化工进展 ›› 2022, Vol. 41 ›› Issue (5): 2636-2648.DOI: 10.16085/j.issn.1000-6613.2021-0983
唐婷1(), 周文凤2, 王志1, 朱晨杰2, 许敬亮1, 庄伟2(), 应汉杰2, 欧阳平凯2
收稿日期:
2021-05-10
修回日期:
2021-06-22
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
庄伟
作者简介:
唐婷(1994—),女,硕士研究生,研究方向为固定化酶。E-mail:基金资助:
TANG Ting1(), ZHOU Wenfeng2, WANG Zhi1, ZHU Chenjie2, XU Jingliang1, ZHUANG Wei2(), YING Hanjie2, OUYANG Pingkai2
Received:
2021-05-10
Revised:
2021-06-22
Online:
2022-05-05
Published:
2022-05-24
Contact:
ZHUANG Wei
摘要:
糖类的催化反应对人体生命活动和工业生产具有重要意义。近年来,多酶共固定化技术迅速发展,为糖类的催化反应提供了一个绿色高效的研究工具。本文结合糖类催化中的多酶级联反应,系统阐述了多酶共固定化的方法,包括传统方法和新型方法,并指出了其各自的原理和优缺点。在此基础上,详细介绍了多酶共固定化技术在糖类催化中的应用,如淀粉的水解、纤维素的利用以及功能性糖的合成等,结果表明多酶共固定化技术不仅具有高效催化、稳定性强、易于分离等特性,而且能够充分发挥多酶之间协同催化的优势,极大地促进了糖类催化反应的进行。最后分析了多酶共固定化技术目前存在的问题与挑战,提出了一些解决问题的研究思路和方法,并展望了其发展前景。
中图分类号:
唐婷, 周文凤, 王志, 朱晨杰, 许敬亮, 庄伟, 应汉杰, 欧阳平凯. 多酶共固定化技术在糖类催化中的研究进展[J]. 化工进展, 2022, 41(5): 2636-2648.
TANG Ting, ZHOU Wenfeng, WANG Zhi, ZHU Chenjie, XU Jingliang, ZHUANG Wei, YING Hanjie, OUYANG Pingkai. Advances of multienzymes co-immobilization technology for sugar catalysis[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2636-2648.
43 | DE SOUZA P M, DE OLIVEIRA MAGALHÃES P. Application of microbial α-amylase in industry—A review[J]. Brazilian Journal of Microbiology, 2010, 41(4): 850-861. |
44 | AKOH C C, CHANG S W, LEE G C, et al. Biocatalysis for the production of industrial products and functional foods from rice and other agricultural produce[J]. Journal of Agricultural and Food Chemistry, 2008, 56(22): 10445-10451. |
45 | TORABIZADEH H, MONTAZERI E. Nano co-immobilization of α-amylase and maltogenic amylase by nanomagnetic combi-cross-linked enzyme aggregates method for maltose production from corn starch[J]. Carbohydrate Research, 2020, 488: 107904. |
46 | TALEKAR S, DESAI S, PILLAI M, et al. Carrier free co-immobilization of glucoamylase and pullulanase as combi-cross linked enzyme aggregates (combi-CLEAs)[J]. RSC Adv., 2013, 3(7): 2265-2271. |
47 | ZHANG L, SHI J F, JIANG Z Y, et al. Bioinspired preparation of polydopamine microcapsule for multienzyme system construction[J]. Green Chem., 2011, 13(2): 300-306. |
48 | SALGAONKAR M, NADAR S S, RATHOD V K. Combi-metal organic framework (Combi-MOF) of α-amylase and glucoamylase for one pot starch hydrolysis[J]. International Journal of Biological Macromolecules, 2018, 113: 464-475. |
49 | HAN P, ZHOU X, YOU C. Efficient multi-enzymes immobilized on porous microspheres for producing inositol from starch[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 380. |
50 | DAI Z F. Co-immobilization of thermostable alpha-amylase and glucoamylase for starch hydrolysis[D]. Columbus: Ohio State University, 2011. |
51 | LYND L R, WEIMER P J, VAN ZYL W H, et al. Microbial cellulose utilization: fundamentals and biotechnology[J]. Microbiology and Molecular Biology Reviews, 2002, 66(3): 506-577. |
52 | CHO E J, JUNG S, KIM H J, et al. Co-immobilization of three cellulases on Au-doped magnetic silicananoparticles for the degradation of cellulose[J]. ChemCommun, 2012, 48(6): 886-888. |
53 | YUAN B, YANG X Q, XUE L W, et al. A novel recycling system for nano-magnetic molecular imprinting immobilised cellulases: synergistic recovery of anthocyanin from fruit and vegetable waste[J]. Bioresource Technology, 2016, 222: 14-23. |
54 | MULEY A B, THORAT A S, SINGHAL R S, et al. A tri-enzyme co-immobilized magnetic complex: process details, kinetics, thermodynamics and applications[J]. International Journal of Biological Macromolecules, 2018, 118: 1781-1795. |
1 | RAUTER A P, XAVIER N M. Special issue “carbohydrates 2018”[J]. Pharmaceuticals, 2019, 13(1): E5. |
2 | CUMMINGS J H, STEPHEN A M. Carbohydrate terminology and classification[J]. European Journal of Clinical Nutrition, 2007, 61(S1): S5-S18. |
3 | WANG M, LIU M J, LU J M, et al. Photo splitting of bio-polyols and sugars to methanol and syngas[J]. Nature Communications, 2020, 11: 1083. |
4 | RODRIGUES R C, ORTIZ C, BERENGUER-MURCIA Á, et al. Modifying enzyme activity and selectivity by immobilization[J]. Chemical Society Reviews, 2013, 42(15): 6290-6307. |
5 | ZHANG H, BAI Y P, ZHU N, et al. Microfluidic reactor with immobilized enzyme-from construction to applications: a review[J]. Chinese Journal of Chemical Engineering, 2021, 30: 136-145. |
6 | CHEN K, HUANG X Y, KAN S B J, et al. Enzymatic construction of highly strained carbocycles[J]. Science, 2018, 360(6384): 71-75. |
7 | CUI J D, REN S Z, LIN T, et al. Shielding effects of Fe3+-tannic acid nanocoatings for immobilized enzyme on magnetic Fe3O4@silica core shell nanosphere[J]. Chemical Engineering Journal, 2008, 343: 629-637. |
8 | CUI J, FENG Y, LIN T, et al. Mesoporous metal-organic framework with well-defined cruciate flower-like morphology for enzyme immobilization[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10587-10594. |
9 | NESTL B M, HAMMER S C, NEBEL B A, et al. New generation of biocatalysts for organic synthesis[J]. Angewandte Chemie International Edition, 2014, 53(12): 3070-3095. |
10 | JO S M, WURM F R, LANDFESTER K. Biomimetic cascade network between interactive multi-compartments organized by enzyme-loaded silica nanoreactors[J]. ACS Applied Materials and Interfaces, 2018, 10(40): 34230-34237. |
11 | BELLUATI A, CRACIUN I, LIU J, et al. Nanoscale enzymatic compartments in tandem support cascade reactions in vitro [J]. Biomacromolecules, 2018, 19(10): 4023-4033. |
12 | REN S Z, LI C H, JIAO X B, et al. Recent progress in multienzymes co-immobilization and multienzyme system applications[J]. Chemical Engineering Journal, 2019, 373: 1254-1278. |
13 | YIN J F, CHEN S K, ZHANG N, et al. Multienzyme cascade bioreactor for a 10min digestion of genomic DNA into single nucleosides and quantitative detection of structural DNA modifications in cellular genomic DNA[J]. ACS Applied Materials & Interfaces, 2018, 10(26): 21883-21890. |
14 | SCHOFFELEN S, HEST J C M VAN. Multi-enzyme systems: bringing enzymes together in vitro [J]. Soft Matter, 2012, 8(6): 1736-1746. |
15 | ZHANG Y H P. Simpler is better: high-yield and potential low-cost biofuels production through cell-free synthetic pathway biotransformation (SyPaB)[J]. ACS Catalysis, 2011, 1(9): 998-1009. |
16 | HWANG E T, LEE S. Multienzymatic cascade reactions via enzyme complex by immobilization (review)[J]. ACS Catalysis, 2019, 9(5): 4402-4425. |
17 | 郭华, 张蕾, 董旭, 等. 固定化多酶级联反应器[J]. 化学进展, 2020, 32(4): 392-405. |
GUO Hua, ZHANG Lei, DONG Xu, et al. Immobilized multi-enzyme cascade reactor[J]. Progress in Chemistry, 2020, 32(4): 392-405. | |
18 | ULKER C, GOKALP N, GUVENILIR Y. Immobilization of Candida Antarctica lipase B (CALB) on surface-modified rice husk ashes (RHA) via physical adsorption and cross-linking methods[J]. Biocatalysis and Biotransformation, 2016, 34(4): 172-180. |
19 | GASHTASBI F, AHMADIAN G, NOGHABI K A. New insights into the effectiveness of alpha-amylase enzyme presentation on the Bacillus subtilis spore surface by adsorption and covalent immobilization[J]. Enzyme and Microbial Technology, 2014, 64/65: 17-23. |
20 | CIAURRIZ P, BRAVO E, HAMAD-SCHIFFERLI K. Effect of architecture on the activity of glucose oxidase/horseradish peroxidase/carbon nanoparticle conjugates[J]. Journal of Colloid and Interface Science, 2014, 414: 73-81. |
21 | QU R, SHEN L L, QU A T, et al. Artificial peroxidase/oxidase multiple enzyme system based on supramolecular hydrogel and its application as a biocatalyst for cascade reactions[J]. ACS Applied Materials & Interfaces, 2015, 7(30): 16694-16705. |
55 | KUMARI A, KAILA P, TIWARI P, et al. Multiple thermostable enzyme hydrolases on magnetic nanoparticles: an immobilized enzyme-mediated approach to saccharification through simultaneous xylanase, cellulase and amylolytic glucanotransferase action[J]. International Journal of Biological Macromolecules, 2018, 120: 1650-1658. |
56 | 张群. 功能性糖生物制备关键技术研究[J]. 食品与生物技术学报, 2018, 37(9): 1008. |
ZHANG Qun. Study on the key technology of biological preparation of functional sugar[J]. Journal of Food Science and Biotechnology, 2018, 37(9): 1008. | |
57 | ZHAO C, WU Y J, LIU X Y, et al. Functional properties, structural studies and chemo-enzymatic synthesis of oligosaccharides[J]. Trends in Food Science & Technology, 2017, 66: 135-145. |
58 | SAKO T, MATSUMOTO K, TANAKA R. Recent progress on research and applications of non-digestible galacto-oligosaccharides[J]. International Dairy Journal, 1999, 9(1): 69-80. |
59 | LI Z Y, XIAO M, LU L L, et al. Production of non-monosaccharide and high-purity galactooligosaccharides by immobilized enzyme catalysis and fermentation with immobilized yeast cells[J]. Process Biochemistry, 2008, 43(8): 896-899. |
60 | ABURTO C, GUERRERO C, VERA C, et al. Co-immobilized β-galactosidase and Saccharomyces cerevisiae cells for the simultaneous synthesis and purification of galacto-oligosaccharides[J]. Enzyme and Microbial Technology, 2018, 118: 102-108. |
61 | MARÍN-MANZANO M C, ABECIA L, HERNÁNDEZ-HERNÁNDEZ O, et al. Galacto-oligosaccharides derived from lactulose exert a selective stimulation on the growth of bifidobacterium animalis in the large intestine of growing rats[J]. Journal of Agricultural and Food Chemistry, 2013, 61(31): 7560-7567. |
62 | LONG J, PAN T, XIE Z J, et al. Effective production of lactosucrose using β-fructofuranosidase and glucose oxidase co-immobilized by sol-gel encapsulation[J]. Food Science & Nutrition, 2019, 7(10): 3302-3316. |
63 | ÖLÇER Z, TANRISEVEN A. Co-immobilization of dextransucrase and dextranase in alginate[J]. Process Biochemistry, 2010, 45(10): 1645-1651. |
64 | MURANAKA Y, MATSUBARA K, MAKI T, et al. 5-Hydroxymethylfurfural synthesis from monosaccharides by a biphasic reaction-extraction system using a microreactor and extractor[J]. ACS Omega, 2020, 5(16): 9384-9390. |
65 | 千嘉艺, 肖建军, 孙林, 等. 生物质双相溶剂体系制备5-羟甲基糠醛的过程强化研究进展[J]. 化工进展, 2021, 40(11): 6054-6060. |
QIAN Jiayi, XIAO Jianjun, SUN Lin, et al. Research progress on process intensification in hydrolysis of biomass into 5-hydroxymethylfurfural in biphasic solvent systems[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6054-6060. | |
66 | WU Z F, SHI L J, YU X X, et al. Co-immobilization of tri-enzymes for the conversion of hydroxymethylfurfural to 2,5-diformylfuran[J]. Molecules, 2019, 24(20): 3648. |
67 | RAMACHANDRAN S, FONTANILLE P, PANDEY A, et al. Gluconic acid: properties, applications and microbial production[J]. Food Technology and Biotechnology, 2006, 44(2): 185-195. |
68 | LIU F J, XUE Z M, ZHAO X H, et al. Catalytic deep eutectic solvents for highly efficient conversion of cellulose to gluconic acid with gluconic acid self-precipitation separation[J]. Chemical Communications, 2018, 54(48): 6140-6143. |
69 | RUALES-SALCEDO A V, HIGUITA J C, FONTALVO J. Integration of a multi-enzyme system with a liquid membrane in Taylor flow regime for the production and in situ recovery of gluconic acid from cellulose[J]. Chemical Engineering and Processing-Process Intensification, 2020, 157: 108140. |
70 | HAN X L, LIU G D, SONG W X, et al. Production of sodium gluconate from delignified corn cob residue by on-site produced cellulase and co-immobilized glucose oxidase and catalase[J]. Bioresource Technology, 2018, 248: 248-257. |
71 | YU X X, ZHANG Z Y, LI J Z, et al. Co-immobilization of multi-enzyme on reversibly soluble polymers in cascade catalysis for the one-pot conversion of gluconic acid from corn straw[J]. Bioresource Technology, 2021, 321: 124509. |
72 | BACHOSZ K, SYNORADZKI K, STASZAK M, et al. Bioconversion of xylose to xylonic acid via co-immobilized dehydrogenases for conjunct cofactor regeneration[J]. Bioorganic Chemistry, 2019, 93: 102747. |
73 | LE DARÉ B, GICQUEL T. Therapeutic applications of ethanol: a review[J]. Journal of Pharmacy & Pharmaceutical Sciences, 2019, 22(1): 525-535. |
74 | HANSEN A C, ZHANG Q, LYNE P W L. Ethanol-diesel fuel blends—A review[J]. Bioresource Technology, 2005, 96(3): 277-285. |
22 | SILVA R M DA, PAIVA SOUZA P M, FERNANDES F A N, et al. Co-immobilization of dextransucrase and dextranase in epoxy-agarose- tailoring oligosaccharides synthesis[J]. Process Biochemistry, 2019, 78: 71-81. |
23 | TALEKAR S, PANDHARBALE A, LADOLE M, et al. Carrier free co-immobilization of alpha amylase, glucoamylase and pullulanase as combined cross-linked enzyme aggregates (combi-CLEAs): a tri-enzyme biocatalyst with one pot starch hydrolytic activity[J]. Bioresource Technology, 2013, 147: 269-275. |
24 | GARCIA-GALAN C, BERENGUER-MURCIA Á, FERNANDEZ-LAFUENTE R, et al. ChemInform abstract: potential of different enzyme immobilization strategies to improve enzyme performance[J]. Advanced Synthesis & Catalysis, 2012, 353(16): 2885-2904. |
25 | 王金丹, 张光亚. 多酶共固定化的研究进展[J]. 生物工程学报, 2015, 31(4): 469-480. |
WANG Jindan, ZHANG Guangya. Progress in co-immobilization of multiple enzymes[J]. Chinese Journal of Biotechnology, 2015, 31(4): 469-480. | |
26 | WU J, FILUTOWICZ M. Hexahistidine (His6)-tag dependent protein dimerization: a cautionary tale[J]. Acta Biochimica Polonica, 1999, 46(3): 591-599. |
27 | LIU Z Y, ZHANG J B, CHEN X, et al. Combined biosynthetic pathway for de novo production of UDP-galactose: catalysis with multiple enzymes immobilized on agarose beads[J]. ChemBioChem, 2002, 3(4): 348-355. |
28 | PLŽ M, PETROVIČOVÁ T, REBROŠ M. Semi-continuous flow biocatalysis with affinity co-immobilized ketoreductase and glucose dehydrogenase[J]. Molecules, 2020, 25(18): 4278. |
29 | JIA X L, CHEN X, HAN J M, et al. Triple signal amplification using gold nanoparticles, bienzyme and platinum nanoparticles functionalized graphene as enhancers for simultaneous multiple electrochemical immunoassay[J]. Biosensors & Bioelectronics, 2014, 53: 65-70. |
30 | MANSUR H S, MANSUR A A P, MARQUES M E. Multi-enzymatic systems with designed 3D architectures for constructing food bioanalytical sensors[J]. Food Analytical Methods, 2014, 7(6): 1166-1178. |
31 | CHEN H, XI F N, GAO X, et al. Bienzyme bionanomultilayer electrode for glucose biosensing based on functional carbon nanotubes and sugar-lectin biospecific interaction[J]. Analytical Biochemistry, 2010, 403(1/2): 36-42. |
32 | SONG J Y, HE W T, SHEN H, et al. Exquisitely designed magnetic DNA nanocompartment for enzyme immobilization with adjustable catalytic activity and improved enzymatic assay performance[J]. Chemical Engineering Journal, 2020, 390: 124488. |
33 | YANG Y, ZHANG R Q, ZHOU B N, et al. High activity and convenient ratio control: DNA-directed coimmobilization of multiple enzymes on multifunctionalized magnetic nanoparticles[J]. ACS Applied Materials & Interfaces, 2017, 9(42): 37254-37263. |
34 | ROTHEMUND P W K. Folding DNA to create nanoscale shapes and patterns[J]. Nature, 2006, 440(7082): 297-302. |
35 | LIU Y, DU J J, YAN M, et al. Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication[J]. Nature Nanotechnology, 2013, 8(3): 187-192. |
36 | DEY S, FAN C H, GOTHELF K V, et al. DNA origami[J]. Nature Reviews Methods Primers, 2021, 1(1): 1-24. |
37 | WILNER O I, WEIZMANN Y, GILL R, et al. Enzyme cascades activated on topologically programmed DNA scaffolds[J]. Nature Nanotechnology, 2009, 4(4): 249-254. |
38 | FU J L, LIU M H, LIU Y, et al. Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures[J]. Journal of the American Chemical Society, 2012, 134(12): 5516-5519. |
39 | MARTIN C K A, WAGNER F. Microbial transformation of β-sitosterol by Nocardia sp. M 29[J]. European Journal of Applied Microbiology and Biotechnology, 1976, 2(4): 243-255. |
40 | 居乃琥. 酶工程研究和开发的现状与展望[J]. 工业微生物, 1987, 17(6): 23-30. |
JU N H. Current situation and prospect of enzyme engineering research and development[J]. Industrial Microbe Microbiology, 1987, 17(6): 23-30. | |
41 | SCHAFHAGSER D Y, STOREY K B. Fructose production[J]. Applied Biochemistry and Biotechnology, 1992, 36(1): 63-74. |
42 | SHEN H, SONG J Y, ZHOU Z X, et al. DNA-directed immobilized enzymes on recoverable magnetic nanoparticles shielded in nucleotide coordinated polymers[J]. Industrial & Engineering Chemistry Research, 2019, 58(20): 8585-8596. |
75 | ALTUNTAŞ E G, Ö; ZÇELIK F. Ethanol production from starch by co-immobilized amyloglucosidase—Zymomonas mobilis cells in a continuously-stirred bioreactor[J]. Biotechnology & Biotechnological Equipment, 2013, 27(1): 3506-3512. |
76 | SILVA C R, ZANGIROLAMI T C, RODRIGUES J P, et al. An innovative biocatalyst for production of ethanol from xylose in a continuous bioreactor[J]. Enzyme and Microbial Technology, 2012, 50(1): 35-42. |
77 | LEE S Y, PARK S J. A review on solid adsorbents for carbon dioxide capture[J]. Journal of Industrial and Engineering Chemistry, 2015, 23: 1-11. |
78 | KUMARAVEL V, BARTLETT J, PILLAI S C. Photoelectrochemical conversion of carbon dioxide (CO2) into fuels and value-added products[J]. ACS Energy Letters, 2020, 5(2): 486-519. |
79 | MARPANI F, PINELO M, MEYER A S. Enzymatic conversion of CO2 to CH3OH via reverse dehydrogenase cascade biocatalysis: quantitative comparison of efficiencies of immobilized enzyme systems[J]. Biochemical Engineering Journal, 2017, 127: 217-228. |
80 | MA K, YEHEZKELI O, PARK E, et al. Enzyme mediated increase in methanol production from photoelectrochemical cells and CO2 [J]. ACS Catalysis, 2016, 6(10): 6982-6986. |
81 | HUANG W D. Synthesis of sugar and fixation of CO2 through artificial photosynthesis driving by hydrogen or electricity[EB/OL]. 2011. doi: 10.3969/j.issn.0253-2778.2011.05.013 . |
82 | ZHOU J H, YU S S, KANG H L, et al. Construction of multi-enzyme cascade biomimetic carbon sequestration system based on photocatalytic coenzyme NADH regeneration[J]. Renewable Energy, 2020, 156: 107-116. |
[1] | 张耀丹, 孙若溪, 陈鹏程. 以级联反应为基础的多酶共固定载体研究进展[J]. 化工进展, 2023, 42(6): 3167-3176. |
[2] | 栗童,仲兆平,张波. 纤维素与多氢原料共热解的协同效应[J]. 化工进展, 2019, 38(9): 4044-4051. |
[3] | 黄传峰, 韩磊, 霍鹏举, 刘树伟, 程秋香. 煤油共炼残渣与榆林煤共热解特性及半焦性质[J]. 化工进展, 2018, 37(S1): 57-62. |
[4] | 唐思哲, 胡家秀, 赵健, 柯伟, 王维斌. 新型无机复配缓蚀剂对钠基膨润土中Q235钢的缓蚀作用[J]. 化工进展, 2018, 37(12): 4806-4813. |
[5] | 严平, 占昌朝, 曹小华, 谢宝华, 徐常龙, 张旭. 原位合成H4SiW12O40@C协同UV/H2O2降解罗丹明B模拟废水[J]. 化工进展, 2015, 34(3): 872-878. |
[6] | 付友思, 吴又多, 陈丽杰. Zn2+、Ca2+和Mn2+对丙酮丁醇发酵的协同影响[J]. 化工进展, 2015, 34(10): 3719-3724. |
[7] | 冯茹森, 蒲迪, 周洋, 陈俊华, 寇将, 姜雪, 郭拥军. 混合型烷醇酰胺组成对油/水动态界面张力的影响[J]. 化工进展, 2015, 34(08): 2955-2960. |
[8] | 马缓,齐暑华,张帆,史金玲. 复合填料/聚丙烯酸酯导电压敏胶的制备与性能[J]. 化工进展, 2014, 33(07): 1791-1795. |
[9] | 薛晓军,贾广信,何俊辉,李婷. 二甲醚与合成气反应制乙醇的热力学计算与分析[J]. 化工进展, 2014, 33(05): 1160-1163. |
[10] | 陈燕敏,孙彩霞,吴晋英,黄长山. 一种环保型阻垢缓蚀剂的性能[J]. 化工进展, 2014, 33(01): 204-208. |
[11] | 王 俊 ,史春霞,吕春胜,李 杰,张荣明,郭艳东,曲红杰. 新型聚烯烃抗氧剂的协同抗氧化作用 [J]. 化工进展, 2011, 30(7): 1546-. |
[12] | 黄 丽,孙惠惠,王成忠. 含磷阻燃型环氧树脂的研究进展 [J]. 化工进展, 2011, 30(6): 1277-. |
[13] | 任晓光,谢云峰,宣征南. 复合型缓蚀剂的缓蚀性能 [J]. 化工进展, 2007, 26(4): 577-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |