化工进展 ›› 2023, Vol. 42 ›› Issue (10): 5249-5258.DOI: 10.16085/j.issn.1000-6613.2022-2099
收稿日期:
2022-11-11
修回日期:
2022-12-02
出版日期:
2023-10-15
发布日期:
2023-11-11
通讯作者:
年佩,魏逸彬
作者简介:
李亚男(1998—),女,硕士研究生,研究方向为二维材料纳滤膜的制备及性能。E-mail:315091378@qq.com。
基金资助:
LI Ya’nan(), NIAN Pei(), XU Nan, LUO Haiyu, WEI Yibin()
Received:
2022-11-11
Revised:
2022-12-02
Online:
2023-10-15
Published:
2023-11-11
Contact:
NIAN Pei, WEI Yibin
摘要:
二维片层状纳米材料过渡金属碳化物/氮化物(MXene),作为类石墨烯材料,因其具备丰富的官能团改性位点而在精密流体分离领域受到广泛关注,但静电作用力使MXene基膜的纳米片堆叠松散,且含氧官能团易与水分子形成氢键使MXene基膜易溶胀,最终导致分离效率下降,因此制备性能稳定、分离效率高的MXene基膜仍存在挑战。本文系统地总结了近年来MXene基膜材料在精密流体分离领域的最新研究进展,围绕自上而下和自下而上两方面介绍了MXene的制备方法;围绕交联、纳米颗粒掺杂、二维材料插层及有机-无机混合基质膜等四种MXene基膜材料构筑策略进行了深入讨论,并对其在精密流体分离领域的应用做了简要阐述;最后总结展望了MXene基膜在材料制备、膜层构筑、应用领域及产业化等方面所面临的机遇和挑战。
中图分类号:
李亚男, 年佩, 徐楠, 罗海玉, 魏逸彬. 面向精密流体分离的MXene基膜材料研究进展[J]. 化工进展, 2023, 42(10): 5249-5258.
LI Ya’nan, NIAN Pei, XU Nan, LUO Haiyu, WEI Yibin. Research progress of MXene-based membrane materials for precision fluid separation[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5249-5258.
MXene | 支撑体 | 制备策略 | 应用领域 | 分离性能 | 文献 |
---|---|---|---|---|---|
Ti3C2T x | 聚酰胺 | 自交联 | 离子筛分 | 0.0515L·m-2·h-1·bar-1,98.0% | [ |
Ti3C2T x | 聚偏氟乙烯 | 海藻酸盐交联 | 离子筛分 | 12L·m-2·h-1·bar-1,100%(硫酸钠) | [ |
Ti3C2T x | 聚醚砜 | 聚(4-苯乙磺酸盐)交联 | 离子筛分 | Li+/Mg2+:28 | [ |
Ti3C2T x | 聚酰胺 | 氧化石墨烯插层 | 离子筛分 | Na+:99.3% | [ |
Ti3CT x | 阳极氧化铝 | 自交联 | 气体分离 | H2:70.6GPU;H2/CO2:30.3 | [ |
Ti3C2T x | 阳极氧化铝 | 聚乙烯亚胺 | 气体分离 | CO2:375GPU;CO2/CH4:15 | [ |
Ti3C2T x | 尼龙 | 磺酸基交联 | 气体分离 | CO2:519GPU;CO2/N2:210 | [ |
Ti3C2T x | 阳极氧化铝 | 超支化聚乙烯亚胺交联 | 气体分离 | CO2/H2:28.2 | [ |
Ti3C2T x | — | 嵌段聚醚酰胺混合基质膜 | 气体分离 | CO2/N2:63 | [ |
Ti3C2T x | 阳极氧化铝 | 自交联 | 纳滤 | 8.5L·m-2·h-1·bar-1,55.3%(氯化钠) | [ |
Ti3C2T x | 尼龙 | 聚乙烯亚胺交联 | 纳滤 | 170.49L·m-2·h-1·bar-1,99.0%(刚果红) | [ |
Ti3C2T x | 聚丙烯腈 | 聚乙烯亚胺交联 | 纳滤 | 9L·m-2·h-1·bar-1,82.0%(氯化钠) | [ |
Ti3C2T x | 聚醚砜 | 铝离子交联 | 纳滤 | 89.5%~99.6%(氯化钠) | [ |
Ti3C2T x | 聚醚砜 | 二氧化钛掺杂 | 纳滤 | 756L·m-2·h-1·bar-1,95.0%(牛血清蛋白) | [ |
Ti3C2T x | 尼龙 | 氧化铝掺杂 | 纳滤 | 88.8L·m-2·h-1·bar-1,99.5%(罗丹明B) | [ |
Ti3C2T x | 聚偏氟乙烯 | 银掺杂 | 纳滤 | 387L·m-2·h-1·bar-1,79.9%(罗丹明B) | [ |
Ti3C2T x | 醋酸纤维 | 氧化铁掺杂 | 纳滤 | 70.2%(铬离子) | [ |
Ti3C2T x | 聚醚砜 | 石墨相氮化碳插层 | 纳滤 | 1790L·m-2·h-1·bar-1,98.0%(刚果红) | [ |
Ti3C2T x | 混合纤维素 | 氧化石墨烯插层 | 纳滤 | 79L·m-2·h-1·bar-1,99.5%(亚甲基蓝) | [ |
Ti3C2T x | 聚丙烯腈 | 二维有机金属框架掺杂 | 纳滤 | 40.8L·m-2·h-1·bar-1,99.0%(刚果红) | [ |
Ti2CT x | 聚丙烯腈 | 超支化聚乙烯亚胺混合基质膜 | 渗透汽化 | 水/异丙醇:渗透侧含水99.0%(质量分数) | [ |
Ti3C2T x | 聚丙烯腈 | 壳聚糖混合基质膜 | 渗透汽化 | 乙醇脱水系数1421 | [ |
Ti3C2T x | 聚丙烯腈 | 海藻酸钠混合基质膜 | 渗透汽化 | 水/乙醇:渗透侧含水90%(质量分数) | [ |
表1 MXene基膜在离子筛分、纳滤、气体分离、渗透汽化过程的应用
MXene | 支撑体 | 制备策略 | 应用领域 | 分离性能 | 文献 |
---|---|---|---|---|---|
Ti3C2T x | 聚酰胺 | 自交联 | 离子筛分 | 0.0515L·m-2·h-1·bar-1,98.0% | [ |
Ti3C2T x | 聚偏氟乙烯 | 海藻酸盐交联 | 离子筛分 | 12L·m-2·h-1·bar-1,100%(硫酸钠) | [ |
Ti3C2T x | 聚醚砜 | 聚(4-苯乙磺酸盐)交联 | 离子筛分 | Li+/Mg2+:28 | [ |
Ti3C2T x | 聚酰胺 | 氧化石墨烯插层 | 离子筛分 | Na+:99.3% | [ |
Ti3CT x | 阳极氧化铝 | 自交联 | 气体分离 | H2:70.6GPU;H2/CO2:30.3 | [ |
Ti3C2T x | 阳极氧化铝 | 聚乙烯亚胺 | 气体分离 | CO2:375GPU;CO2/CH4:15 | [ |
Ti3C2T x | 尼龙 | 磺酸基交联 | 气体分离 | CO2:519GPU;CO2/N2:210 | [ |
Ti3C2T x | 阳极氧化铝 | 超支化聚乙烯亚胺交联 | 气体分离 | CO2/H2:28.2 | [ |
Ti3C2T x | — | 嵌段聚醚酰胺混合基质膜 | 气体分离 | CO2/N2:63 | [ |
Ti3C2T x | 阳极氧化铝 | 自交联 | 纳滤 | 8.5L·m-2·h-1·bar-1,55.3%(氯化钠) | [ |
Ti3C2T x | 尼龙 | 聚乙烯亚胺交联 | 纳滤 | 170.49L·m-2·h-1·bar-1,99.0%(刚果红) | [ |
Ti3C2T x | 聚丙烯腈 | 聚乙烯亚胺交联 | 纳滤 | 9L·m-2·h-1·bar-1,82.0%(氯化钠) | [ |
Ti3C2T x | 聚醚砜 | 铝离子交联 | 纳滤 | 89.5%~99.6%(氯化钠) | [ |
Ti3C2T x | 聚醚砜 | 二氧化钛掺杂 | 纳滤 | 756L·m-2·h-1·bar-1,95.0%(牛血清蛋白) | [ |
Ti3C2T x | 尼龙 | 氧化铝掺杂 | 纳滤 | 88.8L·m-2·h-1·bar-1,99.5%(罗丹明B) | [ |
Ti3C2T x | 聚偏氟乙烯 | 银掺杂 | 纳滤 | 387L·m-2·h-1·bar-1,79.9%(罗丹明B) | [ |
Ti3C2T x | 醋酸纤维 | 氧化铁掺杂 | 纳滤 | 70.2%(铬离子) | [ |
Ti3C2T x | 聚醚砜 | 石墨相氮化碳插层 | 纳滤 | 1790L·m-2·h-1·bar-1,98.0%(刚果红) | [ |
Ti3C2T x | 混合纤维素 | 氧化石墨烯插层 | 纳滤 | 79L·m-2·h-1·bar-1,99.5%(亚甲基蓝) | [ |
Ti3C2T x | 聚丙烯腈 | 二维有机金属框架掺杂 | 纳滤 | 40.8L·m-2·h-1·bar-1,99.0%(刚果红) | [ |
Ti2CT x | 聚丙烯腈 | 超支化聚乙烯亚胺混合基质膜 | 渗透汽化 | 水/异丙醇:渗透侧含水99.0%(质量分数) | [ |
Ti3C2T x | 聚丙烯腈 | 壳聚糖混合基质膜 | 渗透汽化 | 乙醇脱水系数1421 | [ |
Ti3C2T x | 聚丙烯腈 | 海藻酸钠混合基质膜 | 渗透汽化 | 水/乙醇:渗透侧含水90%(质量分数) | [ |
1 | SHOLL David S, LIVELY Ryan P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
2 | QIN Y, LIU H, LIU Y, et al. Design of a novel interfacial enhanced GO-PA/APVC nanofiltration membrane with stripe-like structure[J]. Journal of Membrane Science, 2020, 604: 118064. |
3 | ZENG Guangyong, LIU Yongcong, LIN Qingquan, et al. Constructing composite membranes from functionalized metal organic frameworks integrated MXene intended for ultrafast oil/water emulsion separation[J]. Separation and Purification Technology, 2022, 293: 121052. |
4 | LI Zhongkun, WEI Yanying, GAO Xue, et al. Antibiotics separation with MXene membranes based on regularly stacked high-aspect-ratio nanosheets[J]. Angewandte Chemie International Edition, 2020, 59(24): 9751-9756. |
5 | 樊江, 汪唯, 蔡佳浩, 等. 二维膜的精密构筑和结构调控策略综述[J]. 化工进展, 2020, 39(12): 4823-4836. |
FAN Jiang, WANG Wei, CAI Jiahao, et al. A review of structural design and tuning methods of two-dimensional membranes[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4823-4836. | |
6 | CHU Jian, HUANG Qinggang, DONG Yuhua, et al. Enrichment of uranium in seawater by glycine cross-linked graphene oxide membrane[J]. Chemical Engineering Journal, 2022, 444: 136602. |
7 | RIES Lucie, PETIT Eddy, MICHEL Thierry, et al. Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization[J]. Nature Materials, 2019, 18(10): 1112-1117. |
8 | WEI Yi, ZHANG Peng, SOOMRO Razium A, et al. Advances in the synthesis of 2D MXenes[J]. Advanced Materials, 2021, 33(39): 2103148. |
9 | DASHTBOZORG Amirhosein, SALJOUGHI E, MOUSAVI S M, et al. High-performance and robust polysulfone nanocomposite membrane containing 2D functionalized MXene nanosheets for the nanofiltration of salt and dye solutions[J]. Desalination, 2022, 527: 115600. |
10 | LI Jian, LI Xin, VAN Der Bruggen Bart. An MXene-based membrane for molecular separation[J]. Environmental Science: Nano, 2020, 7(5): 1289-1304. |
11 | DAI Liheng, HUANG Kang, XIA Yongsheng, et al. Two-dimensional material separation membranes for renewable energy purification, storage, and conversion[J]. Green Energy & Environment, 2021, 6(2): 193-211. |
12 | QU Kai, DAI Liheng, XIA Yongsheng, et al. Self-crosslinked MXene hollow fiber membranes for H2/CO2 separation[J]. Journal of Membrane Science, 2021, 638: 119669. |
13 | WANG Jin, ZHANG Zhijie, ZHU Jiani, et al. Ion sieving by a two-dimensional Ti3C2T x alginate lamellar membrane with stable interlayer spacing[J]. Nature Communications, 2020, 11(1): 3540. |
14 | DING Li, LI Libo, LIU Yanchang, et al. Effective ion sieving with Ti3C2T x MXene membranes for production of drinking water from seawater[J]. Nature Sustainability, 2020, 3(4): 296-302. |
15 | LONG Qingwu, ZHAO Shuaifei, CHEN Jiexin, et al. Self-assembly enabled nano-intercalation for stable high-performance MXene membranes[J]. Journal of Membrane Science, 2021, 635: 119464. |
16 | PANDEY Ravi P, RASOOL Kashif, MADHAVAN Vinod E, et al. Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2T x ) nanosheets[J]. Journal of Materials Chemistry A, 2018, 6(8): 3522-3533. |
17 | YANG Xiaojun, LIU Yongcong, HU Sixian, et al. Construction of Fe3O4@MXene composite nanofiltration membrane for heavy metal ions removal from wastewater[J]. Polymers for Advanced Technologies, 2021, 32(3): 1000-1010. |
18 | ZENG Guangyong, HE Zhenzhen, WAN Tao, et al. A self-cleaning photocatalytic composite membrane based on g-C3N4@MXene nanosheets for the removal of dyes and antibiotics from wastewater[J]. Separation and Purification Technology, 2022, 292: 121037. |
19 | LIU Ting, LIU Xiaoyan, GRAHAM Nigel, et al. Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance[J]. Journal of Membrane Science, 2020, 593: 117431. |
20 | XU Zhi, LIU Guozhen, YE Hua, et al. Two-dimensional MXene incorporated chitosan mixed-matrix membranes for efficient solvent dehydration[J]. Journal of Membrane Science, 2018, 563: 625-632. |
21 | HAO Lan, ZHANG Haoqin, WU Xiaoli, et al. Novel thin-film nanocomposite membranes filled with multi-functional Ti3C2T x nanosheets for task-specific solvent transport[J]. Composites A: Applied Science and Manufacturing, 2017, 100: 139-149. |
22 | YIN Zongjie, LU Zong, XU Yanyan, et al. Supported MXene/GO composite membranes with suppressed swelling for metal ion sieving[J]. Membranes, 2021, 11(8): 621. |
23 | KHAZAEI Mohammad, ARAI Masao, SASAKI Taizo, et al. OH-terminated two-dimensional transition metal carbides and nitrides as ultralow work function materials[J]. Physical Review B, 2015, 92(7): 075411. |
24 | NAGUIB Michael, COME Jérémy, DYATKIN Boris, et al. MXene: A promising transition metal carbide anode for lithium-ion batteries[J]. Electrochemistry Communications, 2012, 16(1): 61-64. |
25 | GAO Lingfeng, LI Chao, HUANG Weichun, et al. MXene/polymer membranes: Synthesis, properties, and emerging applications[J]. Chemistry of Materials, 2020, 32(5): 1703-1747. |
26 | NAGUIB Michael, KURTOGLU Murat, PRESSER Volker, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 [J]. Advanced Materials, 2011, 23(37): 4248-4253. |
27 | MOCKUTĖ A. Synthesis and characterization of new MAX phase alloys[D]. Linköping University Electronic Press, 2014. |
28 | SUN Yuqing, XU Dean, LI Shilong, et al. Assembly of multidimensional MXene-carbon nanotube ultrathin membranes with an enhanced anti-swelling property for water purification[J]. Journal of Membrane Science, 2021, 623: 119075. |
29 | LIU Guozhen, GUO Yanan, MENG Baochun, et al. Two-dimensional MXene hollow fiber membrane for divalent ions exclusion from water[J]. Chinese Journal of Chemical Engineering, 2022, 41: 260-266. |
30 | MASHTALIR Olha, NAGUIB Michael, MOCHALIN Vadym N, et al. Intercalation and delamination of layered carbides and carbonitrides[J]. Nature Communications, 2013, 4:1716. |
31 | GHIDIU Michael, LUKATSKAYA Maria R, ZHAO Mengqiang, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature, 2014, 516(7529): 78-81. |
32 | WANG Libo, ZHANG Heng, WANG Bo, et al. Synthesis and electrochemical performance of Ti3C2T x with hydrothermal process[J]. Electronic Materials Letters, 2016, 12(5): 702-710. |
33 | LIU Guozhen, SHEN Jie, JI Yufan, et al. Two-dimensional Ti2CT x MXene membranes with integrated and ordered nanochannels for efficient solvent dehydration[J]. Journal of Materials Chemistry A, 2019, 7(19): 12095-12104. |
34 | SU Xinghua, ZHANG Jing, MU Hao, et al. Effects of etching temperature and ball milling on the preparation and capacitance of Ti3C2 MXene[J]. Journal of Alloys and Compounds, 2018, 752: 32-39. |
35 | LI Zhimin, AN Yufeng, HU Zhongai, et al. Preparation of a two-dimensional flexible MnO2/graphene thin film and its application in a supercapacitor[J]. Journal of Materials Chemistry A, 2016, 4(27): 10618-10626. |
36 | URBANKOWSKI Patrick, ANASORI Babak, MAKARYAN Taron, et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene)[J]. Nanoscale, 2016, 8(22): 11385-11391. |
37 | LI Youbing, SHAO Hui, LIN Zifeng, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials, 2020, 19(8): 894-899. |
38 | HUANG Pengfei, YING Hangjun, ZHANG Shunlong, et al. Molten salts etching route driven universal construction of MXene/transition metal sulfides heterostructures with interfacial electronic coupling for superior sodium storage[J]. Advanced Energy Materials, 2022, 12(39): 2202052. |
39 | FAN Yixuan, LI Lin, ZHANG Ye, et al. Recent advances in growth of transition metal carbides and nitrides (MXenes) crystals[J]. Advanced Functional Materials, 2022, 32(16): 2111357. |
40 | SUN Wenyu, WANG Xinqi, FENG Jingqi, et al. Controlled synthesis of 2D Mo2C/graphene heterostructure on liquid Au substrates as enhanced electrocatalytic electrodes[J]. Nanotechnology, 2019, 30(38): 385601. |
41 | Merve ÖPER, Uǧur YORULMAZ, SEVIK Cem, et al. Controlled CVD growth of ultrathin Mo2C (MXene) flakes[J]. Journal of Applied Physics, 2022, 131(2): 025304. |
42 | HALIM Joseph, LUKATSKAYA Maria R, COOK Kevin M, et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films[J]. Chemistry of Materials, 2014, 26(7): 2374-2381. |
43 | ZHANG Haifeng, XUAN Jingfan, ZHANG Qi, et al. Strategies and challenges for enhancing performance of MXene-based gas sensors: A review[J]. Rare Metals, 2022, 41: 3976-3999. |
44 | GONG Kaili, ZHOU Keqing, QIAN Xiaodong, et al. MXene as emerging nanofillers for high-performance polymer composites: A review[J]. Composites B: Engineering, 2021, 217: 108867. |
45 | KARAHAN Hüseyin Enis, Kunli GOH, ZHANG Chuanfang John, et al. MXene materials for designing advanced separation membranes[J]. Advanced Materials, 2020, 32(29): 1906697. |
46 | CHENG Long, LIU Gongping, ZHAO Jing, et al. Two-dimensional-material membranes: Manipulating the transport pathway for molecular separation[J]. Accounts of Materials Research, 2021, 2(2): 114-128. |
47 | SHEN Jie, LIU Gongping, HAN Yu, et al. Artificial channels for confined mass transport at the sub-nanometre scale[J]. Nature Reviews Materials, 2021, 6(4): 294-312. |
48 | WANG Shaofei, YANG Leixin, HE Guangwei, et al. Two-dimensional nanochannel membranes for molecular and ionic separations[J]. Chemical Society Reviews, 2020, 49(4): 1071-1089. |
49 | LU Zong, WEI Yanying, DENG Junjie, et al. Self-crosslinked MXene (Ti3C2T x ) membranes with good antiswelling property for monovalent metal ion exclusion[J]. ACS Nano, 2019, 13(9): 10535-10544. |
50 | SUN Yuqing, LI Shilong, ZHUANG Yongxiang, et al. Adjustable interlayer spacing of ultrathin MXene-derived membranes for ion rejection[J]. Journal of Membrane Science, 2019, 591: 117350. |
51 | ZHANG Yawen, CHEN Dongyun, LI Najun, et al. High-performance and stable two-dimensional MXene-polyethyleneimine composite lamellar membranes for molecular separation[J]. ACS Applied Materials & Interfaces, 2022, 14(8): 10237-10245. |
52 | SHEN Jie, LIU Guozhen, JI Yufan, et al. 2D MXene nanofilms with tunable gas transport channels[J]. Advanced Functional Materials, 2018, 28(31): 1801511. |
53 | MENG Baochun, LIU Guozhen, MAO Yangyang, et al. Fabrication of surface-charged MXene membrane and its application for water desalination[J]. Journal of Membrane Science, 2021, 623: 119076. |
54 | JIA Youyu, SHI Feng, LI Hongying, et al. Facile ionization of the nanochannels of lamellar membranes for stable ionic liquid immobilization and efficient CO2 separation[J]. ACS Nano, 2022, 16(9): 14379-14389. |
55 | LIU Pengchao, HOU Junjun, ZHANG Yi, et al. Two-dimensional material membranes for critical separations[J]. Inorganic Chemistry Frontiers, 2020, 7(13): 2560-2581. |
56 | HUANG Zhengyi, ZENG Qianqian, LIU Ying, et al. Facile synthesis of 2D TiO2@MXene composite membrane with enhanced separation and antifouling performance[J]. Journal of Membrane Science, 2021, 640: 119854. |
57 | LI Saisai, DAI Juan, GENG Xin, et al. Highly selective sodium alginate mixed-matrix membrane incorporating multi-layered MXene for ethanol dehydration[J]. Separation and Purification Technology, 2020, 235: 116206. |
58 | SHI Feng, SUN Junxia, WANG Jingtao, et al. MXene versus graphene oxide: Investigation on the effects of 2D nanosheets in mixed matrix membranes for CO2 separation[J]. Journal of Membrane Science, 2021, 620: 118850. |
59 | WU Xiaoli, HAO Lan, ZHANG Jiakui, et al. Polymer-Ti3C2T x composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system[J]. Journal of Membrane Science, 2016, 515:175-188. |
60 | LU Zong, WU Ying, DING Li, et al. A lamellar MXene (Ti3C2T x )/PSS composite membrane for fast and selective lithium‐ion separation[J]. Angewandte Chemie International Edition, 2021, 60(41): 22265-22269. |
61 | LI Jian, LI Lei, LI Xin, et al. Membranes with ZIF-8 regulated MXene nanosheet stacks for efficient molecular sieving[J]. Desalination, 2023, 546: 116184. |
[1] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[2] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[3] | 徐杰, 夏隆博, 罗平, 邹栋, 仲兆祥. 面向膜蒸馏过程的全疏膜制备及其应用进展[J]. 化工进展, 2023, 42(8): 3943-3955. |
[4] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[5] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[6] | 陆诗建, 刘苗苗, 杨菲, 张俊杰, 陈思铭, 刘玲, 康国俊, 李清方. 改良型CO2湿壁塔内气液两相流动规律及传质特性[J]. 化工进展, 2023, 42(7): 3457-3467. |
[7] | 冯江涵, 宋钫. 阴离子交换膜电解池的研究进展[J]. 化工进展, 2023, 42(7): 3501-3509. |
[8] | 陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610. |
[9] | 任重远, 何金龙, 袁清. 分子筛膜晶间缺陷控制与修复技术研究进展[J]. 化工进展, 2023, 42(5): 2454-2463. |
[10] | 王林, 辛梅华, 李明春, 陈琦, 毛扬帆. 季铵化/磺化壳聚糖的制备及其抗生物被膜活性[J]. 化工进展, 2023, 42(5): 2577-2585. |
[11] | 于捷, 张文龙. 锂离子电池隔膜的发展现状与进展[J]. 化工进展, 2023, 42(4): 1760-1768. |
[12] | 赵珍珍, 郑喜, 王雪琪, 王涛, 冯英楠, 任永胜, 赵之平. 聚酰胺复合膜微孔支撑基底的研究进展[J]. 化工进展, 2023, 42(4): 1917-1933. |
[13] | 叶海星, 陈宇昊, 陈仪, 孙海翔, 牛青山. 镁锂分离复合纳滤膜研究进展[J]. 化工进展, 2023, 42(4): 1934-1943. |
[14] | 常晓青, 彭东来, 李东洋, 张延武, 王景, 张亚涛. MOFs基丙烯/丙烷高效分离混合基质膜研究进展[J]. 化工进展, 2023, 42(4): 1961-1973. |
[15] | 王林, 辛梅华, 李明春, 张涛, 毛扬帆. 烷基季铵化壳聚糖的制备及其抗生物被膜的活性[J]. 化工进展, 2023, 42(4): 1995-2002. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |