化工进展 ›› 2022, Vol. 41 ›› Issue (5): 2649-2661.DOI: 10.16085/j.issn.1000-6613.2021-0826
收稿日期:
2021-04-19
修回日期:
2021-05-21
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
王建友
作者简介:
王进(1997—),男,硕士研究生,研究方向为水污染控制与资源化。E-mail:基金资助:
WANG Jin(), CHEN Qingbai, WANG Jianyou(), LI Pengfei, DONG Lin
Received:
2021-04-19
Revised:
2021-05-21
Online:
2022-05-05
Published:
2022-05-24
Contact:
WANG Jianyou
摘要:
水的软化处理是将硬水中的Ca、Mg等可溶性盐除去的过程,是脱盐及盐资源化工序的工程化运行和饮用水安全保障过程中至关重要的一环。本文介绍了以分盐型纳滤为代表的压力驱动膜过程和以选择性电渗析为代表的电驱动膜过程在水软化中的基本原理,综述了相关工艺应用于水软化过程的技术研究进展,详细分析了多种膜法水软化系统的技术特点和优劣势,对分盐型纳滤与选择性电渗析进行了对比,并对未来膜法水软化技术的可能研究方向进行了展望。
中图分类号:
王进, 陈青柏, 王建友, 李鹏飞, 董林. 压力驱动及电驱动膜法水软化技术研究现状与展望[J]. 化工进展, 2022, 41(5): 2649-2661.
WANG Jin, CHEN Qingbai, WANG Jianyou, LI Pengfei, DONG Lin. Research status and prospect of water softening technology based on pressure-driven and electro-driven membrane processes[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2649-2661.
1 | 张亚峰, 安路阳, 王宇楠, 等. 水中硬度去除方法研究进展[J]. 煤炭加工与综合利用, 2017(12): 54-63. |
ZHANG Yafeng, AN Luyang, WANG Yunan, et al. Research progress of water hardness removal methods[J]. Coal Processing & Comprehensive Utilization, 2017(12): 54-63. | |
2 | 蒋展鹏. 环境工程学[M]. 2版. 北京: 高等教育出版社, 2005. |
JIANG Zhanpeng. Environmental engineering[M]. 2nd ed. Beijing: Higher Education Press, 2005. | |
3 | AYOUB G M, ZAYYAT R M, AL-HINDI M. Precipitation softening: a pretreatment process for seawater desalination[J]. Environmental Science and Pollution Research, 2014, 21(4): 2876-2887. |
4 | SEPEHR M N, ZARRABI M, KAZEMIAN H, et al. Removal of hardness agents, calcium and magnesium, by natural and alkaline modified pumice stones in single and binary systems[J]. Applied Surface Science, 2013, 274: 295-305. |
5 | 顾凡. 探究不同因素对生活用水水质硬度的影响[J]. 科学技术创新, 2019(27): 37-39. |
GU Fan. To explore the influence of different factors on the hardness of domestic water quality[J]. Scientific and Technological Innovation, 2019(27): 37-39. | |
6 | 张浩程. 金沙江某水厂低浊水采用药剂软化法除硬度的试验研究[D]. 重庆: 重庆大学, 2015. |
ZHANG Haocheng. Experimental study on the remove of hardness of low turbidity water of Jinsha river based on pharmacy softening method[D]. Chongqing: Chongqing University, 2015. | |
7 | 李陈. 蛭石对钙镁阳离子的吸附性能探讨[D]. 北京: 中国地质大学(北京), 2009. |
LI Chen. Study of vermiculite adsorbtion to Ca and Mg metal ions[D]. Beijing: China University of Geosciences, 2009. | |
8 | 赵志军. 药剂法海水软化研究[D]. 天津: 天津大学, 2008. |
ZHAO Zhijun. Study on seawater softening with chemical reagents[D]. Tianjin: Tianjin University, 2008. | |
9 | 徐勇, 陈青柏, 王建友. 离子交换水软化技术研究与应用进展[J]. 化工进展, 2020, 39(S2): 319-328. |
XU Yong, CHEN Qingbai, WANG Jianyou. Research and application progress in the technology of water softening by ion exchange[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 319-328. | |
10 | 郑思伟, 栗鸿强, 薛立波, 等. 中国膜产业发展概况及市场分析[J]. 水处理技术, 2021, 47(2): 12-15. |
ZHENG Siwei, LI Hongqiang, XUE Libo, et al. Overview of membrane industry development and market analysis in China[J]. Technology of Water Treatment, 2021, 47(2): 12-15. | |
11 | WANG X L, TSURU T, NAKAO S I, et al. The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes[J]. Journal of Membrane Science, 1997, 135(1): 19-32. |
12 | OATLEY D L, LLENAS L, ALJOHANI N H M, et al. Investigation of the dielectric properties of nanofiltration membranes[J]. Desalination, 2013, 315: 100-106. |
13 | 付静怡. 浓海水纳滤分离工艺研究[D]. 天津: 天津科技大学, 2012. |
FU Jingyi. Study on separation processes of concentrated brine by nanofiltration technology[D]. Tianjin: Tianjin University of Science & Technology, 2012. | |
14 | 赵颖颖, 王新宇, 李佳乐, 等. 海水体系脱钙与烟气固碳脱硫的集成研究进展[J]. 化工进展, 2020, 39(11): 4315-4329. |
ZHAO Yingying, WANG Xinyu, LI Jiale, et al. Research progress on integration of seawater softening and carbon fixation and desulfurization of flue gas[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4315-4329. | |
15 | SONG Y F, XU J, XU Y, et al. Performance of UF-NF integrated membrane process for seawater softening[J]. Desalination, 2011, 276(1/2/3): 109-116. |
16 | 刘研萍, 王琳, 王进, 等. 膜生物反应器的污染及防治[J]. 工业水处理, 2004, 24(6): 5-9. |
LIU Yanping, WANG Lin, WANG Jin, et al. Fouling mechanisms and prevention in membrane bioreactor[J]. Industrial Water Treatment, 2004, 24(6): 5-9. | |
17 | MANSOURPANAH Y, MADAENI S S, RAHIMPOUR A. Fabrication and development of interfacial polymerized thin-film composite nanofiltration membrane using different surfactants in organic phase; study of morphology and performance[J]. Journal of Membrane Science, 2009, 343(1/2): 219-228. |
18 | 林亚凯, 汪林, 唐元晖, 等. 中空纤维纳滤膜制备方法的研究进展[J]. 膜科学与技术, 2020, 40(3): 128-135. |
LIN Yakai, WANG Lin, TANG Yuanhui, et al. Research progress in preparation of hollow fiber nanofiltration membranes[J]. Membrane Science and Technology, 2020, 40(3): 128-135. | |
19 | 李祥, 张忠国, 任晓晶, 等. 纳滤膜材料研究进展[J]. 化工进展, 2014, 33(5): 1210-1218, 1229. |
LI Xiang, ZHANG Zhongguo, REN Xiaojing, et al. Progress in nanofiltration membrane materials[J]. Chemical Industry and Engineering Progress, 2014, 33(5): 1210-1218, 1229. | |
20 | 张超, 张杨, 郭敏, 等. 界面聚合法制备复合纳滤膜的缺陷及其改性研究进展[J]. 化工进展, 2012, 31(S2): 167-171. |
ZHANG Chao, ZHANG Yang, GUO Min, et al. Disadvantages of interfacially polymerized nanofiltration composite membranes and modification[J]. Chemical Industry and Engineering Progress, 2012, 31(S2): 167-171. | |
21 | 高尚哲. 纳滤技术在饮用水处理中的应用及前景分析[J]. 绿色环保建材, 2018(3): 15-16. |
GAO Shangzhe. Application and prospect analysis of nanofiltration technology in drinking water treatment[J]. Green Environmental Protection Building Materials, 2018(3): 15-16. | |
22 | LABBAN O, LIU C, CHONG T H, et al. Fundamentals of low-pressure nanofiltration: Membrane characterization, modeling, and understanding the multi-ionic interactions in water softening[J]. Journal of Membrane Science, 2017, 521: 18-32. |
23 | HU D, XU Z L, WEI Y M, et al. Poly(styrene sulfonic acid) sodium modified nanofiltration membranes with improved permeability for the softening of highly concentrated seawater[J]. Desalination, 2014, 336: 179-186. |
24 | YUAN B B, SUN H H, ZHAO S C, et al. Semi-aromatic polyamide nanofiltration membranes with tuned surface charge and pore size distribution designed for the efficient removal of Ca2+ and Mg2+ [J]. Separation and Purification Technology, 2019, 220: 162-175. |
25 | FANG W X, SHI L, WANG R. Interfacially polymerized composite nanofiltration hollow fiber membranes for low-pressure water softening[J]. Journal of Membrane Science, 2013, 430: 129-139. |
26 | 李巧云, 贺艳, 徐梦雪, 等. 地质聚合物基无机膜去除水中钙、镁离子的研究[J]. 功能材料, 2017, 48(1): 1215-1220. |
LI Qiaoyun, HE Yan, XU Mengxue, et al. Study on the removal of Ca2+ and Mg2+ in water by the geopolymer-based inorganic membrane[J]. Journal of Functional Materials, 2017, 48(1): 1215-1220. | |
27 | 李晓明, 王铎, 柴涛, 等. 纳滤海水软化的实验研究[J]. 高校化学工程学报, 2009, 23(4): 582-586. |
LI Xiaoming, WANG Duo, CHAI Tao, et al. Study on seawater softening by nanofiltration membrane[J]. Journal of Chemical Engineering of Chinese Universities, 2009, 23(4): 582-586. | |
28 | 袁俊生, 焦亮, 刘杰. 利用纳滤膜软化浓海水研究[J]. 水处理技术, 2012, 38(11): 81-83, 89. |
YUAN Junsheng, JIAO Liang, LIU Jie. Softening of concentrated seawater by nanofiltration membrane[J]. Technology of Water Treatment, 2012, 38(11): 81-83, 89. | |
29 | 张莉娜, 黄婕, 熊丹柳, 等. 纳滤膜脱盐及其在海水软化中的应用[J]. 膜科学与技术, 2012, 32(1): 97-101. |
ZHANG Lina, HUANG Jie, XIONG Danliu, et al. Desalination of nanofiltration membranes and its application in seawater softening[J]. Membrane Science and Technology, 2012, 32(1): 97-101. | |
30 | 邢锋芝, 穆凤芸, 徐世昌, 等. 海水/工业含盐废水纳滤除硬技术试验研究[J]. 天津化工, 2019, 33(2): 3-8. |
XING Fengzhi, MU Fengyun, XU Shichang, et al. Experimental study on the technology of eliminating hardness of sea water lindustrial salty waste water by nanofiltration[J]. Tianjin Chemical Industry, 2019, 33(2): 3-8. | |
31 | OHNO K, MATSUI Y, ITOH M, et al. NF membrane fouling by aluminum and iron coagulant residuals after coagulation-MF pretreatment[J]. Desalination, 2010, 254(1/2/3): 17-22. |
32 | 戴雨辰, 张显球, 杜明霞, 等. 磁化对纳滤膜通量和软化除盐的影响[J]. 工业水处理, 2017, 37(1): 34-36. |
DAI Yuchen, ZHANG Xianqiu, DU Mingxia, et al. Influences of magnetization on the flux of nanofiltration membrane and softening desalinization[J]. Industrial Water Treatment, 2017, 37(1): 34-36. | |
33 | SU B W, WU T, LI Z C, et al. Pilot study of seawater nanofiltration softening technology based on integrated membrane system[J]. Desalination, 2015, 368: 193-201. |
34 | WANG Y L, JU L, XU F, et al. Effect of a nanofiltration combined process on the treatment of high-hardness and micropolluted water[J]. Environmental Research, 2020, 182: 109063. |
35 | LIU J, YUAN J S, JI Z Y, et al. Concentrating brine from seawater desalination process by nanofiltration-electrodialysis integrated membrane technology[J]. Desalination, 2016, 390: 53-61. |
36 | 张泉, 郭曦, 董文艺, 等. 预处理方式对纳滤工艺性能及膜污染影响研究[J]. 膜科学与技术, 2014, 34(1): 82-86, 90. |
ZHANG Quan, GUO Xi, DONG Wenyi, et al. Comparison of pretreatments on nanofiltration performance and membrane fouling[J]. Membrane Science and Technology, 2014, 34(1): 82-86, 90. | |
37 | WANG X Y, MA J X, WANG Z W, et al. Reinvestigation of membrane cleaning mechanisms using NaOCl: role of reagent diffusion[J]. Journal of Membrane Science, 2018, 550: 278-285. |
38 | 祝海涛, 杨波, 高从堦. 电渗析过程传质模型的研究进展[J]. 化工进展, 2020, 39(3): 815-823. |
ZHU Haitao, YANG Bo, GAO Congjie. Research progress on mass transfer models for electrodialysis process[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 815-823. | |
39 | CHEN Q B, JI Z Y, LIU J, et al. Development of recovering lithium from brines by selective-electrodialysis: effect of coexisting cations on the migration of lithium[J]. Journal of Membrane Science, 2018, 548: 408-420. |
40 | 陈静, 张杰, 金艳, 等. 纳滤和电渗析对浓海水一二价离子的分离性能[J]. 过程工程学报, 2017, 17(3): 491-499. |
CHEN Jing, ZHANG Jie, JIN Yan, et al. Nanofiltration and electrodialysis on separation of monovalent and divalent ions from concentrated seawater[J]. The Chinese Journal of Process Engineering, 2017, 17(3): 491-499. | |
41 | ZHANG Y, PAEPEN S, PINOY L, et al. Selectrodialysis: fractionation of divalent ions from monovalent ions in a novel electrodialysis stack[J]. Separation and Purification Technology, 2012, 88: 191-201. |
42 | SADRZADEH M, MOHAMMADI T. Sea water desalination using electrodialysis[J]. Desalination, 2008, 221(1/2/3): 440-447. |
43 | TUREK M. Dual-purpose desalination-salt production electrodialysis[J]. Desalination, 2003, 153(1/2/3): 377-381. |
44 | FARROKHZAD H, MOGHBELI M R, GERVEN T VAN, et al. Surface modification of composite ion exchange membranes by polyaniline[J]. Reactive and Functional Polymers, 2015, 86: 161-167. |
45 | GOHIL G S, BINSU V V, SHAHI V K. Preparation and characterization of mono-valent ion selective polypyrrole composite ion-exchange membranes[J]. Journal of Membrane Science, 2006, 280(1/2): 210-218. |
46 | LI J, ZHOU M L, LIN J Y, et al. Mono-valent cation selective membranes for electrodialysis by introducing polyquaternium-7 in a commercial cation exchange membrane[J]. Journal of Membrane Science, 2015, 486: 89-96. |
47 | HU Y, WANG M, WANG D, et al. Feasibility study on surface modification of cation exchange membranes by quaternized chitosan for improving its selectivity[J]. Journal of Membrane Science, 2008, 319(1/2): 5-9. |
48 | LI N W, GUIVER M D. Ion transport by nanochannels in ion-containing aromatic copolymers[J]. Macromolecules, 2014, 47(7): 2175-2198. |
49 | IRFAN M, XU T T, GE L, et al. Zwitterion structure membrane provides high monovalent/divalent cation electrodialysis selectivity: investigating the effect of functional groups and operating parameters[J]. Journal of Membrane Science, 2019, 588: 117211. |
50 | IRFAN M, WANG Y M, XU T W. Novel electrodialysis membranes with hydrophobic alkyl spacers and zwitterion structure enable high monovalent/divalent cation selectivity[J]. Chemical Engineering Journal, 2020, 383: 123171. |
51 | 李健, 徐燕青, 阮慧敏, 等. 单价选择性阳离子交换膜的研究进展[J]. 膜科学与技术, 2015, 35(3): 113-120. |
LI Jian, XU Yanqing, RUAN Huimin, et al. Monovalent cation selective membranes: state and development perspective[J]. Membrane Science and Technology, 2015, 35(3): 113-120. | |
52 | 孙小寒, 苏成龙, 王建友. 离子选择性电渗析处理海水淡化浓海水[J]. 水处理技术, 2015, 41(11): 86-91. |
SUN Xiaohan, SU Chenglong, WANG Jianyou. Concentrated seawater treatment by ion-selective electrodialysis[J]. Technology of Water Treatment, 2015, 41(11): 86-91. | |
53 | SOSA-FERNANDEZ P A, POST J W, LEERMAKERS F A M, et al. Removal of divalent ions from viscous polymer-flooding produced water and seawater via electrodialysis[J]. Journal of Membrane Science, 2019, 589: 117251. |
54 | ZHANG W, MIAO M J, PAN J F, et al. Separation of divalent ions from seawater concentrate to enhance the purity of coarse salt by electrodialysis with monovalent-selective membranes[J]. Desalination, 2017, 411: 28-37. |
55 | CHAI P, WANG J Y, LU H X. The cleaner production of monosodium l-glutamate by resin-filled electro-membrane reactor[J]. Journal of Membrane Science, 2015, 493: 549-556. |
56 | CHEN Q B, REN H, TIAN Z H, et al. Conversion and pre-concentration of SWRO reject brine into high solubility liquid salts (HSLS) by using electrodialysis metathesis[J]. Separation and Purification Technology, 2019, 213: 587-598. |
57 | 邵刚, 奚凤翔. 频繁倒极电渗析(EDR)及其应用[J]. 环境工程, 1994, 12(2): 49-54. |
SHAO Gang, XI Fengxiang. Frequent reversal electrodialysis (EDR) and its application[J]. Environmental Engineering, 1994, 12(2): 49-54. | |
58 | PILAT B V. Industrial application of electrodialysis reversal systems[J]. Desalination, 2003, 158(1/2/3): 87-89. |
59 | TUREK M, DYDO P. Electrodialysis reversal of calcium sulphate and calcium carbonate supersaturated solution[J]. Desalination, 2003, 158(1/2/3): 91-94. |
60 | SONG J H, YEON K H, MOON S H. Effect of current density on ionic transport and water dissociation phenomena in a continuous electrodeionization (CEDI)[J]. Journal of Membrane Science, 2007, 291(1/2): 165-171. |
61 | LEE J W, YEON K H, SONG J H, et al. Characterization of electroregeneration and determination of optimal current density in continuous electrodeionization[J]. Desalination, 2007, 207(1/2/3): 276-285. |
62 | WOOD J, GIFFORD J, ARBA J, et al. Production of ultrapure water by continuous electrodeionization[J]. Desalination, 2010, 250(3): 973-976. |
63 | DERMENTZIS K. Continuous electrodeionization through electrostatic shielding[J]. Electrochimica Acta, 2008, 53(6): 2953-2962. |
64 | LEE H J, HONG M K, MOON S H. A feasibility study on water softening by electrodeionization with the periodic polarity change[J]. Desalination, 2012, 284: 221-227. |
65 | LEE H J, SONG J H, MOON S H. Comparison of electrodialysis reversal(EDR) and electrodeionization reversal(EDIR) for water softening[J]. Desalination, 2013, 314: 43-49. |
66 | ZHAO Y Y, WANG J H, JI Z Y, et al. A novel technology of carbon dioxide adsorption and mineralization via seawater decalcification by bipolar membrane electrodialysis system with a crystallizer[J]. Chemical Engineering Journal, 2020, 381: 122542. |
67 | SANJUÁN I, BENAVENTE D, GARCÍA-GARCÍA V, et al. Electrochemical softening of concentrates from an electrodialysis brackish water desalination plant: Efficiency enhancement using a three-dimensional cathode[J]. Separation and Purification Technology, 2019, 208: 217-226. |
68 | ZEPPENFELD K. Electrochemical removal of calcium and magnesium ions from aqueous solutions[J]. Desalination, 2011, 277(1/2/3): 99-105. |
69 | ZHI S L, ZHANG K Q. Hardness removal by a novel electrochemical method[J]. Desalination, 2016, 381: 8-14. |
70 | JIN H C, YU Y, CHEN X M. Membrane-based electrochemical precipitation for water softening[J]. Journal of Membrane Science, 2020, 597: 117639. |
71 | PORADA S, ZHAO R, VAN DER WAL A, et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58(8): 1388-1442. |
72 | 潘杰峰, 郑瑜, 丁金成, 等. 膜法电容去离子技术用于水溶液中单/多价阴离子的分离[J]. 化工学报, 2018, 69(8): 3502-3508. |
PAN Jiefeng, ZHENG Yu, DING Jincheng, et al. Monovalent anions removal by capacitive deionization integrated with monovalent anion permselective exchange membrane[J]. CIESC Journal, 2018, 69(8): 3502-3508. | |
73 | ZHANG X, REIBLE D. Theoretical analysis of constant voltage mode membrane capacitive deionization for water softening[J]. Membranes, 2021, 11(4): 231. |
74 | WANG L, LIN S H. Mechanism of selective ion removal in membrane capacitive deionization for water softening[J]. Environmental Science & Technology, 2019, 53(10): 5797-5804. |
75 | CHOI J, LEE H, HONG S. Capacitive deionization (CDI) integrated with monovalent cation selective membrane for producing divalent cation-rich solution[J]. Desalination, 2016, 400: 38-46. |
76 | HU H Q, FAN Y Z, LIU H. Hydrogen production using single-chamber membrane-free microbial electrolysis cells[J]. Water Research, 2008, 42(15): 4172-4178. |
77 | DITZIG J, LIU H, LOGAN B E. Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR)[J]. International Journal of Hydrogen Energy, 2007, 32(13): 2296-2304. |
78 | NAM J Y, JWA E, KIM D, et al. Selective removal of multivalent ions from seawater by bioelectrochemical system[J]. Desalination, 2015, 359: 37-40. |
79 | LEI Y, HIDAYAT I, SAAKES M, et al. Fate of calcium, magnesium and inorganic carbon in electrochemical phosphorus recovery from domestic wastewater[J]. Chemical Engineering Journal, 2019, 362: 453-459. |
80 | KYAZZE G, POPOV A, DINSDALE R, et al. Influence of catholyte pH and temperature on hydrogen production from acetate using a two chamber concentric tubular microbial electrolysis cell[J]. International Journal of Hydrogen Energy, 2010, 35(15): 7716-7722. |
81 | JWA E, YUN Y M, KIM H, et al. Domestic wastewater treatment in a tubular microbial electrolysis cell with a membrane electrode assembly[J]. International Journal of Hydrogen Energy, 2019, 44(2): 652-660. |
82 | JWA E, YUN Y M, KIM H, et al. Energy-efficient seawater softening and power generation using a microbial electrolysis cell-reverse electrodialysis hybrid system[J]. Chemical Engineering Journal, 2020, 391: 123480. |
83 | LI X H, MO Y H, QING W H, et al. Membrane-based technologies for lithium recovery from water lithium resources: a review[J]. Journal of Membrane Science, 2019, 591: 117317. |
84 | 黄清波, 刘公平, 金万勤. 一/二价离子分离膜材料研究进展[J]. 化工学报, 2021, 72(1): 334-350. |
HUANG Qingbo, LIU Gongping, JIN Wanqin. Recent progress of membrane materials for mono-/di-valent ions separation[J]. CIESC Journal, 2021, 72(1): 334-350. | |
85 | TANG Y J, SHEN B J, HUANG B Q, et al. High permselectivity thin-film composite nanofiltration membranes with 3D microstructure fabricated by incorporation of beta cyclodextrin[J]. Separation and Purification Technology, 2019, 227: 115718. |
86 | GONG G H, WANG P, ZHOU Z Y, et al. New insights into the role of an interlayer for the fabrication of highly selective and permeable thin-film composite nanofiltration membrane[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 7349-7356. |
87 | YAO Z K, GUO H, YANG Z, et al. Preparation of nanocavity-contained thin film composite nanofiltration membranes with enhanced permeability and divalent to monovalent ion selectivity[J]. Desalination, 2018, 445: 115-122. |
88 | YUAN B B, LI P F, WANG P, et al. Novel aliphatic polyamide membrane with high mono-/divalent ion selectivity, excellent Ca2+, Mg2+ rejection, and improved antifouling properties[J]. Separation and Purification Technology, 2019, 224: 443-455. |
89 | AN S S, LIU J, WANG J H, et al. Synthesis and characterization of organic-inorganic cross-linked membrane for the separation of mono-charged and double charged ions using UV irradiation[J]. Desalination, 2019, 464: 8-17. |
90 | JIANG C X, ZHANG D Y, MUHAMMAD A S, et al. Fouling deposition as an effective approach for preparing monovalent selective membranes[J]. Journal of Membrane Science, 2019, 580: 327-335. |
91 | 杨丰瑞, 王志, 燕方正, 等. 纳滤用于一价/二价无机盐溶液分离研究进展[J]. 化工学报, 2021, 72(2): 799-813. |
YANG Fengrui, WANG Zhi, YAN Fangzheng, et al. Progress in separation of monovalent/divalent inorganic salt solutions by nanofiltration[J]. CIESC Journal, 2021, 72(2): 799-813. |
[1] | 叶海星, 陈宇昊, 陈仪, 孙海翔, 牛青山. 镁锂分离复合纳滤膜研究进展[J]. 化工进展, 2023, 42(4): 1934-1943. |
[2] | 杨凯璐, 陈明星, 王新亚, 张威, 肖长发. 染料废水处理用纳滤膜制备及改性研究进展[J]. 化工进展, 2023, 42(10): 5470-5486. |
[3] | 王妍, 秦振平, 刘越, 张文海, 郭红霞. 环糊精原位改性MoS2管式陶瓷复合膜的制备及性能[J]. 化工进展, 2023, 42(10): 5373-5380. |
[4] | 孟祥伟, 吴晓莉, 高展鹏, 李文鹏, 王景涛. 蛭石层状膜的制备及有机溶剂纳滤性能[J]. 化工进展, 2022, 41(11): 5986-5995. |
[5] | 李泽辉, 崔恒, 王军. 氯化聚氯乙烯复合纳滤膜的制备及其在模拟RB5染料废水处理中的应用[J]. 化工进展, 2021, 40(S1): 456-465. |
[6] | 李志录, 王敏, 赵有璟, 彭正军, 白露. 膜特征对锂资源提取过程的影响[J]. 化工进展, 2021, 40(9): 5061-5072. |
[7] | 陈宇昊, 刘家辉, 刘娟, 章洪斌, 孙海翔. 新型复合纳滤膜研究进展[J]. 化工进展, 2021, 40(5): 2665-2675. |
[8] | 金业豪, 冯孝权, 朱军勇, 张亚涛. 有机溶剂纳滤传递模型及最新膜材料研究进展[J]. 化工进展, 2021, 40(11): 6181-6194. |
[9] | 海玉琰, 何灿, 马瑞, 熊日华. 反渗透/纳滤膜剖检分析与膜污染诊断研究进展[J]. 化工进展, 2021, 40(10): 5720-5729. |
[10] | 赵东升. 二硫化钼纳米片基水处理纳滤/反渗透膜研究进展[J]. 化工进展, 2021, 40(10): 5590-5599. |
[11] | 刘紫洋, 秦振平, 崔素萍, 贾萌萌, 安全福, 王乃鑫, 刘燕, 郭红霞. 有机溶剂纳滤膜的润湿性对渗透和分离性能的影响[J]. 化工进展, 2020, 39(7): 2715-2723. |
[12] | 曹阳, 任玉灵, 郭世伟, 万印华, 罗建泉. 聚酰胺薄层复合膜的界面聚合制备过程调控研究进展[J]. 化工进展, 2020, 39(6): 2125-2134. |
[13] | 秘一芳, 安全福. 界面聚合聚酰胺纳滤膜渗透选择性能优化的研究进展[J]. 化工进展, 2020, 39(6): 2093-2104. |
[14] | 许家晟, 谢建国, 鹿燕, 任杰, 陈爽. 碟管式纳滤膜在生活用水处理中的膜污染特性[J]. 化工进展, 2020, 39(5): 2000-2008. |
[15] | 赵颖颖, 王新宇, 李佳乐, 金辉, 王军, 纪志永, 袁俊生. 海水体系脱钙与烟气固碳脱硫的集成研究进展[J]. 化工进展, 2020, 39(11): 4315-4329. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |