化工进展 ›› 2022, Vol. 41 ›› Issue (5): 2662-2671.DOI: 10.16085/j.issn.1000-6613.2021-1218
唐娇娇1(), 谢军祥1, 陈重军1,2, 余成3, 陈德超1,3()
收稿日期:
2021-06-10
修回日期:
2021-08-09
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
陈德超
作者简介:
唐娇娇(1995—),女,硕士研究生,研究方向为环境生态学。E-mail:基金资助:
TANG Jiaojiao1(), XIE Junxiang1, CHEN Chongjun1,2, YU Cheng3, CHEN Dechao1,3()
Received:
2021-06-10
Revised:
2021-08-09
Online:
2022-05-05
Published:
2022-05-24
Contact:
CHEN Dechao
摘要:
污水是资源与能源的载体,蕴含着极大的化学能和热能,传统污水处理过程以能消能,处理过程能耗高且释放温室气体。在碳中和背景下,我国城镇污水处理厂实现碳中和运行,在能源自给、降低温室气体排放等方面具有潜力,成为城镇污水处理厂转型的热点。本文以城镇污水处理厂碳中和运行潜力分析为背景,分析了以高负荷活性污泥工艺(HRAS)、化学强化一级处理工艺(CEPT)、自养脱氮和反硝化除磷等工艺技术为主的碳源捕捉、低耗处理的新型污水处理工艺,并阐述了以厌氧消化-热电联产、热能和太阳能回收为代表的能源回收技术,以国内外碳中和技术运行的实际污水厂案例探讨了其应用优势和效果。同时,认为低耗运行和能源回收是城镇污水处理厂实现碳中和运行的关键,并对我国城镇污水处理厂实现碳中和运行提出了展望,旨在为城镇污水处理厂的低耗绿色可持续发展提供参考。
中图分类号:
唐娇娇, 谢军祥, 陈重军, 余成, 陈德超. 城镇污水处理厂碳中和技术及案例[J]. 化工进展, 2022, 41(5): 2662-2671.
TANG Jiaojiao, XIE Junxiang, CHEN Chongjun, YU Cheng, CHEN Dechao. Carbon neutral technologies and case studies in urban sewage treatment plants[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2662-2671.
1 | SHAN Yuli, HUANG Qi, GUAN Dabo, et al. China CO2 emission accounts 2016—2017[J]. Scientific Data, 2020, 7(1): 54. |
2 | NIU Kunyu, WU Jian, QI Lu, et al. Energy intensity of wastewater treatment plants and influencing factors in China[J]. Science of the Total Environment, 2019, 670: 961-970. |
3 | 刘爱华, 叶植材. 中国统计年鉴 2020 [M]. 北京: 中国统计出版社, 2020: 4-5. |
LIU Aihua, YE Zhicai. China statistical yearbook 2020[M]. Beijing: China Statistics Press, 2020: 4-5. | |
4 | 中华人民共和国生态环境部. 中华人民共和国气候变化第二次两年更新报告[R]. 北京: 中华人民共和国生态环境部, 2019. |
Ministry of Ecology and Environment of the People’s Republic of China. The People’s Republic of China second biennial update report on climate change[R]. Beijing: Ministry of Ecology and Environment of the People’s Republic of China, 2019. | |
5 | 郝晓地, 翟学棚, LOOSDRECHT M, 等. 污水碳源分离新概念——筛分纤维素[J]. 中国给水排水, 2017, 33(14): 9-12. |
HAO Xiaodi, ZHAI Xuepeng, LOOSDRECHT M, et al. A new concept of separating carbon source from wastewater: sieving fibers[J]. China Water & Wastewater, 2017, 33(14): 9-12. | |
6 | 闫旭, 邱德志, 郭东丽, 等. 中国城镇污水处理厂温室气体排放时空分布特征[J]. 环境科学, 2018, 39(3): 1256-1263. |
YAN Xu, QIU Dezhi, GUO Dongli, et al. Emission inventory of greenhouse gas from urban wastewater treatment plants and its temporal and spatial distribution in China[J]. Environmental Science, 2018, 39(3): 1256-1263. | |
7 | HAO Xiaodi, BATSTONE D, GUEST J S. Carbon neutrality: an ultimate goal towards sustainable wastewater treatment plants[J]. Water Research, 2015, 87: 413-415. |
8 | 郭超然,黄勇,朱文娟,等. 城市污水有机物回收——捕获技术研究进展[J]. 化工进展, 2021, 40(3): 1619-1633. |
GUO Chaoran, HUANG Yong, ZHU Wenjuan, et al. Organics recovery from municipal wastewater: research advances in capture technologies[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1619-1633. | |
9 | RAHMAN A, MEERBURG F A, RAVADAGUNDHI S, et al. Bioflocculation management through high-rate contact-stabilization: a promising technology to recover organic carbon from low-strength wastewater[J]. Water Research, 2016, 104: 485-496. |
10 | ALVARADO V I, HSU S C, LAM C M, et al. Beyond energy balance: environmental trade-offs of organics capture and low carbon-to-nitrogen ratio sewage treatment systems[J]. Environmental Science & Technology, 2020, 54(8): 4746-4757. |
11 | SARPONG G, GUDE V G. Near future energy self-sufficient wastewater treatment schemes[J]. International Journal of Environmental Research, 2020, 14(4): 479-488. |
12 | 黄宝成. 城市污水中有机碳的回收及功能化利用[D]. 合肥: 中国科学技术大学, 2018. |
HUANG Baocheng. Recovery and versatile reuse of organic carbon from municipal wastewater[D]. Hefei: University of Science and Technology of China, 2018. | |
13 | 卢欣欣. 基于一级强化的生活污水低耗处理工艺应用基础研究[D]. 西安: 西安建筑科技大学, 2020. |
LU Xinxin. Fundamental research of low consumption domestic sewage treatment technology based on enhanced primary treatment[D]. Xi’an: Xi’an University of Architecture and Technology, 2020. | |
14 | SANCHO I, LOPEZ-PALAU S, ARESPACOCHAGA N, et al. New concepts on carbon redirection in wastewater treatment plants: a review[J]. Science of the Total Environment, 2019, 647: 1373-1384. |
15 | 陈嘉亮. 城市污水高负荷活性污泥工艺碳分离试验研究[D]. 唐山: 华北理工大学, 2020. |
CHEN Jialiang. Experimental research on separating organic carbon from municipal wastewater by high-rate activated sludge system[D]. Tangshan: North China University of Science and Technology, 2020. | |
16 | GE Huoqing, BATSTONE D J, MOUICHE M, et al. Nutrient removal and energy recovery from high-rate activated sludge processes-impact of sludge age[J]. Bioresource Technology, 2017, 245: 1155-1161. |
17 | GUVEN H, ERSAHIN M E, DERELI R K, et al. Effect of hydraulic retention time on the performance of high-rate activated sludge system: a pilot-scale study[J]. Water, Air & Soil Pollution, 2017, 228(11): 1-10. |
18 | GUVEN H, FAKIOGLU M, SINOP I, et al. Retrofitting of five preliminary wastewater treatment plants in Istanbul (Turkey) to high-rate activated sludge system and/or post oxidation[J]. Ozone: Science & Engineering, 2020, 42(3): 255-266. |
19 | 刘智晓. 未来污水处理能源自给新途径——碳源捕获及碳源改向[J]. 中国给水排水, 2017, 33(8): 43-52. |
LIU Zhixiao. Carbon capture and carbon redirection: new way to optimize the energy self-sufficient of wastewater treatment[J]. China Water & Wastewater, 2017, 33(8): 43-52. | |
20 | HE Qiulai, WANG Hongyu, XU Congyuan, et al. Feasibility and optimization of wastewater treatment by chemically enhanced primary treatment (CEPT): a case study of Huangshi[J]. Chemical Speciation & Bioavailability, 2016, 28(1/2/3/4): 209-215. |
21 | NUNEZ C, DORNFELD M, SHANKLES K C, et al. Cost savings and performance improvement of large system iron salt use for integrated sulfide control and chemically enhanced primary treatment by using peroxide regenerated iron technology[J]. Proceedings of the Water Environment Federation, 2010, 2010(16): 1110-1121. |
22 | BUDYCH-GORZNA M, SZATKOWSKA B, JAROSZYNSKI L, et al. Towards an energy self-sufficient resource recovery facility by improving energy and economic balance of a municipal WWTP with chemically enhanced primary treatment[J]. Energies, 2021, 14(5): 1445. |
23 | RAHMAN A, DE CLIPPELEIR H, THOMAS W, et al. A-stage and high-rate contact-stabilization performance comparison for carbon and nutrient redirection from high-strength municipal wastewater[J]. Chemical Engineering Journal, 2019, 357: 737-749. |
24 | FAUST L, TEMMINK H, ZWIJNENBURG A, et al. High loaded MBRs for organic matter recovery from sewage: effect of solids retention time on bioflocculation and on the role of extracellular polymers[J]. Water Research, 2014, 56: 258-266. |
25 | WAN Junfeng, GU Jun, ZHAO Qian, et al. COD capture: a feasible option towards energy self-sufficient domestic wastewater treatment[J]. Scientific Reports, 2016, 6: 25054. |
26 | JIMENEZ J A, BETHKE L, RATTIER M, et al. Development of a mainstream anaerobic treatment process using a hybrid UASB-micro sieve system[J]. Proceedings of the Water Environment Federation, 2016, 2016(14): 2686-2695. |
27 | XIAO Benyi, TANG Xinyi, YI Hao, et al. Comparison of two advanced anaerobic digestions of sewage sludge with high-temperature thermal pretreatment and low-temperature thermal-alkaline pretreatment[J]. Bioresource Technology, 2020, 304: 122979. |
28 | SOLON K, JIA Mingsheng, VOLCKE E I P. Process schemes for future energy-positive water resource recovery facilities[J]. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 2019, 79(9): 1808-1820. |
29 | 余传戴. 市政污泥低温热水解-厌氧消化半连续运行产甲烷研究[D]. 福州: 福建师范大学, 2017. |
YU Chuandai. Methane production from semi-continuous anaerobic digestion reactor using municipal sludge pretreated by low temperature thermal hydrolization[D]. Fuzhou: Fujian Normal University, 2017. | |
30 | 何美龙. 基于基质调理提升污泥厌氧消化产甲烷效能研究[D]. 福州: 福建师范大学, 2018. |
HE Meilong. Methanogenesis performance enhancement of municipal sludge anaerobic digestion based on substrate conditioning[D]. Fuzhou: Fujian Normal University, 2018. | |
31 | FITAMO T, BOLDRIN A, BOE K, et al. Co-digestion of food and garden waste with mixed sludge from wastewater treatment in continuously stirred tank reactors[J]. Bioresource Technology, 2016, 206: 245-254. |
32 | HAO Xiaodi, LI Ji, LOOSDRECHT M C M VAN, et al. Energy recovery from wastewater: heat over organics[J]. Water Research, 2019, 161: 74-77. |
33 | 宋新新, 林甲, 刘杰, 等. 面向未来污水处理技术应用研究现状及工程实践[J]. 环境科学学报, 2021, 41(1): 39-53. |
SONG Xinxin, LIN Jia, LIU Jie, et al. The current situation and engineering practice of sewage treatment technology facing the future[J]. Acta Scientiae Circumstantiae, 2021, 41(1): 39-53. | |
34 | HAO Xiaodi, LIU Ranbin, HUANG Xin. Evaluation of the potential for operating carbon neutral WWTPs in China[J]. Water Research, 2015, 87: 424-431. |
35 | 刘如玲, 宋鹏, 戴卫东. 青岛市团岛污水处理厂污水源热泵技术应用[J]. 中国给水排水, 2015, 31(12): 86-89. |
LIU Ruling, SONG Peng, DAI Weidong. Application of sewage-source heat pump technology in Qingdao Tuandao sewage treatment plant[J]. China Water & Wastewater, 2015, 31(12): 86-89. | |
36 | 张开海. 分布式光伏发电系统在某污水处理厂中的应用[J]. 中国给水排水, 2017, 33(22): 81-84. |
ZHANG Kaihai. Application of distributed photovoltaic power generation system in a wastewater treatment plant[J]. China Water & Wastewater, 2017, 33(22): 81-84. | |
37 | 刘晓明, 严俊泉, 黄棚兰. 太阳能发电在水处理行业中的创新应用[J]. 中国给水排水, 2015, 31(18): 90-94. |
LIU Xiaoming, YAN Junquan, HUANG Penglan. Innovative application of solar power generation in water treatment industry[J]. China Water & Wastewater, 2015, 31(18): 90-94. | |
38 | 谢军祥, 姜滢, 常尧枫, 等. 城镇生活污水厌氧氨氧化处理的研究进展[J]. 化工进展, 2020, 39(10): 4175-4184. |
XIE Junxiang, JIANG Ying, CHANG Yaofeng, et al. Research progress of anaerobic ammonia oxidation treatment of urban sewage[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4175-4184. | |
39 | ZHANG Meng, WANG Siyu, JI Bin, et al. Towards mainstream deammonification of municipal wastewater: partial nitrification-anammox versus partial denitrification-anammox[J]. Science of the Total Environment, 2019, 692: 393-401. |
40 | MORALES N, RÍO Á VAL DEL, VÁZQUEZ-PADÍN J R, et al. Integration of the Anammox process to the rejection water and main stream lines of WWTPs[J]. Chemosphere, 2015, 140: 99-105. |
41 | CAO Yeshi, HONG K B, YAN Zhou, 等. 新加坡最大回用水处理厂污水短程硝化厌氧氨氧化脱氮工艺[J]. 北京工业大学学报, 2015, 41(10): 1441-1454. |
CAO Yeshi, HONG K B, YAN Zhou, et al. Mainstream partial nitritation/anammox nitrogen removal process in the largest water reclamation plant in Singapore[J]. Journal of Beijing University of Technology, 2015, 41(10): 1441-1454. | |
42 | DENG Shiyun, PENG Yongzhen, ZHANG Liang, et al. Advanced nitrogen removal from municipal wastewater via two-stage partial nitrification-simultaneous anammox and denitrification (PN-SAD) process[J]. Bioresource Technology, 2020, 304: 122955. |
43 | WANG Dong, WANG Guowen, YANG Fenglin, et al. Treatment of municipal sewage with low carbon-to-nitrogen ratio via a novel integrated process[J]. Chemical Engineering Journal, 2018, 341: 58-64. |
44 | CAO Shenbin, DU Rui, ZHOU Yan. Coupling anammox with heterotrophic denitrification for enhanced nitrogen removal: a review[J]. Critical Reviews in Environmental Science and Technology, 2020: 1-34. |
45 | 郝晓地, 汪慧贞, 钱易, 等. 欧洲城市污水处理技术新概念——可持续生物除磷脱氮工艺(上)[J]. 给水排水, 2002, 28(6): 6-11, 1. |
HAO Xiaodi, WANG Huizhen, QIAN Yi,et al. A new European concept for sewage treatment technology: sustainable biological nutrient removal processes[J]. Water & Wastewater Engineering, 2002, 28(6): 6-11, 1. | |
46 | 徐贵达, 李冬, 刘志诚, 等. 高频间歇梯度曝气启动短程硝化反硝化除磷颗粒污泥[J]. 中国环境科学, 2021(11): 5125-5132. |
XU Guida, LI Dong, LIU Zhicheng, et al. High frequency intermittent gradient aeration initiation of short-cut nitrification and denitrification for phosphorus removal of granular sludge[J]. China Environmental Science, 2021(11): 5125-5132 . | |
47 | ZAMAN M, KIM M, NAKHLA G. Simultaneous nitrification-denitrifying phosphorus removal (SNDPR) at low DO for treating carbon-limited municipal wastewater[J]. Science of the Total Environment, 2021, 760: 143387. |
48 | LIN Ziyuan, WANG Yingmu, HUANG Wei, et al. Single-stage denitrifying phosphorus removal biofilter utilizing intracellular carbon source for advanced nutrient removal and phosphorus recovery[J]. Bioresource Technology, 2019, 277: 27-36. |
49 | ZHAO Ji, WANG Xiaoxia, LI Xiyao, et al. Advanced nutrient removal from ammonia and domestic wastewaters by a novel process based on simultaneous partial nitrification-anammox and modified denitrifying phosphorus removal[J]. Chemical Engineering Journal, 2018, 354: 589-598. |
50 | WU Dong, LI Xiangzhong, LI Xiangdong. Toward energy neutrality in municipal wastewater treatment: a systematic analysis of energy flow balance for different scenarios[J]. ACS ES&T Water, 2021, 1(4): 796-807. |
51 | BASHAR R, KARTHIKEYAN K G, NOGUERA D R. Simulation-based analysis of full-scale implementation of energy neutral wastewater treatment plants[J]. Journal of Water Process Engineering, 2021, 40: 101875. |
52 | KHIEWWIJIT R, TEMMINK H, RIJNAARTS H, et al. Energy and nutrient recovery for municipal wastewater treatment: how to design a feasible plant layout?[J]. Environmental Modelling & Software, 2015, 68: 156-165. |
53 | SARPONG G, GUDE V G, MAGBANUA B S. Energy autarky of small scale wastewater treatment plants by enhanced carbon capture and codigestion: a quantitative analysis[J]. Energy Conversion and Management, 2019, 199: 111999. |
54 | LOTTI T, KLEEREBEZEM R, HU Z, et al. Pilot-scale evaluation of anammox-based mainstream nitrogen removal from municipal wastewater[J]. Environmental Technology, 2015, 36(9): 1167-1177. |
55 | 郝晓地, 魏静, 曹亚莉. 美国碳中和运行成功案例——Sheboygan污水处理厂[J]. 中国给水排水, 2014, 30(24): 1-6. |
HAO Xiaodi, WEI Jing, CAO Yali. A successful case of carbon-neutral operation in America: Sheboygan WWTP[J]. China Water & Wastewater, 2014, 30(24): 1-6. | |
56 | MO Weiwei, ZHANG Qiong. Can municipal wastewater treatment systems be carbon neutral?[J]. Journal of Environmental Management, 2012, 112: 360-367. |
57 | THIERBACH R, HANSSEN H. Utilisation of energy of sewage gas and sludge combustion at the Koehlbrandhoeft sewage plant[C]//Technische Univ. Hamburg-Harburg. Arbeitsbereich Abwasserwirtschaft; Gesellschaft zur Foerderung und Entwicklung der Umwelttechnologien an der Technischen Univ. Hamburg: Gesellschaft zur Foerderung und Entwicklung der Umwelttechnologien an der Technischen Univ, 2003. |
58 | 郝晓地, 任冰倩, 曹亚莉. 德国可持续污水处理工程典范——Steinhof厂[J].中国给水排水, 2014, 30(22): 6-11. |
HAO Xiaodi, REN Bingqian, CAO Yali. An engineering model of sustainable wastewater treatment: Steinhof WWTP at Braunschweig in Germany[J]. China Water & Wastewater, 2014, 30(22): 6-11. | |
59 | ZABOROWSKA E, CZERWIONKA K, MAKINIA J. Strategies for achieving energy neutrality in biological nutrient removal systems—A case study of the Slupsk WWTP (northern Poland)[J]. Water Science and Technology, 2017, 75(3): 727-740. |
60 | DE GRAAFF M S, BRAND T P H VAN DEN, ROEST K, et al. Full-scale highly-loaded wastewater treatment processes (A-stage) to increase energy production from wastewater: performance and design guidelines[J]. Environmental Engineering Science, 2016, 33(8): 571-577. |
61 | THOMSEN M, ROMEO D, CARO D, et al. Environmental-economic analysis of integrated organic waste and wastewater management systems: a case study from Aarhus city (Denmark)[J]. Sustainability, 2018, 10(10): 3742. |
62 | 郝晓地, 程慧芹, 胡沅胜. 碳中和运行的国际先驱奥地利Strass污水厂案例剖析[J]. 中国给水排水, 2014, 30(22): 1-5. |
HAO Xiaodi, CHENG Huiqin, HU Yuansheng. International pioneer of carbon-neutral operation of wastewater treatment: a case study at Strass in Austria[J]. China Water & Wastewater, 2014, 30(22): 1-5. | |
63 | REARDON R. Separate or combined sidestream treatment: that is the question[J]. Fla Water Resour J, 2014: 52-58. |
64 | 中持股份. 面向未来: 中持股份睢县第三污水处理厂初探(上)[EB/OL]. 北京: 中国水网[2019-09-06]. . |
Water Service CSD. Facing the future: a preliminary study on the third sewage treatment of China holding Sui county (Part 1)[EB/OL]. Beijing: www.h2o-china.com[2019-09-06]. . | |
65 | 中持股份. 面向未来: 中持股份睢县第三污水处理厂初探(下)[EB/OL]. 北京: 中国水网[2019-09-27]. . |
Water Service CSD. Facing the future: a preliminary study on the third sewage treatment of China holding Sui county (Part 2)[EB/OL]. Beijing: www.h2o-china.com[2019-09-27]. . | |
66 | 中持股份. 河南省城镇污水处理工作推进会走进中持股份睢县概念厂[EB/OL]. 北京: 中国水网[2020-11-05]. . |
Water Service CSD. Henan province urban sewage treatment work promotion association: entering the CSD Water Service Suixian concept factory[EB/OL]. Beijing: www.h2o-china.com[2020-11-05]. . | |
67 | WETT B, BUCHAUER K, FIMML C. Energy self-sufficiency as a feasible concept for wastewater treatment systems[J]. Proceedings of the IWA Leading Edge Technology Conference (Singapore), 2007: 21-24. |
[1] | 王莹, 韩云平, 李琳, 李衍博, 李慧丽, 颜昌仁, 李彩侠. 城市污水厂病毒气溶胶逸散特征研究现状与未来展望[J]. 化工进展, 2023, 42(S1): 439-446. |
[2] | 舒斌, 陈建宏, 熊健, 吴其荣, 喻江涛, 杨平. 碳中和目标下推动绿色甲醇发展的必要性分析[J]. 化工进展, 2023, 42(9): 4471-4478. |
[3] | 刘含笑, 吴黎明, 林青阳, 周烨, 罗象, 桂志军, 刘小伟, 单思珂, 朱前林, 陆诗建. 碳足迹评估技术及其在重点工业行业的应用[J]. 化工进展, 2023, 42(5): 2201-2218. |
[4] | 陈崇明, 曾四鸣, 罗小娜, 宋国升, 韩忠阁, 郁金星, 孙楠楠. 基于超交联聚合物前体的碳载钾基CO2吸附剂制备和性能[J]. 化工进展, 2023, 42(3): 1540-1550. |
[5] | 张育新, 王灿, 舒文祥. 二氧化碳的还原及其利用研究进展[J]. 化工进展, 2023, 42(2): 944-956. |
[6] | 姚伦, 周雍进. 一碳化合物生物利用和转化研究进展[J]. 化工进展, 2023, 42(1): 16-29. |
[7] | 胡兵, 徐立军, 何山, 苏昕, 汪继伟. 碳达峰与碳中和目标下PEM电解水制氢研究进展[J]. 化工进展, 2022, 41(9): 4595-4604. |
[8] | 周颖, 周红军, 徐春明. 氢能的思考及发展路径判断和实践[J]. 化工进展, 2022, 41(8): 4587-4592. |
[9] | 杨学萍. 碳中和背景下现代煤化工技术路径探索[J]. 化工进展, 2022, 41(7): 3402-3412. |
[10] | 黄晟, 王静宇, 李振宇. 碳中和目标下石油与化学工业绿色低碳发展路径分析[J]. 化工进展, 2022, 41(4): 1689-1703. |
[11] | 王月, 赵秦峰, 张占全, 雷俊伟, 侯远东. 碳中和背景下国内外废塑料裂解法回收进展[J]. 化工进展, 2022, 41(3): 1470-1478. |
[12] | 甘凤丽, 江霞, 常玉龙, 靳紫恒, 汪华林, 师敬伟. 石化行业碳中和技术路径探索[J]. 化工进展, 2022, 41(3): 1364-1375. |
[13] | 岳成光, 姬文豪, 冯帮满, 王美岩, 马新宾. 二氧化碳与不饱和烃制备丙烯酸及其衍生物研究进展[J]. 化工进展, 2022, 41(3): 1163-1175. |
[14] | 李海涛, 汪东. 精对苯二甲酸生产废水处理与CO2协同利用技术的实践与展望[J]. 化工进展, 2022, 41(3): 1132-1135. |
[15] | 徐明, 邵明飞, 刘清雅, 段雪. 电解水制氢耦合碳酸盐还原展望[J]. 化工进展, 2022, 41(3): 1121-1124. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |