1 |
王亚丽, 刘丙学, 田国峰, 等. 高性能锂离子电池正极黏合剂研究进展[J]. 高分子学报, 2020, 51(4): 326-337.
|
|
WANG Yali, LIU Bingxue, TIAN Guofeng, et al. Research progress of cathode binder for high performance lithium-ion battery[J]. Acta Polymerica Sinica, 2020, 51(4): 326-337.
|
2 |
王策. 锂离子电池正极材料合成及改性[J]. 化工进展, 2021, 40(9): 4998-5011.
|
|
WANG Ce. Synthesis and modification of cathode materials for lithium ion batteries[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4998-5011.
|
3 |
巩桂芬, 邹明贵, 崔巍巍, 等. 锂离子电池隔膜材料EVOLi-OMMT的制备及其性能[J]. 复合材料学报, 2022, 39(3): 1169-1176.
|
|
GONG Guifen, ZOU Minggui, CUI Weiwei, et al. Preparation and performance of EVOLi-OMMT separator material for lithium ion batteries[J].Acta Materiae Compositae Sinica, 2022, 39(3): 1169-1176.
|
4 |
CAO P F, NAGUIB M, DU Z J, et al. Effect of binder architecture on the performance of silicon/graphite composite anodes for lithium ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 3470-3478.
|
5 |
HE X, LIU Z M, GAO G P, et al. Revealing the working mechanism of a multi-functional block copolymer binder for lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2021, 59: 1-8.
|
6 |
RAJEEV K K, NAM J, KIM E, et al. A self-healable polymer binder for Si anodes based on reversible Diels-Alder chemistry[J]. Electrochimica Acta, 2020, 364: 137311.
|
7 |
LIU H, CHEN T Q, XU Z X, et al. High-safety and long-life silicon-based lithium-ion batteries via a multifunctional binder[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 54842-54850.
|
8 |
黄书. 水性离子聚合物黏结剂制备及其对电极性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2019.
|
|
HUANG Shu. Preparation of waterborne ionomer binders and their effects on electrochemical performances of electrodes[D]. Harbin: Harbin Institute of Technology, 2019.
|
9 |
彭黎波, 叶诚曦, 童庆松, 等. 改性PVDF或替代PVDF黏结剂在锂电池中的应用研究进展[J]. 材料导报, 2021, 35(5): 5174-5180.
|
|
PENG Libo, YE Chengxi, TONG Qingsong, et al. Research progress of replacing traditional PVDF binder with functional binder for lithium batteries[J]. Materials Review, 2021, 35(5): 5174-5180.
|
10 |
HUANG W B, WANG W, WANG Y, et al. Overcoming the fundamental challenge of PVDF binder use with silicon anodes with a super-molecular nano-layer[J]. Journal of Materials Chemistry A, 2021, 9(3): 1541-1551.
|
11 |
YU L M, LUO Z, GONG C R, et al. Water-based binder with easy reuse characteristics for silicon/graphite anodes in lithium-ion batteries[J]. Polymer Journal, 2021, 53(8): 923-935.
|
12 |
YANG Z H, WU Z J, JIANG D W, et al. Ultra-sensitive flexible sandwich structural strain sensors based on a silver nanowire supported PDMS/PVDF electrospun membrane substrate[J]. Journal of Materials Chemistry C, 2021, 9(8): 2752-2762.
|
13 |
邵丹, 骆相宜, 梁俊超, 等. 水性黏结剂羧甲基纤维素钠对锂离子电池钛酸锂负极性能的影响[J]. 化工新型材料, 2020, 48(5): 155-158.
|
|
SHAO Dan, LUO Xiangyi, LIANG Junchao, et al. Influence of CMC water-soluble binder on electrochemical performance of Li4Ti5O12 cathode-based Li-ion battery[J]. New Chemical Materials, 2020, 48(5): 155-158.
|
14 |
GORDON R, ORIAS R, WILLENBACHER N. Effect of carboxymethyl cellulose on the flow behavior of lithium-ion battery anode slurries and the electrical as well as mechanical properties of corresponding dry layers[J]. Journal of Materials Science, 2020, 55(33): 15867-15881.
|
15 |
ZHANG Z A, ZENG T, LAI Y Q, et al. A comparative study of different binders and their effects on electrochemical properties of LiMn2O4 cathode in lithium ion batteries[J]. Journal of Power Sources, 2014, 247: 1-8.
|
16 |
CHEN F, LI H, CHEN T J, et al. Constructing crosslinked lithium polyacrylate/polyvinyl alcohol complex binder for high performance sulfur cathode in lithium-sulfur batteries[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611: 125870.
|
17 |
谢功山, 王志成, 袁爱宁, 等. 锂离子电池用水性聚氨酯黏结剂的制备与性能[J]. 精细化工, 2019, 36(9): 1956-1961.
|
|
XIE Gongshan, WANG Zhicheng, YUAN Aining, et al. Preparation and properties of waterborne polyurethane binders for lithium-ion battery[J]. Fine Chemicals, 2019, 36(9): 1956-1961.
|
18 |
邹树良, 马先果, 葛武杰, 等. 锂二次电池水性黏合剂研究进展[J]. 电源技术, 2019, 43(12): 2017-2021.
|
|
ZOU Shuliang, MA Xianguo, GE Wujie, et al. Research progress of water-based binder for lithium secondary battery[J]. Chinese Journal of Power Sources, 2019, 43(12): 2017-2021.
|
19 |
宫璐, 谢媛媛, 刘成士. 聚丙烯酸黏结剂在锂离子电池中的应用[J]. 电池, 2014, 44(5): 307-309.
|
|
GONG Lu, XIE Yuanyuan, LIU Chengshi. Application of polyacrylic acid as binder in Li-ion battery[J]. Battery Bimonthly, 2014, 44(5): 307-309.
|
20 |
LIAO J B, LIU Z, WANG J L, et al. Cost-effective water-soluble poly(vinyl alcohol) as a functional binder for high-sulfur-loading cathodes in lithium-sulfur batteries[J]. ACS Omega, 2020, 5(14): 8272-8282.
|
21 |
HE C X, GENDENSUREN B, KIM H, et al. Electrochemical performance of polysaccharides modified by the introduction of SO3H as binder for high-powered Li4Ti5O12 anodes in lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2020, 876: 114532.
|
22 |
ZOU K Y, DENG W T, CAI P, et al. Prelithiation/presodiation techniques for advanced electrochemical energy storage systems: concepts, applications, and perspectives[J]. Advanced Functional Materials, 2021, 31(5): 2005581.
|
23 |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 锂离子电池正极/负极水性黏结剂: T/ZZB 1302—2019 [S]. 北京: 中国标准出版社, 2020.
|
|
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Lithium-ion battery positive/negative water-based binder: T/ZZB 1302—2019 [S]. Beijing: Standards Press of China, 2020.
|
24 |
VANNINI M, MARCHESE P, CELLI A, et al. Synergistic effect of dipentaerythritol and montmorillonite in EVOH-based nanocomposites[J]. Journal of Applied Polymer Science, 2015, 132(28): 42265.
|