, 1845. |
17 | Elena GUILLEN-BURRIEZA, SERVI Amelia, LALIA Boor S, et al. Membrane structure and surface morphology impact on the wetting of MD membranes[J]. Journal of Membrane Science, 2015, 483: 94-103. |
18 | FRANKEN A C M, NOLTEN J A M, MULDER M H V, et al. Wetting criteria for the applicability of membrane distillation[J]. Journal of Membrane Science, 1987, 33(3): 315-328. |
19 | XING Xing, ZHAO Yurong, XU Congbin, et al. Omniphobic polyvinylidene fluoride membrane decorated with a ZnO nano sea urchin structure: Performance against surfactant-wetting in membrane distillation[J]. Industrial & Engineering Chemistry Research, 2022, 61(5): 2237-2244. |
20 | XIE Songchen, PANG Zhiguang, HOU Chunguang, et al. One-step preparation of omniphobic membrane with concurrent anti-scaling and anti-wetting properties for membrane distillation[J]. Journal of Membrane Science, 2022, 660: 120846. |
21 | FENG Hui, LI Huijuan, LI Meng, et al. Construction of omniphobic PVDF membranes for membrane distillation: Investigating the role of dimension, morphology, and coating technology of silica nanoparticles[J]. Desalination, 2022, 525: 115498. |
22 | ZHANG Wei, WANG Zhi, LI Baoan. Omniphobic membrane with nest-like re-entrant structure via electrospraying strategy for robust membrane distillation[J]. Journal of Membrane Science, 2021, 640: 119824. |
23 | LIAO Xiangjun, Kunli GOH, LIAO Yuan, et al. Bio-inspired super liquid-repellent membranes for membrane distillation: Mechanisms, fabrications and applications[J]. Advances in Colloid and Interface Science, 2021, 297: 102547. |
24 | TIJING Leonard D, Yun Chul WOO, CHOI June-Seok, et al. Fouling and its control in membrane distillation—A review[J]. Journal of Membrane Science, 2015, 475: 215-244. |
25 | LIU Li, XIAO Zechun, LIU Yongjie, et al. Understanding the fouling/scaling resistance of superhydrophobic/omniphobic membranes in membrane distillation[J]. Desalination, 2021, 499: 114864. |
26 | HUBADILLAH Siti Khadijah, DZARFAN OTHMAN Mohd Hafiz, SHEIKH ABDUL KADIR Siti Hamimah, et al. Removal of As(ⅲ) and As(ⅴ) from water using green, silica-based ceramic hollow fibre membranes via direct contact membrane distillation[J]. RSC Advances, 2019, 9(6): 3367-3376. |
27 | KUJAWA Joanna. From nanoscale modification to separation-The role of substrate and modifiers in the transport properties of ceramic membranes in membrane distillation[J]. Journal of Membrane Science, 2019, 580: 296-306. |
28 | AZIZ Mohd Haiqal ABD, DZARFAN OTHMAN Mohd Hafiz, ALIAS Nur Hashimah, et al. Enhanced omniphobicity of mullite hollow fiber membrane with organosilane-functionalized TiO2 micro-flowers and nanorods layer deposition for desalination using direct contact membrane distillation[J]. Journal of Membrane Science, 2020, 607: 118137. |
29 | ALFTESSI Saber Abdulhamid, OTHMAN Mohd Hafiz Dzarfan, ADAM Mohd Ridhwan, et al. Omniphobic surface modification of silica sand ceramic hollow fiber membrane for desalination via direct contact membrane distillation[J]. Desalination, 2022, 532: 115705. |
30 | TWIBI Mohamed Farag, OTHMAN Mohd Hafiz Dzarfan, MOHD SOKRI Mohd Nazri, et al. Novel approach to surface functionalization of mullite-kaolinite hollow fiber membrane using organosilane-functionalized Co3O4 spider web-like layer deposition for desalination using direct contact membrane distillation[J]. Ceramics International, 2022, 48(14): 21025-21036. |
31 | Ahmed ABDEL-KARIM, LUQUE-ALLED Jose Miguel, LEAPER Sebastian, et al. PVDF membranes containing reduced graphene oxide: Effect of degree of reduction on membrane distillation performance[J]. Desalination, 2019, 452: 196-207. |
32 | ESSALHI Mohamed, ISMAIL Norafiqah, TESFALIDET Solomon, et al. Polyvinylidene fluoride membrane formation using carbon dioxide as a non-solvent additive for nuclear wastewater decontamination[J]. Chemical Engineering Journal, 2022, 446: 137300. |
33 | ZHANG Renwei, TANG Wenyong, GAO Haifu, et al. In-situ construction of superhydrophobic PVDF membrane via NaCl-H2O induced polymer incipient gelation for membrane distillation[J]. Separation and Purification Technology, 2021, 274: 117762. |
34 | Yun Chul WOO, KIM Youngjin, SHIM Wang-Geun, et al. Graphene/PVDF flat-sheet membrane for the treatment of RO brine from coal seam gas produced water by air gap membrane distillation[J]. Journal of Membrane Science, 2016, 513: 74-84. |
35 | LI Kuiling, HOU Deyin, FU Chaochen, et al. Fabrication of PVDF nanofibrous hydrophobic composite membranes reinforced with fabric substrates via electrospinning for membrane distillation desalination[J]. Journal of Environmental Sciences, 2019, 75: 277-288. |
36 | HUANG Yan, HUANG Qinglin, LIU Huan, et al. Preparation, characterization, and applications of electrospun ultrafine fibrous PTFE porous membranes[J]. Journal of Membrane Science, 2017, 523: 317-326. |
37 | HUANG Qinglin, HUANG Yan, XIAO Changfa, et al. Electrospun ultrafine fibrous PTFE-supported ZnO porous membrane with self-cleaning function for vacuum membrane distillation[J]. Journal of Membrane Science, 2017, 534: 73-82. |
38 | HU Xuhui, CHEN Xing, GIAGNORIO Mattia, et al. Beaded electrospun polyvinylidene fluoride (PVDF) membranes for membrane distillation (MD)[J]. Journal of Membrane Science, 2022, 661: 120850. |
39 | ZHOU Lei, ZHANG Haichao, AHMAD Abdul Latif, et al. Hierarchical structure design of electrospun membrane for enhanced membrane distillation treatment of shrimp aquaculture wastewater[J]. Separation and Purification Technology, 2023, 306: 122591. |
40 | ZHU Zhigao, ZHONG Lingling, HORSEMAN Thomas, et al. Superhydrophobic-omniphobic membrane with anti-deformable pores for membrane distillation with excellent wetting resistance[J]. Journal of Membrane Science, 2021, 620: 118768. |
41 | Chanhee BOO, LEE Jongho, ELIMELECH Menachem. Omniphobic polyvinylidene fluoride (PVDF) membrane for desalination of shale gas produced water by membrane distillation[J]. Environmental Science & Technology, 2016, 50(22): 12275-12282. |
42 | XU Yuanlu, YANG Yi, FAN Xinfei, et al. In-situ silica nanoparticle assembly technique to develop an omniphobic membrane for durable membrane distillation[J]. Desalination, 2021, 499: 114832. |
43 | DU Xuewei, ALIPANAHROSTAMI Mohammad, WANG Wei, et al. Long-chain PFASs-free omniphobic membranes for sustained membrane distillation[J]. ACS Applied Materials & Interfaces, 2022, 14(20): 23808-23816. |
44 | LI Jianfeng, GUO Shujuan, XU Zhaozan, et al. Preparation of omniphobic PVDF membranes with silica nanoparticles for treating coking wastewater using direct contact membrane distillation: Electrostatic adsorption vs. chemical bonding[J]. Journal of Membrane Science, 2019, 574: 349-357. |
45 | DEKA Bhaskar Jyoti, GUO Jiaxin, KHANZADA Noman Khalid, et al. Omniphobic re-entrant PVDF membrane with ZnO nanoparticles composite for desalination of low surface tension oily seawater[J]. Water Research, 2019, 165: 114982. |
46 | CHEN Liang-Hsun, HUANG Allen, CHEN Yirui, et al. Omniphobic membranes for direct contact membrane distillation: Effective deposition of zinc oxide nanoparticles[J]. Desalination, 2018, 428: 255-263. |
47 | ZHAO Yurong, XING Xing, XU Congbin, et al. ZnO nanorod induced omniphobic polypropylene membrane for improved antiwetting performance in membrane distillation[J]. Industrial & Engineering Chemistry Research, 2022, 61(17): 5963-5970. |
48 | LI Xianhui, QING Weihua, WU Yifan, et al. Omniphobic nanofibrous membrane with pine-needle-like hierarchical nanostructures: Toward enhanced performance for membrane distillation[J]. ACS Applied Materials & Interfaces, 2019, 11(51): 47963-47971. |
49 | ZHANG Wei, HU Boyang, WANG Zhi, et al. Fabrication of omniphobic PVDF composite membrane with dual-scale hierarchical structure via chemical bonding for robust membrane distillation[J]. Journal of Membrane Science, 2021, 622: 119038. |
50 | LIAO Xiangjun, WANG Yuqi, LIAO Yuan, et al. Effects of different surfactant properties on anti-wetting behaviours of an omniphobic membrane in membrane distillation[J]. Journal of Membrane Science, 2021, 634: 119433. |
51 | QING Weihua, WU Yifan, LI Xianhui, et al. Omniphobic PVDF nanofibrous membrane for superior anti-wetting performance in direct contact membrane distillation[J]. Journal of Membrane Science, 2020, 608: 118226. |
52 | QING Weihua, WANG Jianqiang, MA Xiaohua, et al. One-step tailoring surface roughness and surface chemistry to prepare superhydrophobic polyvinylidene fluoride (PVDF) membranes for enhanced membrane distillation performances[J]. Journal of Colloid and Interface Science, 2019, 553: 99-107. |
53 | ZOU Dong, KIM Hyun Woo, JEON Seong Min, et al. Fabrication and modification of PVDF/PSF hollow-fiber membranes for ginseng extract and saline water separations via direct contact membrane distillation[J]. Journal of Membrane Science, 2022, 644: 120101. |
54 | MOHAMMADI GHALENI Mahdi, BALUSHI Abdullah AL, BAVARIAN Mona, et al. Omniphobic hollow fiber membranes for water recovery and desalination[J]. ACS Applied Polymer Materials, 2020, 2(8): 3034-3038. |
55 | LIU Yujing, LU Yannan, LIANG Dongqing, et al. Multi-layered branched surface fluorination on PVDF membrane for anti-scaling membrane distillation[J]. Membranes, 2022, 12(8): 743. |
56 | YANG Chi, LI Xuemei, GILRON Jack, et al. CF4 plasma-modified superhydrophobic PVDF membranes for direct contact membrane distillation[J]. Journal of Membrane Science, 2014, 456: 155-161. |
57 | Yun Chul WOO, CHEN Ying, TIJING Leonard D, et al. CF4 plasma-modified omniphobic electrospun nanofiber membrane for produced water brine treatment by membrane distillation[J]. Journal of Membrane Science, 2017, 529: 234-242. |
58 | LU Kang jia, ZUO Jian, CHANG Jian, et al. Omniphobic hollow-fiber membranes for vacuum membrane distillation[J]. Environmental Science & Technology, 2018, 52(7): 4472-4480. |
59 | CHEN Yuanmiaoliang, LU Kang jia, CHUNG Tai-Shung. An omniphobic slippery membrane with simultaneous anti-wetting and anti-scaling properties for robust membrane distillation[J]. Journal of Membrane Science, 2020, 595: 117572. |
60 | MENG Lijun, MANSOURI Jaleh, LI Xuesong, et al. Omniphobic membrane via bioinspired silicification for the treatment of RO concentrate by membrane distillation[J]. Journal of Membrane Science, 2022, 647: 120267. |
61 | LI Chenxi, LI Xuesong, DU Xuewei, et al. Antiwetting and antifouling Janus membrane for desalination of saline oily wastewater by membrane distillation[J]. ACS Applied Materials & Interfaces, 2019, 11(20): 18456-18465. |
62 | LI Xuesong, DUTTA Abhishek, DONG Qirong, et al. Dissolved methane harvesting using omniphobic membranes for anaerobically treated wastewaters[J]. Environmental Science & Technology Letters, 2019, 6(4): 228-234. |
63 | ZHENG Rui, CHEN Ying, WANG Jin, et al. Preparation of omniphobic PVDF membrane with hierarchical structure for treating saline oily wastewater using direct contact membrane distillation[J]. Journal of Membrane Science, 2018, 555: 197-205. |
64 | CHEN Liang-Hsun, CHEN Yirui, HUANG Allen, et al. Nanostructure depositions on alumina hollow fiber membranes for enhanced wetting resistance during membrane distillation[J]. Journal of Membrane Science, 2018, 564: 227-236. |
65 | LI Xipeng, SHAN Huiting, CAO Min, et al. Facile fabrication of omniphobic PVDF composite membrane via a waterborne coating for anti-wetting and anti-fouling membrane distillation[J]. Journal of Membrane Science, 2019, 589: 117262. |
66 | WU Xiaoqiong, WU Xing, WANG Tingyu, et al. Omniphobic surface modification of electrospun nanofiber membrane via vapor deposition for enhanced anti-wetting property in membrane distillation[J]. Journal of Membrane Science, 2020, 606: 118075. |
67 | REN Longfei, LI Jun, XU Yubo, et al. Novel sandwich-like membrane with hydrophilic-omniphobic-hydrophilic structure for sustainable water recovery in membrane distillation[J]. Resources, Conservation and Recycling, 2023, 188: 106646. |
[1] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[2] | 石一慈, 潘艳秋, 王成宇, 范嘉禾, 俞路. 焦耳效应强化气隙式膜蒸馏脱盐过程的实验研究[J]. 化工进展, 2022, 41(5): 2285-2291. |
[3] | 宋永, 李恋, 陈志. 基于气隙式膜蒸馏的溴化锂吸收式制冷系统COP的优化[J]. 化工进展, 2021, 40(S1): 150-155. |
[4] | 谢松辰, 文剑平, 庞志广, 侯春光, 李志霞, 晋墩尚, 彭跃莲. 膜蒸馏脱盐中膜污染与膜润湿的研究进展[J]. 化工进展, 2021, 40(7): 3942-3956. |
[5] | 刘立新, 赵晓非, 赖家凤, 邱观平, 李乾峰, 陈俊宇. 膜蒸馏脱盐过程膜润湿的研究进展[J]. 化工进展, 2021, 40(6): 3072-3082. |
[6] | 陈贵靖, 杨园园, 康冬冬, 邵会菊, 秦舒浩. 凝固浴组成对SMA/CPVC共混超滤膜的结构与性能影响[J]. 化工进展, 2021, 40(3): 1284-1291. |
[7] | 朱腾义, 曹再植. 正渗透-膜蒸馏耦合工艺在高难度废水处理中的应用研究进展[J]. 化工进展, 2021, 40(11): 5894-5906. |
[8] | 任静, 刘状, 郭淑娟, 李剑锋, 程芳琴. 亲水/疏水复合膜强化膜蒸馏深度处理工业废水的研究进展[J]. 化工进展, 2021, 40(11): 6347-6357. |
[9] | 高凯华, 茆羊羊, 刘公平, 金万勤. 疏水石墨烯膜的制备及其用于膜蒸馏脱盐的研究进展[J]. 化工进展, 2020, 39(6): 2135-2144. |
[10] | 李恋,陈志,杨进飞,王计辉,李建明. 气隙式膜蒸馏在溴化锂吸收式制冷系统中的应用[J]. 化工进展, 2020, 39(1): 80-88. |
[11] | 刘羊九, 王云山, 韩吉田, 任天健. 膜蒸馏技术研究及应用进展[J]. 化工进展, 2018, 37(10): 3726-3736. |
[12] | 潘艳秋, 沈驭臣, 闫勋栋, 俞路. 气隙式膜蒸馏NaCl溶液的两相流强化[J]. 化工进展, 2017, 36(01): 66-70. |
[13] | 董哲勤, 王宝娟, 许振良, 魏永明, 程亮. 油水分离功能膜制备技术研究进展[J]. 化工进展, 2017, 36(01): 1-9. |
[14] | 秦龙鑫, 潘国元, 张杨, 严昊, 徐建, 郭敏, 刘轶群 . 纳米银在水处理膜中的应用进展[J]. 化工进展, 2016, 35(07): 2114-2120. |
[15] | 郭智, 张新妙, 章晨林, 栾金义. 膜蒸馏过程强化及优化技术研究进展[J]. 化工进展, 2016, 35(04): 981-987. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |