化工进展 ›› 2023, Vol. 42 ›› Issue (10): 5232-5248.DOI: 10.16085/j.issn.1000-6613.2022-2040
蔡铭威1(), 王知1, 卢小闯2, 庄俊伟3, 吴嘉豪1, 张诗洋1(), 闵永刚1()
收稿日期:
2022-11-02
修回日期:
2022-12-06
出版日期:
2023-10-15
发布日期:
2023-11-11
通讯作者:
张诗洋,闵永刚
作者简介:
蔡铭威(1999—),男,硕士研究生,研究方向为气体分离。E-mail:2112102037@mail2.gdut.edu.cn。
基金资助:
CAI Mingwei1(), WANG Zhi1, LU Xiaochuang2, ZHUANG Junwei3, WU Jiahao1, ZHANG Shiyang1(), MIN Yonggang1()
Received:
2022-11-02
Revised:
2022-12-06
Online:
2023-10-15
Published:
2023-11-11
Contact:
ZHANG Shiyang, MIN Yonggang
摘要:
氢气是重要的工业原料和清洁燃料,极具经济和社会价值。氢气在利用前需进行分离提纯。由于膜分离技术具有高能效、简单和可连续操作等优点被广泛用于氢气分离。聚酰亚胺膜具有优良的气体选择性、机械性能、热稳定性、耐化学稳定性、耐水解和耐腐蚀等优点成为最具有潜力的膜材料之一。然而,传统聚酰亚胺膜存在自由体积小、气体渗透性和抗塑性差等缺点无法用于大规模H2分离。因此,需要对传统聚酰亚胺进行改性以更好地分离氢气。本文综述了近年来聚酰亚胺薄膜在氢气分离的研究现状,总结了目前聚酰亚胺气体分离膜存在的关键问题,并从无机粒子共混、MOFs共混、聚合物共混、交联和超支化改性及单体结构改性六个方面,详细介绍了聚酰亚胺气体分离膜的改性研究成果,并展望了聚酰亚胺气体分离膜的发展趋势,为未来高效分离膜的研发提供参考。
中图分类号:
蔡铭威, 王知, 卢小闯, 庄俊伟, 吴嘉豪, 张诗洋, 闵永刚. 聚酰亚胺薄膜在氢气分离中的研究进展[J]. 化工进展, 2023, 42(10): 5232-5248.
CAI Mingwei, WANG Zhi, LU Xiaochuang, ZHUANG Junwei, WU Jiahao, ZHANG Shiyang, MIN Yonggang. Polyimide membranes for hydrogen separation: A review[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5232-5248.
复合膜 | 渗透性/barrer | 选择性 | |||
---|---|---|---|---|---|
H2 | CO2 | CH4 | H2/CH4 | H2/CO2 | |
Matrimid 5218/20% DDR®[ | 34.9 | 0.093 | 375.27 | ||
Matrimid 5218/15% DDR®[ | 29.37 | 0.095 | 309.16 | ||
PI/ZIF-7-III[ | 322.01±28.66 | 74.08±1.73 | 1.87±0.07 | 172.24±8.50 | 4.35±0.29 |
PI/ZIF-7-I[ | 921.44±100.46 | 407.41±50.05 | 13.67±1.20 | 67.42±1.45 | 2.26±0.03 |
25% ZIF-8/6FDA-BI[ | 79.4±12.3 | 0.56±0.036 | 142.6±29.5 | ||
20% ZIF-8/6FDA-BI[ | 78.5±5.84 | 0.35±0.033 | 223.9±16.7 | ||
6FDA-DAM:DABA(3∶2)/10% ZIF-8-90(30)[ | 301 | 187 | 5.41 | 55.7 | 1.61 |
6FDA-DAM:DABA(3∶2)/10% ZIF-8-90(50)[ | 276 | 174 | 4.74 | 58.3 | 1.58 |
2% A-SWNT[ | 122±3 | 63±1 | 1.4±0.1 | 88±3 | 1.9±0.1 |
20%-COOH-PI/NH2-UiO-66[ | 1180 | 995 | 43 | 27.2 | 1.18 |
PSF/PI[ | 348 | 86 | 4.04 | ||
PI/PBI[ | 86 | 2.77 | 31 | ||
PI/TB 120℃,16h[ | 77.1 | 18.4 | 0.16 | 481.8 | 4.19 |
PI/TB 150℃,16h[ | 86.8 | 23.1 | 0.21 | 413.3 | 3.75 |
表1 共混改性的气体分离性能
复合膜 | 渗透性/barrer | 选择性 | |||
---|---|---|---|---|---|
H2 | CO2 | CH4 | H2/CH4 | H2/CO2 | |
Matrimid 5218/20% DDR®[ | 34.9 | 0.093 | 375.27 | ||
Matrimid 5218/15% DDR®[ | 29.37 | 0.095 | 309.16 | ||
PI/ZIF-7-III[ | 322.01±28.66 | 74.08±1.73 | 1.87±0.07 | 172.24±8.50 | 4.35±0.29 |
PI/ZIF-7-I[ | 921.44±100.46 | 407.41±50.05 | 13.67±1.20 | 67.42±1.45 | 2.26±0.03 |
25% ZIF-8/6FDA-BI[ | 79.4±12.3 | 0.56±0.036 | 142.6±29.5 | ||
20% ZIF-8/6FDA-BI[ | 78.5±5.84 | 0.35±0.033 | 223.9±16.7 | ||
6FDA-DAM:DABA(3∶2)/10% ZIF-8-90(30)[ | 301 | 187 | 5.41 | 55.7 | 1.61 |
6FDA-DAM:DABA(3∶2)/10% ZIF-8-90(50)[ | 276 | 174 | 4.74 | 58.3 | 1.58 |
2% A-SWNT[ | 122±3 | 63±1 | 1.4±0.1 | 88±3 | 1.9±0.1 |
20%-COOH-PI/NH2-UiO-66[ | 1180 | 995 | 43 | 27.2 | 1.18 |
PSF/PI[ | 348 | 86 | 4.04 | ||
PI/PBI[ | 86 | 2.77 | 31 | ||
PI/TB 120℃,16h[ | 77.1 | 18.4 | 0.16 | 481.8 | 4.19 |
PI/TB 150℃,16h[ | 86.8 | 23.1 | 0.21 | 413.3 | 3.75 |
复合膜 | 渗透性/barrer | 选择性 | |||
---|---|---|---|---|---|
H2 | CO2 | CH4 | H2/CH4 | H2/CO2 | |
6F-AP/DA-400[ | 196.4±9.8 | 94.3±4.7 | 2.18±0.22 | 89.17 | 2.08 |
Co-80/20[ | 380 | 261 | 6.7 | 57 | 1.45 |
Co-50/50[ | 155 | 67 | 1.3 | 119 | 2.31 |
PES∶P84=75∶25[ | 105.6 | 15.36 | — | — | 6.87 |
PDA∶BuDA=0.8∶0.2[ | 91100 | 11619.89 | — | — | 7.84 |
Cross-linked P84[ | 47 | — | 3.35 | — | 14 |
HBIN-Is[ | 78.7 | 27.3 | 0.37 | 213 | 2.88 |
4MTBDA-PMDA[ | 3300 | — | 390 | 8.46 | — |
表2 化学结构改性对气体分离的影响
复合膜 | 渗透性/barrer | 选择性 | |||
---|---|---|---|---|---|
H2 | CO2 | CH4 | H2/CH4 | H2/CO2 | |
6F-AP/DA-400[ | 196.4±9.8 | 94.3±4.7 | 2.18±0.22 | 89.17 | 2.08 |
Co-80/20[ | 380 | 261 | 6.7 | 57 | 1.45 |
Co-50/50[ | 155 | 67 | 1.3 | 119 | 2.31 |
PES∶P84=75∶25[ | 105.6 | 15.36 | — | — | 6.87 |
PDA∶BuDA=0.8∶0.2[ | 91100 | 11619.89 | — | — | 7.84 |
Cross-linked P84[ | 47 | — | 3.35 | — | 14 |
HBIN-Is[ | 78.7 | 27.3 | 0.37 | 213 | 2.88 |
4MTBDA-PMDA[ | 3300 | — | 390 | 8.46 | — |
27 | BOGERT Marston Taylor, RENSHAW Roemer Rex. 4-amino-0-phthalic acid and some of its derivatives.1[J]. Journal of the American Chemical Society, 1908, 30(7): 1135-1144. |
28 | ROBESON Lloyd M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
29 | KAMBLE Ashwin R, PATEL Chetan M, MURTHY Z V P. A review on the recent advances in mixed matrix membranes for gas separation processes[J]. Renewable and Sustainable Energy Reviews, 2021, 145: 111062. |
30 | SMITH Stefan J D, HOU Rujing, KONSTAS Kristina, et al. Control of physical aging in super-glassy polymer mixed matrix membranes[J]. Accounts of Chemical Research, 2020, 53(7): 1381-1388. |
31 | AHMAD Mohd Zamidi, Violeta MARTIN-GIL, PERFILOV Viacheslav, et al. Investigation of a new co-polyimide, 6FDA-bisP and its ZIF-8 mixed matrix membranes for CO2/CH4 separation[J]. Separation and Purification Technology, 2018, 207: 523-534. |
32 | BANO Sadia, TARIQ Saadia Rashid, ANJUM Tanzila, et al. Development of highly permselective mixed matrix membranes comprising of polyimide and Ln-MOF for CO2 capture[J]. Chemosphere, 2022, 307(Pt 3): 136051. |
33 | SAFAK BOROGLU Mehtap, YUMRU Ahenk Burcu. Gas separation performance of 6FDA-DAM-ZIF-11 mixed-matrix membranes for H2/CH4 and CO2/CH4 separation[J]. Separation and Purification Technology, 2017, 173: 269-279. |
34 | ILICAK Ilke, BOROGLU Mehtap Safak, DURMUS Ali. Influence of ZIF-95 on structure and gas separation properties of polyimide-based mixed matrix membranes[J]. Journal of Natural Gas Science and Engineering, 2021, 91: 103941. |
35 | JAIN A, AHMAD M Z, LINKES A, et al. 6FDA-DAM:DABA co-polyimide mixed matrix membranes with GO and ZIF-8 mixtures for effective CO2/CH4 separation[J]. Nanomaterials, 2021, 11(3): 668. |
36 | PEI Rujing, CUI Longjie, ZHANG Chao, et al. Synthesis and excellent catalytic properties of hierarchical ZSM-5 zeolite by organosilanized doubleterminal amino polyetheramine template method[J]. Journal of Porous Materials, 2021, 28(5): 1429-1438. |
37 | IMTIAZ Aniqa, OTHMAN Mohd Hafiz Dzarfan, JILANI Asim, et al. ZIF-filler incorporated mixed matrix membranes (MMMs) for efficient gas separation: A review[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108541. |
38 | PAUL D R, KEMP D R. The diffusion time lag in polymer membranes containing adsorptive fillers[J]. Journal of Polymer Science: Polymer Symposia, 2007, 41(1): 79-93. |
39 | KULPRATHIPANJA Santi, NEUZIL LI Richard W, NORMAN N. Separation of fluids by means of mixed matrix membranes:US 4740219A[P].1988-04-26. |
40 | PEYDAYESH Mohammad, MOHAMMADI Toraj, BAKHTIARI Omid. Effective hydrogen purification from methane via polyimide Matrimid® 5218-Deca-dodecasil 3R type zeolite mixed matrix membrane[J]. Energy, 2017, 141: 2100-2107. |
41 | ROBESON Lloyd M. Correlation of separation factor versus permeability for polymeric membranes[J]. Journal of Membrane Science, 1991, 62(2): 165-185. |
42 | Roberto CASTRO-MUÑOZ, Vlastimil FÍLA. Progress on incorporating zeolites in Matrimid®5218 mixed matrix membranes towards gas separation[J]. Membranes, 2018, 8(2): 30. |
43 | CHENG Youdong, YING Yunpan, ZHAI Linzhi, et al. Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation[J]. Journal of Membrane Science, 2019, 573: 97-106. |
44 | XU Weiheng, JAMBUHLKAR Sayli, ZHU Yuxiang, et al. 3D printing for polymer/particle-based processing: A review[J]. Composites B: Engineering, 2021, 223: 109102. |
45 | AMIRKHANI Farid, MOSADEGH Minoo, ASGHARI Morteza, et al. The beneficial impacts of functional groups of CNT on structure and gas separation properties of PEBA mixed matrix membranes[J]. Polymer Testing, 2020, 82: 106285. |
46 | LIANG Can zeng, LIU Jiang Tao, LAI Juin-Yih, et al. High-performance multiple-layer PIM composite hollow fiber membranes for gas separation[J]. Journal of Membrane Science, 2018, 563: 93-106. |
47 | Roberto CASTRO-MUÑOZ, AHMAD Mohd Zamidi, Vlastimil FÍLA. Tuning of nano-based materials for embedding into low-permeability polyimides for a featured gas separation[J]. Frontiers in Chemistry, 2020, 7: 897. |
48 | JAMES Joshua B, LANG Lin, MENG Lie, et al. Postsynthetic modification of ZIF-8 membranes via membrane surface ligand exchange for light hydrocarbon gas separation enhancement[J]. ACS Applied Materials & Interfaces, 2020, 12(3): 3893-3902. |
49 | LEE Pyung Soo, HONG Do-Young, Ga-Young CHA, et al. Mixed matrix membranes incorporated with three-dimensionally ordered mesopore imprinted (3DOm-i) zeolite[J]. Separation and Purification Technology, 2019, 210: 29-37. |
50 | YANG Ge, GUO Hailing, KANG Zixi, et al. Green hydrogen separation from nitrogen by mixed-matrix membranes consisting of nanosized sodalite crystals[J]. ChemSusChem, 2019, 12(19): 4529-4537. |
51 | ZHANG Guoliang, TANG Kaijie, ZHANG Xu, et al. Self-assembly of defect-free polymer-based zeolite imidazolate framework composite membranes with metal-phenolic networks for high efficient H2/CH4 separation[J]. Journal of Membrane Science, 2021, 617: 118612. |
52 | ZHU Lijuan, FAN Minghui, WANG Yulan, et al. Selective conversion of furans to p-xylene with surface-modified zeolites[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(9): 2876-2887. |
53 | TANG Zhong, DONG Junhang, NENOFF Tina M. Internal surface modification of MFI-type zeolite membranes for high selectivity and high flux for hydrogen[J]. Langmuir, 2009, 25(9): 4848-4852. |
54 | LI Yi, CHUNG Tai-Shung, HUANG Zhen, et al. Dual-layer polyethersulfone (PES)/BTDA-TDI/MDI co-polyimide (P84) hollow fiber membranes with a submicron PES-zeolite beta mixed matrix dense-selective layer for gas separation[J]. Journal of Membrane Science, 2006, 277(1-2): 28-37. |
55 | MAHAJAN Rajiv, BURNS Ryan, SCHAEFFER Michael, et al. Challenges in forming successful mixed matrix membranes with rigid polymeric materials[J]. Journal of Applied Polymer Science, 2002, 86(4): 881-890. |
56 | PECHAR Todd W, KIM Sangi, VAUGHAN Ben, et al. Fabrication and characterization of polyimide-zeolite L mixed matrix membranes for gas separations[J]. Journal of Membrane Science, 2006, 277(1-2): 195-202. |
57 | KANEHASHI Shinji, GU Hua, SHINDO Ryohei, et al. Gas permeation and separation properties of polyimide/ZSM-5 zeolite composite membranes containing liquid sulfolane[J]. Journal of Applied Polymer Science, 2013, 128(6): 3814-3823. |
58 | ZHANG Qinnan, LI Si, WANG Ceming, et al. Carbon nanotube-based mixed-matrix membranes with supramolecularly engineered interface for enhanced gas separation performance[J]. Journal of Membrane Science, 2020, 598: 117794. |
59 | AHMADIZADEGAN Hashem, GHAVVAS Fatemeh, RANJBAR Mahdi, et al. Synthesis and characterization of fluorinated polyimide/TiO2 nanocomposites: Enhancement of separation of four gases, thermal, optical and mechanical properties[J]. Polymer Bulletin, 2018, 75(7): 2729-2750. |
60 | ROHANI Rosiah, MILANI KALKHORAN Hannaneh, TAO CHUNG Ying. Polymeric mixed matrix membranes incorporated with graphene oxide for H2/CO2 separation[J]. Jurnal Teknologi, 2019, 81(3): 11-20. |
61 | QIAN Q, ASINGER P A, LEE M J, et al. MOF-based membranes for gas separations[J]. Chemical Reviews, 2020, 120(16): 8161-8266. |
62 | BI Xiangyu, ZHANG Yong’an, ZHANG Feng, et al. MOF nanosheet-based mixed matrix membranes with metal-organic coordination interfacial interaction for gas separation[J]. ACS Applied Materials & Interfaces, 2020, 12(43): 49101-49110. |
63 | YAGHI O M, LI G M, LI H L. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378(6558): 703-706. |
64 | YOO Yeonshick, LAI Zhiping, JEONG Hae-Kwon. Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth[J]. Microporous and Mesoporous Materials, 2009, 123(1/2/3): 100-106. |
65 | PARK K S, NI Z, CÔTÉ A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. PNAS, 2006, 103(27): 10186-10191. |
1 | RAHIMPOUR M R, SAMIMI F, BABAPOOR A, et al. Palladium membranes applications in reaction systems for hydrogen separation and purification: A review[J]. Chemical Engineering and Processing: Process Intensification, 2017, 121: 24-49. |
2 | YUE Meiling, LAMBERT Hugo, PAHON Elodie, et al. Hydrogen energy systems: A critical review of technologies, applications, trends and challenges[J]. Renewable and Sustainable Energy Reviews, 2021, 146: 111180. |
3 | DAWOOD F, ANDA M, SHAFIULLAH G M. Hydrogen production for energy: An overview[J]. International Journal of Hydrogen Energy, 2020, 45(7): 3847-3869. |
4 | LEI Linfeng, LINDBRATHEN Arne, HILLESTAD Magne, et al. Carbon molecular sieve membranes for hydrogen purification from a steam methane reforming process[J]. Journal of Membrane Science, 2021, 627: 119241. |
5 | SINGLA Shelly, SHETTI Nagaraj P, BASU Soumen, et al. Hydrogen production technologies—Membrane based separation, storage and challenges[J]. Journal of Environmental Management, 2022, 302(Pt A): 113963. |
6 | SAMARASINGHE S A S C, CHUAH C Y, KARAHAN H E, et al. Enhanced O2/N2 separation of mixed-matrix membrane filled with pluronic-compatibilized cobalt phthalocyanine particles[J]. Membranes, 2020, 10(4): 75. |
7 | HIMMA Nurul F, WARDANI Anita K, PRASETYA Nicholaus, et al. Recent progress and challenges in membrane-based O2/N2 separation[J]. Reviews in Chemical Engineering, 2019, 35(5): 591-625. |
8 | KIM Seong Joong, LEE Pyung Soo, CHANG Jong-San, et al. Preparation of carbon molecular sieve membranes on low-cost alumina hollow fibers for use in C3H6/C3H8 separation[J]. Separation and Purification Technology, 2018, 194: 443-450. |
9 | REN Yanxiong, LIANG Xu, DOU Haozhen, et al. Membrane-based olefin/paraffin separations[J]. Advanced Science, 2020, 7(19): 2001398. |
10 | KIM Seong Joong, KWON YongSung, KIM DaeHun, et al. A review on polymer precursors of carbon molecular sieve membranes for olefin/paraffin separation[J]. Membranes, 2021, 11(7): 482. |
11 | XU Ruisong, LI Lin, JIN Xin, et al. Thermal crosslinking of a novel membrane derived from phenolphthalein-based cardo poly(arylene ether ketone) to enhance CO2/CH4 separation performance and plasticization resistance[J]. Journal of Membrane Science, 2019, 586: 306-317. |
12 | LU Ping, QU Zhaoguang, GAO Guoqiang, et al. Study on desulfurization and decarbonization technology of natural gas on Bohai offshore platform[C]//ASME 2019 38th International Conference on Ocean. Glasgow, Scotland, UK: American Society of Mechanical Engineers, 2019: 8. |
66 | WANG Z G, TIAN Y Y, FANG W, et al. Constructing strong interfacial interactions under mild conditions in MOF-incorporated mixed matrix membranes for gas separation[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 3166-3174. |
67 | PARK Sunghwan, CHO Kie Yong, JEONG Hae Kwon. Polyimide/ZIF-7 mixed-matrix membranes: Understanding the in situ confined formation of the ZIF-7 phases inside a polymer and their effects on gas separations[J]. Journal of Materials Chemistry A, 2020, 8(22): 11210-11217. |
68 | FAN Yanfang, YU Huiya, XU Shan, et al. Zn(II)-modified imidazole containing polyimide/ZIF-8 mixed matrix membranes for gas separations[J]. Journal of Membrane Science, 2020, 597: 117775. |
69 | LIU Yan, XIE Wei, LIANG Shuang, et al. Polyimide/ZIFs mixed matrix membranes with tunable interfacial interaction for efficient gas separation[J]. Journal of Membrane Science, 2022, 646: 120240. |
70 | Wesley BARNETT J, BILCHAK Connor R, WANG Yiwen, et al. Designing exceptional gas-separation polymer membranes using machine learning[J]. Science Advances, 2020, 6(20): eaaz4301. |
71 | LASSEUGUETTE Elsa, Bibiana COMESAÑA-GÁNDARA. Polymer membranes for gas separation[J]. Membranes, 2022, 12(2): 207. |
72 | NUHNEN Alexander, DIETRICH Dennis, MILLAN Simon, et al. Role of filler porosity and filler/polymer interface volume in metal-organic framework/polymer mixed-matrix membranes for gas separation[J]. ACS Applied Materials & Interfaces, 2018, 10(39): 33589-33600. |
73 | THAKKAR Harshul, LAWSON Shane, ROWNAGHI Ali A, et al. Development of 3D-printed polymer-zeolite composite monoliths for gas separation[J]. Chemical Engineering Journal, 2018, 348: 109-116. |
74 | YU Shuwen, LI Shichun, LIU Yu, et al. High-performance microporous polymer membranes prepared by interfacial polymerization for gas separation[J]. Journal of Membrane Science, 2019, 573: 425-438. |
75 | SEO Chae-Hee, Si-Woo LIM, MIN H, et al. Preparation of semi-alicyclic homo- and blended polyimide membranes using alicyclic dianhydrides with kink structures and their gas separation properties[J]. Journal of Industrial and Engineering Chemistry, 2022, 114: 347-360. |
76 | LI Haojie, XU Shan, ZHAO Bingyu, et al. The phase structural evolution and gas separation performances of cellulose acetate/polyimide composite membrane from polymer to carbon stage[J]. Membranes, 2021, 11(8): 618. |
77 | Hamid Mohd Azam ABD, CHUNG Ying Tao, ROHANI Rosiah, et al. Miscible-blend polysulfone/polyimide membrane for hydrogen purification from palm oil mill effluent fermentation[J]. Separation and Purification Technology, 2019, 209: 598-607. |
78 | MOON J D, BRIDGE Alexander T, Colton D’AMBRA, et al. Gas separation properties of polybenzimidazole/thermally-rearranged polymer blends[J]. Journal of Membrane Science, 2019, 582: 182-493. |
13 | HAN Yang, Winston HO W S.Polymeric membranes for CO2 separation and capture[J]. Journal of Membrane Science, 2021, 628: 119244. |
14 | XU Ruisong, LI Lin, HOU Mengjie, et al. Enhanced CO2 permeability of thermal crosslinking membrane via sulfonation/desulfonation of phenolphthalein-based cardo poly(arylene ether ketone)[J]. Journal of Membrane Science, 2020, 598: 117824. |
15 | HAN Yang, Winston HO W S. Recent developments on polymeric membranes for CO2 capture from flue gas[J]. Journal of Polymer Engineering, 2020, 40(6): 529-542. |
16 | CHUAH Chongyang, JIANG Xu, Kunli GOH, et al. Recent progress in mixed-matrix membranes for hydrogen separation[J]. Membranes, 2021, 11(9): 666. |
17 | ZHU Xuancan, LI Shuang, SHI Yixiang, et al. Recent advances in elevated-temperature pressure swing adsorption for carbon capture and hydrogen production[J]. Progress in Energy and Combustion Science, 2019, 75: 100784. |
18 | María YÁÑEZ, RELVAS Frederico, ORITZ Alfredo, et al. PSA purification of waste hydrogen from ammonia plants to fuel cell grade[J]. Separation and Purification Technology, 2020, 240: 116334. |
19 | LUBERTI Mauro, Hyungwoong AHN. Review of Polybed pressure swing adsorption for hydrogen purification[J]. International Journal of Hydrogen Energy, 2022, 47(20): 10911-10933. |
20 | MENG Junquan, LAU Cher Hon, XUE Yunlong, et al. Compatibilizing hydrophilic and hydrophobic polymers via spray coating for desalination[J]. Journal of Materials Chemistry A, 2020, 8(17): 8462-8468. |
21 | XIAO Meifeng, LI Jianhua, LEI Huanyu, et al. Preparation and microstructure control of PMDA/ODA polyimide hollow fibers[J]. Fibers and Polymers, 2020, 21(5): 944-953. |
22 | BERNARDO Gabriel, ARAUJO Tiago, LOPES Telmoda Silva, et al. Recent advances in membrane technologies for hydrogen purification[J]. International Journal of Hydrogen Energy, 2020, 45(12): 7313-7338. |
23 | SIDHIKKU KANDATH VALAPPIL Riya, GHASEM Nayef, Mohamed AL-MARZOUQI, et al. Current and future trends in polymer membrane-based gas separation technology: A comprehensive review[J]. Journal of Industrial and Engineering Chemistry, 2021, 98: 103-129. |
24 | SALAHUDDIN Zarrar, AHMED Marghoob, FARRUKH Sarah, et al. Challenges and issues with the performance of boron nitride rooted membrane for gas separation[J]. Chemosphere, 2022, 308: 136002. |
25 | IULIANELLI Adolfo, DRIOLI Enrico. Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications[J]. Fuel Processing Technology, 2020, 206: 106464. |
26 | SIDNEY Loeb, SRINIVASA Sourirajan. Sea water demineralization by means of an osmotic membrane[M]//Advances in Chemistry. Washington District of Columbia: American Chemical Society, 1963: 117-132. |
79 | SU Tim M, BALL Ian J, CONKLIN Jeanine A, et al. Polyaniline/polyimide blends for pervaporation and gas separation studies[J]. Synthetic Metals, 1997, 84(1/2/3): 801-802. |
80 | CHEN Xiuling, ZHANG Zhiguang, WU Lei, et al. Hydrogen bonding-induced 6FDA-DABA/TB polymer blends for high performance gas separation membranes[J]. Journal of Membrane Science, 2022, 655: 120575. |
81 | YONG Waifen, ZHANG Hao. Recent advances in polymer blend membranes for gas separation and pervaporation[J]. Progress in Materials Science, 2021, 116: 100713. |
82 | EBADI AMOOGHIN Abtin, MASHHADIKHAN Samaneh, SANAEEPUR Hamidreza, et al. Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMMs): A new horizon for efficient CO2 separation[J]. Progress in Materials Science, 2019, 102: 222-295. |
83 | AZIZI Alireza, FEIJANI Elahe Ahmadi, GHORBANI Zohreh, et al. Fabrication and characterization of highly efficient three component CuBTC/graphene oxide/PSF membrane for gas separation application[J]. International Journal of Hydrogen Energy, 2021, 46(2): 2244-2254. |
84 | LU Jiangfeng, ZHANG Xu, XU Lusheng, et al. Preparation of amino-functional UiO-66/PIMs mixed matrix membranes with[bmim][Tf2N]as regulator for enhanced gas separation[J]. Membranes, 2021, 11(1): 35. |
85 | ZHANG Qian, ZHOU Ming, LIU Xiufeng, et al. Pebax/two-dimensional MFI nanosheets mixed-matrix membranes for enhanced CO2 separation[J]. Journal of Membrane Science, 2021, 636: 119612. |
86 | HU Xiaofan, LEE Won Hee, Joon Yong BAE, et al. Thermally rearranged polybenzoxazole copolymers incorporating Tröger’s base for high flux gas separation membranes[J]. Journal of Membrane Science, 2020, 612: 118437. |
87 | LIU Jian, NIE Zhuang, QIN Rui, et al. Structural optimization of polyimide foam via composition with hyperbranched polymer modified fluorinated carbon nanotubes[J]. Chinese Journal of Polymer Science, 2023, 41: 117-128. |
88 | LIU Shan, LUO Jiangzhou, DENG Guoxiong, et al. From a hyperbranched polyimide to a microporous network polyimide via reaction temperature change and its application in gas separation membranes[J]. Polymers for Advanced Technologies, 2021, 32(4): 1866-1876. |
89 | LIU Zhongyun, QIU Wulin, QUAN Wenying, et al. Fine-tuned thermally cross-linkable 6FDA-based polyimide membranes for aggressive natural gas separation[J]. Journal of Membrane Science, 2021, 635: 119474. |
90 | ASADI TASHVIGH Akbar, FENG Yingnan, WEBER Martin, et al. 110th Anniversary: Selection of cross-linkers and cross-linking procedures for the fabrication of solvent-resistant nanofiltration membranes: A review[J]. Industrial & Engineering Chemistry Research, 2019, 58(25): 10678-10691. |
91 | ZHANG Beibei, QIAO Jie, WU Dongyun, et al. Enhanced gas separation by free volume tuning in a crown ether-containing polyimide membrane[J]. Separation and Purification Technology, 2022, 293: 121116. |
92 | ABDULHAMID Mahmoud A, GENDUSO Giuseppe, WANG Yingge, et al. Plasticization-resistant carboxyl-functionalized 6FDA-polyimide of intrinsic microporosity (PIM-PI) for membrane-based gas separation[J]. Industrial & Engineering Chemistry Research, 2020, 59(12): 5247-5256. |
93 | DENG Guoxiong, LUO Jiangzhou, LIU Shan, et al. Molecular design and characterization of new polyimides based on binaphthyl-ether diamines for gas separation[J]. Separation and Purification Technology, 2020, 235: 116218. |
94 | WU Shanshan, LIANG Jiachen, SHI Yapeng, et al. Design of interchain hydrogen bond in polyimide membrane for improved gas selectivity and membrane stability[J]. Journal of Membrane Science, 2021, 618: 118659. |
95 | XU Zhen, CROFT Z L, GUO Dong, et al. Recent development of polyimides: Synthesis, processing, and application in gas separation[J]. Journal of Polymer Science, 2021, 59(11): 943-962. |
96 | Cristina ÁLVAREZ, LOZANO Angel E, Marta JUAN-Y-SEVA, et al. Gas separation properties of aromatic polyimides with bulky groups. Comparison of experimental and simulated results[J]. Journal of Membrane Science, 2020, 602: 117959. |
97 | SANAEEPUR Hamidreza, AMOOGHIN Abtin Ebadi, BANDEHALI Samaneh, et al. Polyimides in membrane gas separation: Monomer’s molecular design and structural engineering[J]. Progress in Polymer Science, 2019, 91: 80-125. |
98 | SHRESTHA Binod Babu, WAKIMOTO Kazuki, WANG Zhenggong, et al. A facile synthesis of contorted spirobisindane-diamine and its microporous polyimides for gas separation[J]. RSC Advances, 2018, 8(12): 6326-6330. |
99 | WANG Shuli, MA Shengqi, HE Hongru, et al. Aromatic polyimides containing pyridine and spirocyclic units: Preparation, thermal and gas separation properties[J]. Polymer, 2019, 168: 199-208. |
100 | CHEN Xiuling, ZHANG Zhiguang, WU Lei, et al. Polymers of intrinsic microporosity having bulky substitutes and cross-linking for gas separation membranes[J]. ACS Applied Polymer Materials, 2020, 2(2): 987-995. |
101 | Xuan Huy DO, QUE Thi Nguyen, KIM Sejin, et al. Effect of thermal processing on brominated 6FDA-DAM for effective propylene/propane separation[J]. Separation and Purification Technology, 2021, 262: 118331. |
102 | JIA Peiyu, LIU Junjie, KONG Jingjing, et al. Tailoring the micropore structure of 6FDA-based polyimide membrane for gas permselectivity studied by positron annihilation[J]. Separation and Purification Technology, 2022, 282: 120044. |
103 | LOPEZ-BADILLO M, GALICIA-AGUILAR J A, ORTIZ-MUNOZ E, et al. Chemical cross-linking of 6FDA-6FPA polyimides for gas permeation membranes[J]. International Journal of Chemical Reactor Engineering, 2018, 17(6): 20170252. |
104 | NEUMANN Silvio, BENGTSON Gisela, MEIS David, et al. Thermal cross linking of novel azide modified polymers of intrinsic microporosity—Effect of distribution and the gas separation performance[J]. Polymers, 2019, 11(8): 1241. |
105 | Raymond THÜR, LEMMEN Vincent, VAN Havere Daan, et al. Tuning 6FDA-DABA membrane performance for CO2 removal by physical densification and decarboxylation cross-linking during simple thermal treatment[J]. Journal of Membrane Science, 2020, 610: 118195. |
106 | WANG Zhenggong, ISFAHANI Ali Pournaghshband, WAKIMOTO Kazuki, et al. Tuning the gas selectivity of tröger’s base polyimide membranes by using carboxylic acid and tertiary base interactions[J]. ChemSusChem, 2018, 11(16): 2744-2751. |
107 | YU Hyun Jung, CHAN Chen-Hui, Sang Yong NAM, et al. Thermally cross-linked ultra-robust membranes for plasticization resistance and permeation enhancement—A combined theoretical and experimental study[J]. Journal of Membrane Science, 2022, 646: 120250. |
108 | DOSE Michelle E, CHWATKO Malgorzata, HUBACEK Ivo, et al. Thermally cross-linked diaminophenylindane (DAPI) containing polyimides for membrane based gas separations[J]. Polymer, 2019, 161: 16-26. |
109 | BANDEHALI Samaneh, AMOOGHIN Abtin Ebadi, SANAEEPUR Hamidreza, et al. Polymers of intrinsic microporosity and thermally rearranged polymer membranes for highly efficient gas separation[J]. Separation and Purification Technology, 2021, 278: 119513. |
110 | FENG Yuxuan, CHEN Shuhui, HUA Kaisheng, et al. High-performance gas separation membranes derived from thermal-oxidative block poly(benzoxazole-co-imide)[J]. Separation and Purification Technology, 2022, 294: 121212. |
111 | LI Jinghui, CHEN Zhuo, UMAR Ahmad, et al. Probe into the influence of crosslinking on CO2 permeation of membranes[J]. Scientific Reports, 2017, 7: 40082. |
112 | Laura MATESANZ-NIÑO, Carla AGUILAR-LUGO, PRADANOS, Pedro, et al. Gas separation membranes obtained by partial pyrolysis of polyimides exhibiting polyethylene oxide moieties[J]. Polymer, 2022, 247: 124789. |
113 | LIU Zhongyun, LIU Yang, QIU Wulin, et al. Molecularly engineered 6FDA-based polyimide membranes for sour natural gas separation[J]. Angewandte Chemie International Edition, 2020, 59(35): 14877-14883. |
114 | SHI Kaixiang, YAO Hongyan, ZHANG Shuai, et al. Porous structure, carbon dioxide capture, and separation in cross-linked porphyrin-based polyimides networks[J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 14146-14153. |
115 | TONG Xiaohua, WANG Shuli, DAI Jiangnan, et al. The effect of chain rigidity and microstructure on gas separation performance of the cardo-based polyimides[J]. Polymer, 2022, 254: 125046. |
116 | XIE Wei, JIAO Yang, CAI Zhili, et al. Highly selective benzimidazole-based polyimide/ionic polyimide membranes for pure-and mixed-gas CO2/CH4 separation[J]. Separation and Purification Technology, 2022, 282: 120091. |
117 | WANG Tianjiao, YAO Hongyan, SONG Ningning, et al. Construction of microporous polyimides with tunable pore size and high CO2 selectivity based on cross-linkable linear polyimides[J]. Industrial & Engineering Chemistry Research, 2020, 59(7): 2953-2959. |
118 | DU Pengyan, WANG Zhiyong, ZHANG Tong, et al. Crosslinked thermally rearranged polybenzoxazole derived from phenolphthalein-based polyimide for gas separation[J]. Journal of Membrane Science, 2022, 662: 120934. |
119 | KONG Jingjing, LIU Junjie, JIA Peiyu, et al. Synergistic effect of thermal crosslinking and thermal rearrangement on free volume and gas separation properties of 6FDA based polyimide membranes studied by positron annihilation[J]. Journal of Membrane Science, 2022, 645: 120163. |
120 | HOSSAIN Iqubal, Munsur Abu Zafar AL, CHOI Ook, et al. Bisimidazolium PEG-mediated crosslinked 6FDA-durene polyimide membranes for CO2 separation[J]. Separation and Purification Technology, 2019, 224: 180-188. |
121 | YERZHANKYZY Ainur, WANG Yingge, GHANEM Bader S, et al. Gas separation performance of solid-state in situ thermally crosslinked 6FDA-based polyimides[J]. Journal of Membrane Science, 2022, 641: 119885. |
122 | ZHANG Caili, CAO Bing, LI Pei. Thermal oxidative crosslinking of phenolphthalein-based cardo polyimides with enhanced gas permeability and selectivity[J]. Journal of Membrane Science, 2018, 546: 90-99. |
123 | VANHERCK Katrien, KOECKELBERGHS Guy, VANKELECOM Ivo F J. Crosslinking polyimides for membrane applications: A review[J]. Progress in Polymer Science, 2013, 38(6): 874-896. |
124 | KITA Hidetoshi, INADA Tetsuya, TANAKA Kazuhiro, et al. Effect of photocrosslinking on permeability and permselectivity of gases through benzophenone-containing polyimide[J]. Journal of Membrane Science, 1994, 87(1-2): 139-147. |
125 | PARK Jaesung, GAINES Kyle E, JHENG Li-Cheng, et al. Characterization and gas transport properties of UV-irradiated polydimethylsiloxane (PDMS)-containing polyimide copolymer membranes[J]. Polymer, 2020, 210: 122966. |
126 | Nándor NEMESTÓTHY, BAKONYI Péter, Piroska LAJTAI-SZABÓ, et al. The impact of various natural gas contaminant exposures on CO2/CH4 separation by a polyimide membrane[J]. Membranes, 2020, 10(11): 324. |
127 | WIND John D, SIRARD Stephen M, PAUL Donald R, et al. Carbon dioxide-induced plasticization of polyimide membranes: Pseudo-equilibrium relationships of diffusion, sorption, and swelling[J]. Macromolecules, 2003, 36(17): 6433-6441. |
128 | WIND John D, Claudia STAUDT-BICKEL, PAUL Donald R, et al. Solid-state covalent cross-linking of polyimide membranes for carbon dioxide plasticization reduction[J]. Macromolecules, 2003, 36(6): 1882-1888. |
129 | WIND John D, Claudia STAUDT-BICKEL, PAUL Donald R, et al. The effects of crosslinking chemistry on CO2 plasticization of polyimide gas separation membranes[J]. Industrial & Engineering Chemistry Research, 2002, 41(24): 6139-6148. |
130 | HILLOCK Alexis M W, MILLER Stephen J, KOROS William J. Crosslinked mixed matrix membranes for the purification of natural gas: Effects of sieve surface modification[J]. Journal of Membrane Science, 2008, 314(1-2): 193-199. |
131 | PITHAN Frankie, Claudia STAUDT-BICKEL. Crosslinked copolyimide membranes for phenol recovery from process water by pervaporation[J]. ChemPhysChem, 2003, 4(9): 967-973. |
132 | KOROS W J, WALLACE D, WIND J D, et al. Hollow fiber polymer membrane used for separation of mixtures, comprises crosslinked polymer continuous phase: US20030140789[P]. 2004-08-03. |
133 | MA Xiaohua, MUKADDAM Mohsin, PINNAU Ingo. Bifunctionalized intrinsically microporous polyimides with simultaneously enhanced gas permeability and selectivity[J]. Macromolecular Rapid Communications, 2016, 37(11): 900-904. |
134 | EGUCHI Hiroshi, KIM Danny J, KOROS William J. Chemically cross-linkable polyimide membranes for improved transport plasticization resistance for natural gas separation[J]. Polymer, 2015, 58: 121-129. |
135 | KARANGU Njeri T, REZAC Mary E, BECKHAM Haskell W. Synthesis and properties of processable polyimides containing diacetylene groups[J]. Chemistry of Materials, 1998, 10(2): 567-573. |
136 | CHUA Mei Ling, XIAO Youchang, CHUNG Tai-Shung. Using iron (Ⅲ) acetylacetonate as both a cross-linker and micropore former to develop polyimide membranes with enhanced gas separation performance[J]. Separation and Purification Technology, 2014, 133: 120-128. |
137 | JAPIP Susilo, LIAO Kuo-Sung, CHUNG Tai-Shung. Molecularly tuned free volume of vapor cross-linked 6FDA-Durene/ZIF-71 MMMs for H2/CO2 separation at 150 degrees C[J]. Advanced Materials, 2017, 29(4): 1603833. |
138 | WANG Huan, CHUNG Tai-Shung, PAUL Donald R. Physical aging and plasticization of thick and thin films of the thermally rearranged ortho-functional polyimide 6FDA-HAB[J]. Journal of Membrane Science, 2014, 458: 27-35. |
139 | HE Lei, LU Yunhua, XIAO Guoyong, et al. Phthalide-containing poly(ether-imide)s based thermal rearrangement membranes for gas separation application[J]. RSC Advances, 2021, 12(2): 728-742. |
140 | WANG Huan, PAUL Donald R, CHUNG Tai-Shung. Surface modification of polyimide membranes by diethylenetriamine (DETA) vapor for H2 purification and moisture effect on gas permeation[J]. Journal of Membrane Science, 2013, 430: 223-233. |
141 | SHAO Lu, LAU Cher-Hon, CHUNG Tai-Shung. A novel strategy for surface modification of polyimide membranes by vapor-phase ethylenediamine (EDA) for hydrogen purification[J]. International Journal of Hydrogen Energy, 2009, 34(20): 8716-8722. |
142 | SHAO Lu, Bee Ting LOW, CHUNG Tai-Shung, et al. Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future[J]. Journal of Membrane Science, 2009, 327(1/2): 18-31. |
143 | ESMAEILIPUR Mahmood, KARGARI Ali, SANAEEPUR Hamidreza. Preparation and characterization of a cross-linked matrimid/polyvinylidene fluoride composite membrane for H2/N2 separation[J]. Iranian Journal of Polymer Science and Technology, 2017, 29(6): 505-517. |
144 | ZHAO Hongyong, CAO Yiming, DING Xiaoli, et al. Poly(ethylene oxide) induced cross-linking modification of Matrimid membranes for selective separation of CO2 [J]. Journal of Membrane Science, 2008, 320(1-2): 179-184. |
145 | ZHAO Hongyong, CAO Yiming, DING Xiaoli, et al. Effects of cross-linkers with different molecular weights in cross-linked Matrimid 5218 and test temperature on gas transport properties[J]. Journal of Membrane Science, 2008, 323(1): 176-184. |
146 | Andrew HAYES R, RICHIYAADO A H. Amine-modified polyimide membranes useful as gas sepn. membranes with high permeation rates: US4981497[P]. 1990-01-05. |
147 | ABDUL NASIR Nur’Adilah, AHMED ALSHAGHDARI Ameen Gabr, JUNAIDI Mohd Usman Mohd, et al. Miscible blend polyethersulfone/polyimide asymmetric membrane crosslinked with 1,3-diaminopropane for hydrogen separation[J]. Journal of Polymer Engineering, 2021, 41(7): 607-614. |
148 | ABDUL NASIR Nur’Adilah, LING Jiahui, JUNAIDI Mohd Usman Mohd, et al. 1,3-propane diamine/1,4-butane diamine cross-linking modification of polyimide membrane for hydrogen selective separation: Effect of diamine mixture ratio[J]. Asia-Pacific Journal of Chemical Engineering, 2020, 15(3):2411. |
149 | Bee Ting LOW, XIAO Youchang, CHUNG Tai Shung, et al. Simultaneous occurrence of chemical grafting, cross-linking, and etching on the surface of polyimide membranes and their impact on H2/CO2 separation[J]. Macromolecules, 2008, 41(4): 1297-1309. |
150 | XIAO Youchang, SHAO Lu, CHUNG Tai Shung, et al. Effects of thermal treatments and dendrimers chemical structures on the properties of highly surface cross-linked polyimide films[J]. Industrial & Engineering Chemistry Research, 2005, 44(9): 3059-3067. |
151 | OMIDVAR Maryam, STAFFORD Christopher M, LIN Haiqing. Thermally stable cross-linked P84 with superior membrane H2/CO2 separation properties at 100℃[J]. Journal of Membrane Science, 2019, 575: 118-125. |
152 | CHEN Sufang, XU Zejun, ZHANG Daohong. Synthesis and application of epoxy-ended hyperbranched polymers[J]. Chemical Engineering Journal, 2018, 343: 283-302. |
153 | CHEN Yongsheng, WANG Li, YU Haojie, et al. Synthesis and application of polyethylene-based functionalized hyperbranched polymers[J]. Progress in Polymer Science, 2015, 45: 23-43. |
154 | CHEN Shiyuan, ZHANG Junheng, ZHOU Jiliang, et al. Dramatic toughness enhancement of benzoxazine/epoxy thermosets with a novel hyperbranched polymeric ionic liquid[J]. Chemical Engineering Journal, 2018, 334: 1371-1382. |
155 | LI Xuesong, ZHAO Zhilei, WANG Yuanhang, et al. Highly efficient flame retardant, flexible, and strong adhesive intumescent coating on polypropylene using hyperbranched polyamide[J]. Chemical Engineering Journal, 2017, 324: 237-250. |
156 | WANG Dali, JIN Yue, ZHU Xinyuan, et al. Synthesis and applications of stimuli-responsive hyperbranched polymers[J]. Progress in Polymer Science, 2017, 64: 114-153. |
157 | WU Hao, ZHANG Xiao, ZHAO Xueting, et al. High flux reverse osmosis membranes fabricated with hyperbranched polymers via novel twice-crosslinked interfacial polymerization method[J]. Journal of Membrane Science, 2020, 595: 117480. |
158 | YI Lang, WU Xiuming, SHU Chen, et al. Synthesis and characterization of hyperbranched polyimides from a novel B'B2-type triamine with tert-butyl side group[J]. Polymer, 2017, 133: 171-183. |
159 | SUN Ningwei, MENG Shiyao, ZHOU Ziwei, et al. Electroactive (A3+B2)-type hyperbranched polyimides with highly stable and multistage electrochromic behaviors[J]. Electrochimica Acta, 2017, 256: 119-128. |
160 | SHENG Wenlong, SHI Jilong, HAO Huimin, et al. Polyimide-TiO2 hybrid photocatalysis: Visible light-promoted selective aerobic oxidation of amines[J]. Chemical Engineering Journal, 2020, 379: 122399. |
161 | Marek LANČ, SYSEL Petr, SOLTYS Marek, et al. Synthesis, preparation and characterization of novel hyperbranched 6FDA-TTM based polyimide membranes for effective CO2 separation: Effect of embedded mesoporous silica particles and siloxane linkages[J]. Polymer, 2018, 144: 33-42. |
162 | SHI Kaixiang, YAO Hongyan, ZOU Yongcun, et al. Crosslinked porphyrin-based polyimides: Tunable porosity parameters and carbon dioxide adsorption[J]. Microporous and Mesoporous Materials, 2019, 287: 246-253. |
163 | FANG Jianhua, KITA H, OKAMOTO K. Gas permeation properties of hyperbranched polyimide membranes[J]. Journal of Membrane Science, 2001, 182(1/2): 245-256. |
164 | SUZUKI Tomoyuki, YAMADA Y, TSUJITA Y. Gas transport properties of 6FDA-TAPOB hyperbranched polyimide membrane[J]. Polymer, 2004, 45(21): 7167-7171. |
165 | CHEN W, YAN W, WU S, et al. Preparation and properties of novel triphenylpyridine-containing hyperbranched polyimides derived from 2,4,6-tris(4-aminophenyl)pyridine under microwave irradiation[J]. Macromolecular Chemistry and Physics, 2010, 211(16): 1803-1813. |
166 | WIDJOJO Natalia, Tai-Shung Chung. Pervaporation dehydration of C2—C4 alcohols by 6FDA-ODA-NDA/Ultem® dual-layer hollow fiber membranes with enhanced separation performance and swelling resistance[J]. Chemical Engineering Journal, 2009, 155(3): 736-743. |
167 | DENG Guoxiong, Luo Jiangzhou, Liu Shan, et al. Low-temperature synthesis and gas transport properties of novel contorted hyperbranched polyimides containing binaphthyl structures[J]. Separation and Purification Technology, 2020, 248: 117088. |
168 | GHOSH Anindita, Suman Kumar SEN, BANERJEE Susanta, et al. Solubility improvements in aromatic polyimides by macromolecular engineering[J]. RSC Advances, 2012, 2(14): 5900-5926. |
169 | TSAI Chia Liang, YEN Hung-Ju, LIOU Guey-Sheng. Highly transparent polyimide hybrids for optoelectronic applications[J]. Reactive and Functional Polymers, 2016, 108: 2-30. |
170 | Melinda L JUE, LIVELY Ryan P. Targeted gas separations through polymer membrane functionalization[J]. Reactive and Functional Polymers, 2015, 86: 88-110. |
171 | WANG Shaofei, LI Xueqin, WU Hong, et al. Advances in high permeability polymer-based membrane materials for CO2 separations[J]. Energy & Environmental Science, 2016, 9(6): 1863-1890. |
172 | HOSSEINKHANI Omolbanin, KARGARI Ali, SANAEEPUR Hamidreza. Facilitated transport of CO2 through Co(Ⅱ)-S-EPDM ionomer membrane[J]. Journal of Membrane Science, 2014, 469: 151-161. |
173 | HU Xiaofan, LEE Won Hee, Joon Yong BAE, et al. Highly permeable polyimides incorporating Tröger’s base (TB) units for gas separation membranes[J]. Journal of Membrane Science, 2020, 615: 118533. |
174 | ABDULHAMID Mahmoud A, LAI Holden W H, WANG Yingge, et al. Microporous polyimides from ladder diamines synthesized by facile catalytic arene-norbornene annulation as high-performance membranes for gas separation[J]. Chemistry of Materials, 2019, 31(5): 1767-1774. |
175 | DENG Guoxiong, WANG Yilei, ZONG Xueping, et al. Gas transport property of the binaphthyl-based polyimide membranes[J]. Polymer, 2019, 183: 121854. |
176 | ZHU Zhiyang, DONG Hao, LI Kaihua, et al. One-step synthesis of hydroxyl-functionalized fully carbon main chain PIMs via a Friedel-Crafts reaction for efficient gas separation[J]. Separation and Purification Technology, 2021, 262: 118313. |
177 | LEE Michael, Grazia BEZZU C, CARTA Mariolino, et al. Enhancing the gas permeability of tröger’s base derived polyimides of intrinsic microporosity[J]. Macromolecules, 2016, 49(11): 4147-4154. |
[1] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[5] | 李化全, 王明华, 邱贵宝. 硫酸酸解钙钛矿相精矿的行为[J]. 化工进展, 2023, 42(S1): 536-541. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[9] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[10] | 史柯柯, 刘木子, 赵强, 李晋平, 刘光. 镁基储氢材料的性能及研究进展[J]. 化工进展, 2023, 42(9): 4731-4745. |
[11] | 刘木子, 史柯柯, 赵强, 李晋平, 刘光. 固体储氢材料的研究进展[J]. 化工进展, 2023, 42(9): 4746-4769. |
[12] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[13] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[14] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[15] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |