化工进展 ›› 2023, Vol. 42 ›› Issue (10): 5445-5458.DOI: 10.16085/j.issn.1000-6613.2022-2168
收稿日期:
2022-11-22
修回日期:
2023-02-08
出版日期:
2023-10-15
发布日期:
2023-11-11
通讯作者:
詹健
作者简介:
苏景振(1998-),男,硕士研究生,研究方向为水处理技术。E-mail:1141748597@qq.com。
基金资助:
SU Jingzhen1(), ZHAN Jian2,3()
Received:
2022-11-22
Revised:
2023-02-08
Online:
2023-10-15
Published:
2023-11-11
Contact:
ZHAN Jian
摘要:
微塑料已成为水体环境中的一种新污染物。常规水处理方法去除微塑料局限较多,生物炭的多样微孔结构、高疏水性和高碳含量能够有效吸附微塑料且自发解吸率较低,表现出经济环保、去除效率高的优势,但仍存在无法降解除去微塑料以及生物炭多环境应用性低的问题。本文概述了微塑料的水污染现状和常规水处理去除方法,重点从生物炭特性、作用机理和影响因素等方面综述了生物炭吸附去除微塑料的研究进展,分析了生物炭(原料成分、制备条件、改性方式等)和微塑料(种类、粒径、结构特征等)自身的理化性质以及环境因素(pH、共存离子、有机干扰物质等)对吸附行为的影响,并介绍了土壤中生物炭与微塑料的共存现状。最后对未来工作提出进一步统一归类微塑料以针对性开发生物炭材料、改进实验条件以真实性模拟实际环境、探索生物炭与微塑料的协同效应机制及重视生物炭循环再生等建议,以期为生物炭针对性去除不同水体中常见微塑料提供理论支持。
中图分类号:
苏景振, 詹健. 生物炭对水环境中微塑料的去除研究进展[J]. 化工进展, 2023, 42(10): 5445-5458.
SU Jingzhen, ZHAN Jian. Research progress of microplastic removal from water environment by biochar[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5445-5458.
主要形状分布 | 主要(微)塑料种类 | 化学式 | 密度/g·cm-3 | 结晶度/% | 主要产生途径 | 参考文献 |
---|---|---|---|---|---|---|
碎片、薄膜类 | 聚乙烯(PE) | [C2H4] n | 0.91~0.97 | 55~95[ | 工程包装材料、薄膜制品等领域 | [ |
聚丙烯(PP) | [C3H6] n | 0.90~0.91 | 38.4[ | 食品包装器具、服装、管道和车辆零部件等领域 | ||
聚酰胺(PA) | [NH-R-CO] x | 1.04~1.14 | 30~40[ | 工业涂料、树脂、纺织业等领域 | ||
纤维类 | 聚对苯二甲酸乙二醇酯(PET) | [C10H12O6] n | 1.37~1.38 | 0.5[ | 电子元件、机械工业等领域 | |
聚氯乙烯(PVC) | [C2H3Cl] n | 1.35~1.45 | 5~10[ | 管、线材料等领域 | ||
泡沫颗粒类 | 聚苯乙烯(PS) | [C8H8] n | 1.04~1.07 | 3.7[ | 化妆品、泡沫塑料制品等领域 |
表1 几种常见(微)塑料的物理特性及产生途径
主要形状分布 | 主要(微)塑料种类 | 化学式 | 密度/g·cm-3 | 结晶度/% | 主要产生途径 | 参考文献 |
---|---|---|---|---|---|---|
碎片、薄膜类 | 聚乙烯(PE) | [C2H4] n | 0.91~0.97 | 55~95[ | 工程包装材料、薄膜制品等领域 | [ |
聚丙烯(PP) | [C3H6] n | 0.90~0.91 | 38.4[ | 食品包装器具、服装、管道和车辆零部件等领域 | ||
聚酰胺(PA) | [NH-R-CO] x | 1.04~1.14 | 30~40[ | 工业涂料、树脂、纺织业等领域 | ||
纤维类 | 聚对苯二甲酸乙二醇酯(PET) | [C10H12O6] n | 1.37~1.38 | 0.5[ | 电子元件、机械工业等领域 | |
聚氯乙烯(PVC) | [C2H3Cl] n | 1.35~1.45 | 5~10[ | 管、线材料等领域 | ||
泡沫颗粒类 | 聚苯乙烯(PS) | [C8H8] n | 1.04~1.07 | 3.7[ | 化妆品、泡沫塑料制品等领域 |
水环境介质 | 采样地点(位置)和年份 | 主要微塑料成分(粒径分布) | 主要形状 | 平均丰度水平(采集网/膜) | 参考文献 |
---|---|---|---|---|---|
海洋 | 大西洋(表层海水),2015 | PET、PA(0.25~0.5mm) | 纤维(94%) | (1.15±1.45)颗粒/m3(曼塔拖网,333μm) | [ |
美国南加州太平洋(表层海水),2001 | —(0.35~4.7mm) | 碎片(92.7%以上) | 7.25颗粒/m3(曼塔拖网,333μm) | [ | |
中国东海,2014 | —(0.5~5mm,91.2%) | 纤维(83.2%) | (0.167±0.138)颗粒/m3(Neuston网,333μm) | [ | |
韩国东南海,2012 | PE、PP、PS、PET(2~5mm) | 纤维(17.48%~35.52%)、 薄膜(20.47%~39.78%) | 1.92~5.51颗粒/m3;2.3~38.77颗粒/m3(曼塔拖网,330μm) | [ | |
印度洋南非东南部(海滩沉积物、冲浪带水域),2014 | PS等(0.065~5mm) | 纤维(90%)、碎片 | (688.9±348.2)~(3308±1449)颗粒/m3; (257.9±53.36)~(1215±276.7)颗粒/m3 (WP-2 type网,80μm) | [ | |
河湖 | 英国塔马尔河 (河口地表水),2012 | PE、PP、PS(>270μm) | 碎片 | 0.028颗粒/m3(曼塔拖网,300μm) | [ |
中国太湖,2014 | PET、PP、PE (100~1000μm) | 纤维 | 3400~25800颗粒/m3(尼龙浮游生物网,333μm) | [ | |
汉江、长江部分河段,2016 | PET、PP(<2mm,80%) | 纤维 | (1660.0±639.1)~(8925±1591)颗粒/m3(不锈钢筛网,50μm) | [ | |
中国洞庭湖、洪湖(表层水),2014 | PE、PP(<2mm,80%) | 纤维 | 1250~4650颗粒/m3(不锈钢筛网,50μm) | [ | |
德国莱茵河(表层水),2015 | PS、PE(300~1000μm) | 碎片、球状 | 693颗粒/m3(—) | [ | |
饮用水 | 德国饮用水处理厂 (地下30m水井),2014 | PE、PA、PET、PVC、EP (50~150μm) | 纤维、碎片 | 0~7颗粒/m3(不锈钢筒式过滤器,3μm) | [ |
中国部分地区自来水,2020 | PE、PP(<50μm) | 碎片(53.85%~100%)、 纤维(1.13%~30.77%)、 球体(2.27%~36.36%) | (0.440±0.275)颗粒/m3[黑色聚碳酸酯(PC)膜,0.2μm] | [ | |
捷克共和国饮用水处理厂,2018 | PET、PP、PE (<10μm,95%) | 碎片、纤维 | (0.338±0.076)~(0.628±0.028)颗粒/m3[聚四氟乙烯(PTFE)膜,0.2μm] | [ | |
中国塑料/玻璃瓶(饮料/啤酒),2022 | PS、PP(300~1000μm) | 碎片、准球形 | 10颗粒/mL、20~80颗粒/mL(—) | [ |
表2 微(纳)塑料在水系统中(海水、淡水)的分布特征
水环境介质 | 采样地点(位置)和年份 | 主要微塑料成分(粒径分布) | 主要形状 | 平均丰度水平(采集网/膜) | 参考文献 |
---|---|---|---|---|---|
海洋 | 大西洋(表层海水),2015 | PET、PA(0.25~0.5mm) | 纤维(94%) | (1.15±1.45)颗粒/m3(曼塔拖网,333μm) | [ |
美国南加州太平洋(表层海水),2001 | —(0.35~4.7mm) | 碎片(92.7%以上) | 7.25颗粒/m3(曼塔拖网,333μm) | [ | |
中国东海,2014 | —(0.5~5mm,91.2%) | 纤维(83.2%) | (0.167±0.138)颗粒/m3(Neuston网,333μm) | [ | |
韩国东南海,2012 | PE、PP、PS、PET(2~5mm) | 纤维(17.48%~35.52%)、 薄膜(20.47%~39.78%) | 1.92~5.51颗粒/m3;2.3~38.77颗粒/m3(曼塔拖网,330μm) | [ | |
印度洋南非东南部(海滩沉积物、冲浪带水域),2014 | PS等(0.065~5mm) | 纤维(90%)、碎片 | (688.9±348.2)~(3308±1449)颗粒/m3; (257.9±53.36)~(1215±276.7)颗粒/m3 (WP-2 type网,80μm) | [ | |
河湖 | 英国塔马尔河 (河口地表水),2012 | PE、PP、PS(>270μm) | 碎片 | 0.028颗粒/m3(曼塔拖网,300μm) | [ |
中国太湖,2014 | PET、PP、PE (100~1000μm) | 纤维 | 3400~25800颗粒/m3(尼龙浮游生物网,333μm) | [ | |
汉江、长江部分河段,2016 | PET、PP(<2mm,80%) | 纤维 | (1660.0±639.1)~(8925±1591)颗粒/m3(不锈钢筛网,50μm) | [ | |
中国洞庭湖、洪湖(表层水),2014 | PE、PP(<2mm,80%) | 纤维 | 1250~4650颗粒/m3(不锈钢筛网,50μm) | [ | |
德国莱茵河(表层水),2015 | PS、PE(300~1000μm) | 碎片、球状 | 693颗粒/m3(—) | [ | |
饮用水 | 德国饮用水处理厂 (地下30m水井),2014 | PE、PA、PET、PVC、EP (50~150μm) | 纤维、碎片 | 0~7颗粒/m3(不锈钢筒式过滤器,3μm) | [ |
中国部分地区自来水,2020 | PE、PP(<50μm) | 碎片(53.85%~100%)、 纤维(1.13%~30.77%)、 球体(2.27%~36.36%) | (0.440±0.275)颗粒/m3[黑色聚碳酸酯(PC)膜,0.2μm] | [ | |
捷克共和国饮用水处理厂,2018 | PET、PP、PE (<10μm,95%) | 碎片、纤维 | (0.338±0.076)~(0.628±0.028)颗粒/m3[聚四氟乙烯(PTFE)膜,0.2μm] | [ | |
中国塑料/玻璃瓶(饮料/啤酒),2022 | PS、PP(300~1000μm) | 碎片、准球形 | 10颗粒/mL、20~80颗粒/mL(—) | [ |
生物炭 类型 | 制备方法 | 表面参数 | 目标微塑料(粒径,初始浓度) | 吸附动力学模型(R2) | 吸附等温线 模型(R2) | 吸附平衡时间 | 最大吸附 容量(Qm) /mg·g-1 | 主要吸附机理 | 参考文献 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
比表面积 /m2·g-1 | 总孔隙体积 /cm3·g-1 | 平均孔径 /nm | |||||||||
污泥 | 650℃热解 | — | — | — | PET(6.5μm,0.5g/L) | 拟一级0.832 拟二级0.832 | — | 6h | 0.008 | 物理吸附 | [ |
秸秆 | 拟一级0.709 拟二级0.679 | 6h | 0.004 | ||||||||
梧桐皮 | 拟一级0.845 拟二级0.689 | 4h | 0.008 | ||||||||
苏格兰松 | 475℃慢热解3h(原始),800℃ 蒸汽活化3.5h | 454~615 | 0.165~0.2 | <2 | PE(10μm,4g/L) | — | — | — | 200 | 物理截留/粒子内扩散 | [ |
云杉树皮 | 185~369 | 0.071~0.132 | |||||||||
玉米芯 | 500℃热解/酸 氧化改性 | 17.8/36.9 | 0.04/0.09 | 7.31/7.07 | PS(50nm,1g/L) | 拟一级0.86 拟二级0.96 | Langmuir 0.97 Freundlich 0.88 | 4h内/8h内 | 16/18 | 疏水作用、 静电相互作用、孔隙填充、 氢键 | [ |
700℃热解/酸 氧化改性 | 34.5/48.2 | 0.06/0.11 | 9.12/8.82 | 拟一级0.93 拟二级0.98 | Langmuir 0.98 Freundlich 0.94 | ||||||
900℃热解/酸 氧化改性 | 36.3/40.8 | 0.06/0.13 | 9.79/9.09 | 拟一级0.97 拟二级0.98 | Langmuir 0.98 Freundlich 0.92 | ||||||
松木锯末 | 475℃慢热解2h(原始) | 405.76 | 0.19 | 1.86 | PS(1μm,0.1g/L) | 拟一级0.9996 | Langmuir 0.929 Freundlich 0.919 | 5h内 | 374.57 | 静电相互作用、表面络合作用 | [ |
475℃慢热解2h,金属Mg改性 | 265.47 | 0.41 | 3.83 | 拟一级0.9991 | Langmuir 0.897 Freundlich 0.877 | 334.03 | |||||
475℃慢热解2h,金属Zn改性 | 329.87 | 0.34 | 3.83 | 拟一级0.9991 | Langmuir 0.939 Freundlich 0.915 | 355.72 | |||||
生物质 材料 | 500℃、热解2h,金属Fe改性 | 164.6 | 0.12 | 5.2 | PS(1μm,0.01g/L) | 拟一级>0.95 拟二级>0.99 | Langmuir>0.95 Freundlich>0.88 | <10min | 290.2 | 静电相互作用、表面络合作用 | [ |
850℃热解2h,金属Fe改性 | 302.9 | 0.18 | 3.4 | 拟一级>0.98 拟二级>0.98 | Langmuir>0.93 Freundlich>0.85 | ||||||
甘蔗渣 | 350℃热解 | 1.44 | — | — | PS(<500nm,0.5g/L) | 拟一级0.99 拟二级0.96 | Langmuir 0.939 Freundlich 0.915 | <5min | 44.9 | 静电相互作用/粒子内扩散 | [ |
550℃热解 | 88.18 | Langmuir 0.939 Freundlich 0.915 | 32.6 | ||||||||
750℃热解 | 540.36 | Langmuir 0.939 Freundlich 0.915 | 26.7 | ||||||||
玉米芯 | 预处理6h,650℃热解 | 216.01 | 0.22 | 4.58 | PS(100nm,0.02g/L) | 拟一级0.99 拟二级0.98 | Langmuir 0.91 Freundlich 0.90 | 12h | 56.02 | 静电相互作用、氢键、疏水相互作用 | [ |
表3 不同生物炭吸附微塑料的研究现状
生物炭 类型 | 制备方法 | 表面参数 | 目标微塑料(粒径,初始浓度) | 吸附动力学模型(R2) | 吸附等温线 模型(R2) | 吸附平衡时间 | 最大吸附 容量(Qm) /mg·g-1 | 主要吸附机理 | 参考文献 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
比表面积 /m2·g-1 | 总孔隙体积 /cm3·g-1 | 平均孔径 /nm | |||||||||
污泥 | 650℃热解 | — | — | — | PET(6.5μm,0.5g/L) | 拟一级0.832 拟二级0.832 | — | 6h | 0.008 | 物理吸附 | [ |
秸秆 | 拟一级0.709 拟二级0.679 | 6h | 0.004 | ||||||||
梧桐皮 | 拟一级0.845 拟二级0.689 | 4h | 0.008 | ||||||||
苏格兰松 | 475℃慢热解3h(原始),800℃ 蒸汽活化3.5h | 454~615 | 0.165~0.2 | <2 | PE(10μm,4g/L) | — | — | — | 200 | 物理截留/粒子内扩散 | [ |
云杉树皮 | 185~369 | 0.071~0.132 | |||||||||
玉米芯 | 500℃热解/酸 氧化改性 | 17.8/36.9 | 0.04/0.09 | 7.31/7.07 | PS(50nm,1g/L) | 拟一级0.86 拟二级0.96 | Langmuir 0.97 Freundlich 0.88 | 4h内/8h内 | 16/18 | 疏水作用、 静电相互作用、孔隙填充、 氢键 | [ |
700℃热解/酸 氧化改性 | 34.5/48.2 | 0.06/0.11 | 9.12/8.82 | 拟一级0.93 拟二级0.98 | Langmuir 0.98 Freundlich 0.94 | ||||||
900℃热解/酸 氧化改性 | 36.3/40.8 | 0.06/0.13 | 9.79/9.09 | 拟一级0.97 拟二级0.98 | Langmuir 0.98 Freundlich 0.92 | ||||||
松木锯末 | 475℃慢热解2h(原始) | 405.76 | 0.19 | 1.86 | PS(1μm,0.1g/L) | 拟一级0.9996 | Langmuir 0.929 Freundlich 0.919 | 5h内 | 374.57 | 静电相互作用、表面络合作用 | [ |
475℃慢热解2h,金属Mg改性 | 265.47 | 0.41 | 3.83 | 拟一级0.9991 | Langmuir 0.897 Freundlich 0.877 | 334.03 | |||||
475℃慢热解2h,金属Zn改性 | 329.87 | 0.34 | 3.83 | 拟一级0.9991 | Langmuir 0.939 Freundlich 0.915 | 355.72 | |||||
生物质 材料 | 500℃、热解2h,金属Fe改性 | 164.6 | 0.12 | 5.2 | PS(1μm,0.01g/L) | 拟一级>0.95 拟二级>0.99 | Langmuir>0.95 Freundlich>0.88 | <10min | 290.2 | 静电相互作用、表面络合作用 | [ |
850℃热解2h,金属Fe改性 | 302.9 | 0.18 | 3.4 | 拟一级>0.98 拟二级>0.98 | Langmuir>0.93 Freundlich>0.85 | ||||||
甘蔗渣 | 350℃热解 | 1.44 | — | — | PS(<500nm,0.5g/L) | 拟一级0.99 拟二级0.96 | Langmuir 0.939 Freundlich 0.915 | <5min | 44.9 | 静电相互作用/粒子内扩散 | [ |
550℃热解 | 88.18 | Langmuir 0.939 Freundlich 0.915 | 32.6 | ||||||||
750℃热解 | 540.36 | Langmuir 0.939 Freundlich 0.915 | 26.7 | ||||||||
玉米芯 | 预处理6h,650℃热解 | 216.01 | 0.22 | 4.58 | PS(100nm,0.02g/L) | 拟一级0.99 拟二级0.98 | Langmuir 0.91 Freundlich 0.90 | 12h | 56.02 | 静电相互作用、氢键、疏水相互作用 | [ |
80 | TONG Meiping, HE Lei, RONG Haifeng, et al. Transport behaviors of plastic particles in saturated quartz sand without and with biochar/Fe3O4-biochar amendment[J]. Water Research, 2020, 169: 115284. |
81 | HASSAN M, LIU Y J, NAIDU R, et al. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis[J]. Science of the Total Environment, 2020, 744: 140714. |
82 | 王一飞, 李淼, 于海瀛, 等. 微塑料对环境中有机污染物吸附解吸的研究进展[J]. 生态毒理学报, 2019, 14(4): 23-30. |
WANG Yifei, LI Miao, YU Haiying, et al. Research progress on the adsorption and desorption between microplastics and environmental organic pollutants[J]. Asian Journal of Ecotoxicology, 2019, 14(4): 23-30. | |
83 | FAN Xiulei, ZOU Yefeng, GENG Nan, et al. Investigation on the adsorption and desorption behaviors of antibiotics by degradable MPs with or without UV ageing process[J]. Journal of Hazardous Materials, 2021, 401: 123363. |
84 | HOSSAIN M R, JIANG M, WEI Q H, et al. Microplastic surface properties affect bacterial colonization in freshwater[J]. Journal of Basic Microbiology, 2019, 59(1): 54-61. |
85 | HADRI H EL, GIGAULT J, MAXIT B, et al. Nanoplastic from mechanically degraded primary and secondary microplastics for environmental assessments[J]. NanoImpact, 2020, 17: 100206. |
86 | GUPTA G K, RAM M, BALA R, et al. Pyrolysis of chemically treated corncob for biochar production and its application in Cr(Ⅵ) removal[J]. Environmental Progress & Sustainable Energy, 2018, 37(5): 1606-1617. |
87 | 陈雅兰, 孙可, 高博. 微塑料吸附机制研究进展[J]. 环境化学, 2021, 40(8): 2271-2287. |
CHEN Yalan, SUN Ke, GAO Bo. Sorption behavior, mechanisms, and models of organic pollutants and metals on microplastics: A review[J]. Environmental Chemistry, 2021, 40(8): 2271-2287. | |
88 | SUN Cuizhu, WANG Zhenggang, CHEN Lingyun, et al. Fabrication of robust and compressive chitin and graphene oxide sponges for removal of microplastics with different functional groups[J]. Chemical Engineering Journal, 2020, 393: 124796. |
89 | 莫礼键, 郑烈龙, 荣可, 等. 柚子皮多孔碳材料的制备及对聚氯乙烯微塑料废水的吸附效果研究[J]. 现代农业科技, 2021(24): 120-121. |
MO Lijian, ZHENG Lielong, RONG Ke, et al. Preparation of porous carbon material from pomelo peel and its adsorption effect on PVC microplastic wastewater[J]. Modern Agricultural Science and Technology, 2021(24): 120-121. | |
90 | 刘海朱, 王隽媛, 路思远, 等. 微塑料对有机污染物的吸附及微塑料-有机物复合污染的毒性研究进展[J]. 环境生态学, 2020, 2(12): 89-94. |
LIU Haizhu, WANG Junyuan, LU Siyuan, et al. Research progress on adsorption of organic pollutants by microplastics and toxicity of microplastic-organic compound pollution[J]. Environmental Ecology, 2020, 2(12): 89-94. | |
91 | CHU Xianxian, LI Tiantian, LI Zhen, et al. Transport of microplastic particles in saturated porous media[J]. Water, 2019, 11(12): 2474. |
92 | WANG Xiaoxia, DAN Yitong, DIAO Yinzhu, et al. Transport characteristics of polystyrene microplastics in saturated porous media with biochar/Fe3O4-biochar under various chemical conditions[J]. Science of the Total Environment, 2022, 847: 157576. |
93 | LI Yang, WANG Xinjie, FU Wanyi, et al. Interactions between nano/micro plastics and suspended sediment in water: Implications on aggregation and settling[J]. Water Research, 2019, 161: 486-495. |
94 | ALIMI O S, BUDARZ J F, HERNANDEZ L M, et al. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport[J]. Environmental Science & Technology, 2018, 52(4): 1704-1724. |
95 | SINGH N, TIWARI E, KHANDELWAL N, et al. Understanding the stability of nanoplastics in aqueous environments: Effect of ionic strength, temperature, dissolved organic matter, clay, and heavy metals[J]. Environmental Science: Nano, 2019, 6(10): 2968-2976. |
96 | PALANSOORIYA K N, SANG Mee Kyung, IGALAVITHANA A D, et al. Biochar alters chemical and microbial properties of microplastic-contaminated soil[J]. Environmental Research, 2022, 209: 112807. |
97 | HAN Lanfang, ZHANG Biao, LI Detian, et al. Co-occurrence of microplastics and hydrochar stimulated the methane emission but suppressed nitrous oxide emission from a rice paddy soil[J]. Journal of Cleaner Production, 2022, 337: 130504. |
98 | HAN Lanfang, CHEN Liying, LI Detian, et al. Influence of polyethylene terephthalate microplastic and biochar co-existence on paddy soil bacterial community structure and greenhouse gas emission[J]. Environmental Pollution, 2022, 292: 118386. |
99 | TAN Mingxia, ZHANG Haitong, CHI Jie. Responses of bioavailability and degradation of phenanthrene in soils with or without earthworms to the addition of mixed particles of biochar and polyethylene[J]. Journal of Soils and Sediments, 2022, 22(1): 185-195. |
1 | GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): e1700782. |
2 | BORRELLE S B, ROCHMAN C M, MAX L, et al. Opinion: Why we need an international agreement on marine plastic pollution[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(38): 9994-9997. |
3 | THOMPSON R C, YLVA O, MITCHELL R P, et al. Lost at sea: Where is all the plastic?[J]. Science, 2004, 304(5672): 838. |
4 | XU B L, LIU F, CRYDER Z, et al. Microplastics in the soil environment: Occurrence, risks, interactions and fate—A review[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(21): 2175-2222. |
5 | 孙晓晨, 易琳雅, 汪楠, 等. 微塑料在饮用水中的去除研究进展[J]. 环境科学与技术, 2021, 44(6): 211-218. |
SUN Xiaochen, YI Linya, WANG Nan, et al. Research progress on the removal of microplastics in drinking water[J]. Environmental Science & Technology, 2021, 44(6): 211-218. | |
6 | LIU Peng, QIAN Li, WANG Hanyu, et al. New insights into the aging behavior of microplastics accelerated by advanced oxidation processes[J]. Environmental Science & Technology, 2019, 53(7): 3579-3588. |
7 | 李瑞, 李宁, 梁澜, 等. 水环境中微塑料去除技术的研究进展[J]. 水处理技术, 2022, 48(2): 1-5. |
LI Rui, LI Ning, LIANG Lan, et al. Research progress on removal methods of microplastics from aquatic environment[J]. Technology of Water Treatment, 2022, 48(2): 1-5. | |
8 | CHELLASAMY G, KIRIYANTHAN R M, MAHARAJAN T, et al. Remediation of microplastics using bionanomaterials: A review[J]. Environmental Research, 2022, 208: 112724. |
9 | 朱高坚, 陈李栋, 段晟, 等. 生物质材料对微纳塑料吸附性能的研究进展[J]. 复合材料学报, 2023, 40(2): 637-648. |
ZHU Gaojian, CHEN Lidong, DUAN Yu, et al. Research progress of adsorption properties of biomass materials on microplastics[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 637-648. | |
10 | MANYÀ J J. Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs[J]. Environmental Science & Technology, 2012, 46(15): 7939-7954. |
11 | 李湘萍, 张建光. 生物质热解制备多孔炭材料的研究进展[J]. 石油学报(石油加工), 2020, 36(5): 1101-1110. |
LI Xiangping, ZHANG Jianguang. Progress on biochar preparation through pyrolysis process[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(5): 1101-1110. | |
12 | MADADI R, BESTER K. Fungi and biochar applications in bioremediation of organic micropollutants from aquatic media[J]. Marine Pollution Bulletin, 2021, 166: 112247. |
13 | 张伟明, 修立群, 吴迪, 等. 生物炭的结构及其理化特性研究回顾与展望[J]. 作物学报, 2021, 47(1): 1-18. |
ZHANG Weiming, XIU Liqun, WU Di, et al. Review of biochar structure and physicochemical properties[J]. Acta Agronomica Sinica, 2021, 47(1): 1-18. | |
14 | 王昆, 林坤德, 袁东星. 环境样品中微塑料的分析方法研究进展[J]. 环境化学, 2017, 36(1): 27-36. |
WANG Kun, LIN Kunde, YUAN Dongxing. Research progress on the analysis of microplastics in the environment[J]. Environmental Chemistry, 2017, 36(1): 27-36. | |
15 | 陈兴兴, 刘敏, 陈滢. 淡水环境中微塑料污染研究进展[J]. 化工进展, 2020, 39(8): 3333-3343. |
CHEN Xingxing, LIU Min, CHEN Ying. Microplastics pollution in freshwater environment[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3333-3343. | |
16 | DING Ning, AN Di, YIN Xiufeng, et al. Detection and evaluation of microbeads and other microplastics in wastewater treatment plant samples[J]. Environmental Science and Pollution Research, 2020, 27(13): 15878-15887. |
17 | BIRCH Q T, POTTER P M, PINTO P X, et al. Sources, transport, measurement and impact of nano and microplastics in urban watersheds[J]. Reviews in Environmental Science and Bio/Technology, 2020, 19(2): 275-336. |
18 | BLÄSING M, AMELUNG W. Plastics in soil: Analytical methods and possible sources[J]. Science of the Total Environment, 2018, 612: 422-435. |
19 | HÜFFER T, PRAETORIUS A, WAGNER S, et al. Microplastic exposure assessment in aquatic environments: Learning from similarities and differences to engineered nanoparticles[J]. Environmental Science & Technology, 2017, 51(5): 2499-2507. |
20 | 李明媛, 陈启晴, 刘学敏, 等. 微塑料吸附有机污染物的研究进展[J]. 环境化学, 2022, 41(4): 1101-1113. |
LI Mingyuan, CHEN Qiqing, LIU Xuemin, et al. Research progress on sorption of organic pollutants by microplastics[J]. Environmental Chemistry, 2022, 41(4): 1101-1113. | |
21 | TANG Shuai, LIN Lujian, WANG Xuesong, et al. Pb(Ⅱ) uptake onto nylon microplastics: Interaction mechanism and adsorption performance[J]. Journal of Hazardous Materials, 2020, 386: 121960. |
22 | LIN Zhukela, HU Yiwei, YUAN Yijun, et al. Comparative analysis of kinetics and mechanisms for Pb(Ⅱ) sorption onto three kinds of microplastics[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111451. |
23 | ZHOU Ziqing, SUN Yiran, WANG Yayi, et al. Adsorption behavior of Cu(Ⅱ) and Cr(Ⅵ) on aged microplastics in antibiotics-heavy metals coexisting system[J]. Chemosphere, 2022, 291: 132794. |
24 | DONG Youming, GAO Minling, SONG Zhengguo, et al. As(Ⅲ) adsorption onto different-sized polystyrene microplastic particles and its mechanism[J]. Chemosphere, 2020, 239: 124792. |
25 | 褚献献, 郑波, 何楠, 等. 微塑料与污染物相互作用的研究进展[J]. 环境化学, 2021, 40(2): 427-435. |
CHU Xianxian, ZHENG Bo, HE Nan, et al. Progress on the interaction between microplastics and contaminants[J]. Environmental Chemistry, 2021, 40(2): 427-435. | |
26 | 耿凤. 微塑料在全球水体及沉积物中的分布及污染特征[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
GENG Feng. Distribution and characteristics of microplastics in global water and sediments[D]. Harbin: Harbin Institute of Technology, 2020. | |
27 | 陈国栋, 刘海成, 孟无霜, 等. 微塑料老化的人工干预及理化特性表征研究进展[J]. 化工进展, 2022, 41(12): 6443-6453. |
CHEN Guodong, LIU Haicheng, MENG Wushuang, et al. Research progress on artificial intervention and characterization of physicochemical properties of microplastics aging[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6443-6453. | |
28 | 徐擎擎, 张哿, 邹亚丹, 等. 微塑料与有机污染物的相互作用研究进展[J]. 生态毒理学报, 2018, 13(1): 40-49. |
XU Qingqing, ZHANG Ge, ZOU Yadan, et al. Interactions between microplastics and organic pollutants: Current status and knowledge gaps[J]. Asian Journal of Ecotoxicology, 2018, 13(1): 40-49. | |
29 | RAHMAN A, SARKAR A, YADAV O P, et al. Potential human health risks due to environmental exposure to nano- and microplastics and knowledge gaps: A scoping review[J]. Science of the Total Environment, 2021, 757: 143872. |
30 | KANHAI LA D K, OFFICER R, LYASHEVSKA O, et al. Microplastic abundance, distribution and composition along a latitudinal gradient in the Atlantic Ocean[J]. Marine Pollution Bulletin, 2017, 115(1/2): 307-314. |
31 | MOORE C J, MOORE S L, WEISBERG S B, et al. A comparison of neustonic plastic and zooplankton abundance in southern California’s coastal waters[J]. Marine Pollution Bulletin, 2002, 44(10): 1035-1038. |
32 | ZHAO Shiye, ZHU Lixin, WANG Teng, et al. Suspended microplastics in the surface water of the Yangtze Estuary System, China: First observations on occurrence, distribution[J]. Marine Pollution Bulletin, 2014, 86(1/2): 562-568. |
33 | KANG Jung-Hoon, KWON Oh-Youn, SHIM Won Joon. Potential threat of microplastics to zooplanktivores in the surface waters of the southern sea of Korea[J]. Archives of Environmental Contamination and Toxicology, 2015, 69(3): 340-351. |
34 | NEL H A, FRONEMAN P W. A quantitative analysis of microplastic pollution along the south-eastern coastline of South Africa[J]. Marine Pollution Bulletin, 2015, 101(1): 274-279. |
35 | SADRI S S, THOMPSON R C. On the quantity and composition of floating plastic debris entering and leaving the Tamar Estuary, Southwest England[J]. Marine Pollution Bulletin, 2014, 81(1): 55-60. |
36 | SU Lei, XUE Yingang, LI Lingyun, et al. Microplastics in Taihu Lake, China[J]. Environmental Pollution, 2016, 216: 711-719. |
37 | WANG W F, NDUNGU A W, LI Z, et al. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China[J]. Science of the Total Environment, 2017, 575: 1369-1374. |
38 | WANG Wenfeng, YUAN Wenke, CHEN Yuling, et al. Microplastics in surface waters of Dongting Lake and Hong Lake, China[J]. Science of the Total Environment, 2018, 633: 539-545. |
39 | MANI T, HAUK A, WALTER U, et al. Microplastics profile along the Rhine River[J]. Scientific Reports, 2016, 5: 17988. |
40 | MINTENIG S M, LÖDER M G J, PRIMPKE S, et al. Low numbers of microplastics detected in drinking water from ground water sources[J]. Science of the Total Environment, 2019, 648: 631-635. |
41 | TONG Huiyan, JIANG Qianyi, HU Xingshuai, et al. Occurrence and identification of microplastics in tap water from China[J]. Chemosphere, 2020, 252: 126493. |
42 | PIVOKONSKY M, CERMAKOVA L, NOVOTNA K, et al. Occurrence of microplastics in raw and treated drinking water[J]. Science of the Total Environment, 2018, 643: 1644-1651. |
43 | LI Yinan, PENG Lin, FU Jianxin, et al. A microscopic survey on microplastics in beverages: The case of beer, mineral water and tea[J]. The Analyst, 2022, 147(6): 1099-1105. |
44 | TEKMAN M B, WEKERLE C, LORENZ C, et al. Tying up loose ends of microplastic pollution in the Arctic: Distribution from the sea surface through the water column to deep-sea sediments at the HAUSGARTEN observatory[J]. Environmental Science & Technology, 2020, 54(7): 4079-4090. |
45 | AVES A R, REVELL L E, GAW S, et al. First evidence of microplastics in Antarctic snow[J]. The Cryosphere, 2022, 16(6): 2127-2145. |
46 | CLERE I K, AHMMED F, REMOTO P III J G, et al. Quantification and characterization of microplastics in commercial fish from southern New Zealand[J]. Marine Pollution Bulletin, 2022, 184: 114121. |
47 | WU Di, FENG Yudong, WANG Rui, et al. Pigment microparticles and microplastics found in human thrombi based on Raman spectral evidence[J]. Journal of Advanced Research, 2023, 49: 141-150. |
48 | RAGUSA A, NOTARSTEFANO V, SVELATO A, et al. Raman microspectroscopy detection and characterisation of microplastics in human breastmilk[J]. Polymers, 2022, 14(13): 2700. |
49 | RAGUSA A, SVELATO A, SANTACROCE C, et al. Plasticenta: First evidence of microplastics in human placenta[J]. Environment International, 2021, 146: 106274. |
50 | 贾其隆, 陈浩, 赵昕, 等. 大型城市污水处理厂处理工艺对微塑料的去除[J]. 环境科学, 2019, 40(9): 4105-4112. |
JIA Qilong, CHEN Hao, ZHAO Xin, et al. Removal of microplastics by different treatment processes in Shanghai large municipal wastewater treatment plants[J]. Environmental Science, 2019, 40(9): 4105-4112. | |
51 | ZHANG Xiaolei, CHEN Jiaxin, LI Ji. The removal of microplastics in the wastewater treatment process and their potential impact on anaerobic digestion due to pollutants association[J]. Chemosphere, 2020, 251: 126360. |
52 | SHAHI N K, MAENG M, KIM D H, et al. Removal behavior of microplastics using alum coagulant and its enhancement using polyamine-coated sand[J]. Process Safety and Environmental Protection, 2020, 141: 9-17. |
53 | WANG Zhifeng, LIN Tao, CHEN Wei. Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP)[J]. Science of the Total Environment, 2020, 700: 134520. |
54 | RAMIREZ L, GENTILE S R, ZIMMERMANN S, et al. Comparative study of the effect of aluminum chloride, sodium alginate and chitosan on the coagulation of polystyrene micro-plastic particles[J]. Journal of Colloid Science and Biotechnology, 2016, 5(2): 190-198. |
55 | 许龙, 王志峰. 某水厂中微塑料的赋存及去除特性[J]. 净水技术, 2020, 39(7): 109-113. |
XU Long, WANG Zhifeng. Occurrence and removal of microplastics in a water treatment plant[J]. Water Purification Technology, 2020, 39(7): 109-113. | |
56 | LARES M, NCIBI M C, SILLANPÄÄ M, et al. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology[J]. Water Research, 2018, 133: 236-246. |
57 | Xuan-Thanh BUI, Thi-Dieu-Hien VO, NGUYEN Phuong-Thao, et al. Microplastics pollution in wastewater: Characteristics, occurrence and removal technologies[J]. Environmental Technology & Innovation, 2020, 19: 101013. |
58 | POERIO T, PIACENTINI E, MAZZEI R. Membrane processes for microplastic removal[J]. Molecules, 2019, 24(22): 4148. |
59 | HIDAYATURRAHMAN H, LEE Tae-Gwan. A study on characteristics of microplastic in wastewater of South Korea: Identification, quantification, and fate of microplastics during treatment process[J]. Marine Pollution Bulletin, 2019, 146: 696-702. |
60 | SOL D, LACA A, LACA A, et al. Approaching the environmental problem of microplastics: Importance of WWTP treatments[J]. Science of the Total Environment, 2020, 740: 140016. |
61 | FREEMAN S, BOOTH A M, SABBAH I, et al. Between source and sea: The role of wastewater treatment in reducing marine microplastics[J]. Journal of Environmental Management, 2020, 266: 110642. |
62 | TIWARI E, SINGH N, KHANDELWAL N, et al. Application of Zn/Al layered double hydroxides for the removal of nano-scale plastic debris from aqueous systems[J]. Journal of Hazardous Materials, 2020, 397: 122769. |
63 | YEN Pei-Ling, HSU Ching-Hsuan, HUANG Meilun, et al. Removal of nano-sized polystyrene plastic from aqueous solutions using untreated coffee grounds[J]. Chemosphere, 2022, 286: 131863. |
64 | GHAFFAR A, GHOSH S, LI Fangfang, et al. Effect of biochar aging on surface characteristics and adsorption behavior of dialkyl phthalates[J]. Environmental Pollution, 2015, 206: 502-509. |
65 | LIU Wujun, JIANG Hong, YU Hanqing. Development of biochar-based functional materials: Toward a sustainable platform carbon material[J]. Chemical Reviews, 2015, 115(22): 12251-12285. |
66 | TOMCZYK A, SOKOŁOWSKA Z, BOGUTA P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects[J].Reviews in Environmental Science and Bio/Technology, 2020, 19(1): 191-215. |
67 | 娜扎发提·穆罕麦提江, 陈颢明, 闵芳芳, 等. 不同类型生物炭对水体中微塑料的吸附性能[J]. 环境化学, 2021, 40(11): 3368-3378. |
NAZHAFATI Muhanmaitijiang, CHEN Haoming, MIN Fangfang, et al. Sorption properties of microplastics in water by different types of biochar[J]. Environmental Chemistry, 2021, 40(11): 3368-3378. | |
68 | SIIPOLA V, PFLUGMACHER S, ROMAR H, et al. Low-cost biochar adsorbents for water purification including microplastics removal[J]. Applied Sciences, 2020, 10(3): 788. |
69 | ABDOUL MAGID A S I, ISLAM M S, CHEN Yali, et al. Enhanced adsorption of polystyrene nanoplastics (PSNPs) onto oxidized corncob biochar with high pyrolysis temperature[J]. Science of the Total Environment, 2021, 784: 147115. |
70 | WANG Jun, SUN Chen, HUANG Qunxing, et al. Adsorption and thermal degradation of microplastics from aqueous solutions by Mg/Zn modified magnetic biochars[J]. Journal of Hazardous Materials, 2021, 419: 126486. |
71 | SINGH N, KHANDELWAL N, GANIE Z A, et al. Eco-friendly magnetic biochar: An effective trap for nanoplastics of varying surface functionality and size in the aqueous environment[J]. Chemical Engineering Journal, 2021, 418: 129405. |
72 | GANIE Z A, KHANDELWAL N, TIWARI E, et al. Biochar-facilitated remediation of nanoplastic contaminated water: Effect of pyrolysis temperature induced surface modifications[J]. Journal of Hazardous Materials, 2021, 417: 126096. |
73 | ZHU Na, YAN Qian, HE Yupeng, et al. Insights into the removal of polystyrene nanoplastics using the contaminated corncob-derived mesoporous biochar from mining area[J]. Journal of Hazardous Materials, 2022, 433: 128756. |
74 | LEHMANN J, JOSEPH S. Biochar for environmental management: science, technology and implementation[M]. 2nd Ed. London: Routledge, 2015. |
75 | SHEN D K, GU S, BRIDGWATER A V. Study on the pyrolytic behaviour of xylan-based hemicellulose using TG-FTIR and Py-GC-FTIR[J]. Journal of Analytical and Applied Pyrolysis, 2010, 87(2): 199-206. |
76 | HSIEH Lichun, HE Lei, ZHANG Mengya, et al. Addition of biochar as thin preamble layer into sand filtration columns could improve the microplastics removal from water[J]. Water Research, 2022, 221: 118783. |
77 | KUMAR R, VERMA A, RAKIB M R J, et al. Adsorptive behavior of micro(nano)plastics through biochar: Co-existence, consequences, and challenges in contaminated ecosystems[J]. Science of the Total Environment, 2023, 856: 159097. |
78 | WANG Ziheng, SEDIGHI M, LEA-LANGTON A. Filtration of microplastic spheres by biochar: Removal efficiency and immobilisation mechanisms[J]. Water Research, 2020, 184: 116165. |
79 | TANG Ye, ZHANG Suhua, SU Yinglong, et al. Removal of microplastics from aqueous solutions by magnetic carbon nanotubes[J]. Chemical Engineering Journal, 2021, 406: 126804. |
[1] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[2] | 许中硕, 周盼盼, 王宇晖, 黄威, 宋新山. 硫铁矿介导的自养反硝化研究进展[J]. 化工进展, 2023, 42(9): 4863-4871. |
[3] | 陈翔宇, 卞春林, 肖本益. 温度分级厌氧消化工艺的研究进展[J]. 化工进展, 2023, 42(9): 4872-4881. |
[4] | 王浩然, 殷全玉, 方明, 侯建林, 李军, 何斌, 张明月. 近临界水处理废弃烟梗工艺优化[J]. 化工进展, 2023, 42(9): 5019-5027. |
[5] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[6] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
[7] | 杨子育, 朱玲, 王文龙, 于超凡, 桑义敏. 阴燃法处理含油污泥的研究及应用进展[J]. 化工进展, 2023, 42(7): 3760-3769. |
[8] | 庞楠炯, 王晓玲, 廖学品, 石碧. 胶原纤维固化黑荆树单宁对硼同位素的分离[J]. 化工进展, 2023, 42(5): 2616-2625. |
[9] | 朱紫旋, 陈俊江, 张星星, 李祥, 刘文如, 吴鹏. 基于短程反硝化厌氧氨氧化新型污水生物脱氮工艺的研究进展[J]. 化工进展, 2023, 42(4): 2091-2100. |
[10] | 王玉, 余广炜, 江汝清, 黎长江, 林佳佳, 邢贞娇. 餐厨厌氧沼渣生物炭吸附盐酸环丙沙星[J]. 化工进展, 2023, 42(4): 2160-2170. |
[11] | 王玉, 余广炜, 林佳佳, 黎长江, 江汝清, 邢贞娇, 余铖. 沼渣、飞灰和污泥生物炭制备建筑陶粒[J]. 化工进展, 2023, 42(2): 1039-1050. |
[12] | 胡兆岩, 张景新, 何义亮. Fe负载污泥生物炭催化热解聚丙烯及产物特性[J]. 化工进展, 2023, 42(2): 631-640. |
[13] | 胡璇, 陈滢. 聚酯纤维微塑料胁迫下活性污泥系统性能及微生物群落的变化情况[J]. 化工进展, 2023, 42(2): 1051-1060. |
[14] | 阳清正, 张太亮, 刘从胜, 白毅, 程鑫, 郑存川. 双子型咪唑啉季铵盐缓蚀剂的制备及缓蚀机理[J]. 化工进展, 2023, 42(10): 5436-5444. |
[15] | 王书燕, 张新波, 彭安萍, 刘阳, NGO HUU HAO, 郭文珊, 温海涛. 生物炭回收水中氮磷营养物质的研究进展与挑战[J]. 化工进展, 2023, 42(10): 5459-5469. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |