化工进展 ›› 2021, Vol. 40 ›› Issue (8): 4562-4572.DOI: 10.16085/j.issn.1000-6613.2020-2013
收稿日期:
2020-10-08
出版日期:
2021-08-05
发布日期:
2021-08-12
通讯作者:
高品
作者简介:
潘云飞(1996—),男,硕士研究生,研究方向为土壤污染微生物修复技术。E-mail:基金资助:
PAN Yunfei(), TANG Zheng, PENG Xinyi, GAO Pin()
Received:
2020-10-08
Online:
2021-08-05
Published:
2021-08-12
Contact:
GAO Pin
摘要:
土壤石油烃污染已引起广泛关注,石油烃具有高毒性和持久性,对生态环境和人体健康会产生严重危害。本文综述了石油烃污染土壤修复技术的国内外研究进展,系统论述了微生物技术在石油烃污染土壤修复中的研究现状,重点探讨了微生物联合修复技术的过程机制和应用前景,包括植物-微生物联合修复、电动-微生物联合修复、表面活性剂强化微生物修复、化学氧化-微生物联合修复及动物-微生物联合修复等,并对未来石油烃污染土壤微生物修复技术的研究发展方向提出了展望。
中图分类号:
潘云飞, 唐正, 彭欣怡, 高品. 石油烃污染土壤微生物修复技术研究现状及进展[J]. 化工进展, 2021, 40(8): 4562-4572.
PAN Yunfei, TANG Zheng, PENG Xinyi, GAO Pin. Microbial remediation techniques for petroleum hydrocarbons contaminated soil: a review[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4562-4572.
62 | 刘鑫, 黄兴如, 张晓霞, 等. 高浓度多环芳烃污染土壤的微生物-植物联合修复技术研究[J]. 南京农业大学学报, 2017, 40(4): 632-640. |
LIU Xin, HUANG Xingru, ZHANG Xiaoxia, et al. Experimental study on plant-microbial remediation of high concentration PAHs-contaminated soil[J]. Journal of Nanjing Agricultural University, 2017, 40(4): 632-640. | |
63 | 王洪. 多环芳烃污染农田土壤原位生物修复技术研究[D]. 沈阳: 东北大学, 2011. |
WANG Hong. Research on in situ bioremediation for farm soil contaminated with polycyclic aromatic hydrocarbons[D]. Shenyang: Northeastern University, 2011. | |
64 | LI F M, GUO S H, HARTOG N, et al. Isolation and characterization of heavy polycyclic aromatic hydrocarbon-degrading bacteria adapted to electrokinetic conditions[J]. Biodegradation, 2016, 27(1): 1-13. |
65 | FAN R J, MA W P, ZHANG H L. Microbial community responses to soil parameters and their effects on petroleum degradation during bio-electrokinetic remediation[J]. Science of the Total Environment, 2020, 748: 142463. |
1 | OSSAI I C, AHMED A, HASSAN A, et al. Remediation of soil and water contaminated with petroleum hydrocarbon: a review[J]. Environmental Technology & Innovation, 2020, 17: 100526. |
2 | TANG J C, WANG M, WANG F, et al. Eco-toxicity of petroleum hydrocarbon contaminated soil[J]. Journal of Environmental Sciences, 2011, 23(5): 845-851. |
66 | GILL R T, HARBOTTLE M J, SMITH J W N, et al. Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications[J]. Chemosphere, 2014, 107: 31-42. |
67 | OLSZANOWSKI A, PIECHOWIAK K. The use of an electric field to enhance bacterial movement and hydrocarbon biodegradation in soils[J]. Polish Journal of Environmental Studies, 2006, 15(2): 303-309. |
3 | LI Q, YOU P, HU Q, et al. Effects of co-contamination of heavy metals and total petroleum hydrocarbons on soil bacterial community and function network reconstitution[J]. Ecotoxicology and Environmental Safety, 2020, 204: 111083. |
4 | 赵明阳, 王卅, 李凤梅, 等. 辽河油田土壤石油污染及其微生物群落特征[J]. 应用生态学报, 2020(12): 239-248. |
68 | WICK L Y, MATTLE P A, WATTIAU P, et al. Electrokinetic transport of PAH-degrading bacteria in model aquifers and soil[J]. Environmental Science & Technology, 2004, 38(17): 4596-4602. |
69 | LI T T, GUO S H, WU B, et al. Effect of polarity-reversal and electrical intensity on the oil removal from soil[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(3): 441-448. |
70 | LI F M, GUO S H, WANG S, et al. Changes of microbial community and activity under different electric fields during electro-bioremediation of PAH-contaminated soil[J]. Chemosphere, 2020, 254: 126880. |
71 | WICK L Y, BUCHHOLZ F, FETZER I, et al. Responses of soil microbial communities to weak electric fields[J]. Science of the Total Environment, 2010, 408(20): 4886-4893. |
72 | 吴雪茜. 表面活性剂强化生物修复石油污染土壤[D]. 徐州: 中国矿业大学, 2016. |
WU X Q. Surfactant enhanced bioremediation of petroleum contaminated soil[D]. Xuzhou: China University of Mining and Technology, 2016. | |
73 | BEFKADU A A, CHEN Q Y. Surfactant-enhanced soil washing for removal of petroleum hydrocarbons from contaminated soils: a review[J]. Pedosphere, 2018, 28(3): 383-410. |
74 | ALI N, BILAL M, KHAN A, et al. Effective exploitation of anionic, nonionic, and nanoparticle-stabilized surfactant foams for petroleum hydrocarbon contaminated soil remediation[J]. Science of the Total Environment, 2020, 704: 135391. |
75 | 陈俊华, 祝红, 单晖峰, 等. 表面活性剂强化好氧生物修复PAHs污染土壤效果研究[J]. 环境工程, 2020, 38(5): 185-190. |
CHEN Junhua, ZHU Hong, SHAN Huifeng, et al. Performance of surfactants enhanced aerobic bioremediation of PAHs contaminated soil[J]. Environmental Engineering, 2020, 38(5): 185-190. | |
76 | ZHANG Y M, MAIER W J, MILLER R M. Effect of rhamnolipids on the dissolution, bioavailability, and biodegradation of phenanthrene[J]. Environmental Science & Technology, 1997, 31(8): 2211-2217. |
77 | HOU J J, ZHANG S D, QIU Z, et al. Stimulatory effect and adsorption behavior of rhamnolipids on lignocelluloses degradation system[J]. Bioresource Technology, 2017, 224: 465-472. |
78 | 代朝猛, 朱晏立, 段艳平, 等. 生物表面活性剂强化降解土壤中PAHs研究进展[J]. 水处理技术, 2020, 46(2): 1-7. |
DAI Chaomeng, ZHU Yanli, DUAN Yanping, et al. Research progress of biosurfactants-enhanced degradation of PAHs in soil[J]. Technology of Water Treatment, 2020, 46(2): 1-7. | |
79 | KARLAPUDI A P, VENKATESWARULU T C, TAMMINEEDI J, et al. Role of biosurfactants in bioremediation of oil pollution—A review[J]. Petroleum, 2018, 4(3): 241-249. |
80 | LIAO X Y, ZHAO D, YAN X L, et al. Identification of persulfate oxidation products of polycyclic aromatic hydrocarbon during remediation of contaminated soil[J]. Journal of Hazardous Materials, 2014, 276: 26-34. |
81 | SUTTON N B, GROTENHUIS J T C, LANGENHOFF A A M, et al. Efforts to improve coupled in situ chemical oxidation with bioremediation: a review of optimization strategies[J]. Journal of Soils and Sediments, 2011, 11(1): 129-140. |
82 | ZHANG B W, GUO Y, HUO J Y, et al. Combining chemical oxidation and bioremediation for petroleum polluted soil remediation by BC-nZVI activated persulfate[J]. Chemical Engineering Journal, 2020, 382: 123055. |
83 | GOU Y L, YANG S C, CHENG Y J, et al. Enhanced anoxic biodegradation of polycyclic aromatic hydrocarbons (PAHs) in aged soil pretreated by hydrogen peroxide[J]. Chemical Engineering Journal, 2019, 356: 524-533. |
84 | 罗俊鹏, 赵一澍, 廖晓勇, 等. 化学预氧化-生物强化-生物刺激对土壤中菲降解的联合效应[J]. 环境工程学报, 2019, 13(10): 2521-2529. |
LUO Junpeng, ZHAO Yishu, LIAO Xiaoyong, et al. Joint degradation effects of phenanthrene in soil by chemical pre-oxidation-bioaugmentation-biostimulation[J]. Chinese Journal of Environmental Engineering, 2019, 13(10): 2521-2529. | |
85 | XU S, WANG W, ZHU L Z. Enhanced microbial degradation of benzo[a]pyrene by chemical oxidation[J]. Science of the Total Environment, 2019, 653: 1293-1300. |
86 | KOOLIVAND A, SAEEDI R, COULON F, et al. Bioremediation of petroleum hydrocarbons by vermicomposting process bioaugmentated with indigenous bacterial consortium isolated from petroleum oily sludge[J]. Ecotoxicology and Environmental Safety, 2020, 198: 110645. |
87 | MARTINKOSKY L, BARKLEY J, SABADELL G, et al. Earthworms (Eisenia fetida) demonstrate potential for use in soil bioremediation by increasing the degradation rates of heavy crude oil hydrocarbons[J]. Science of the Total Environment, 2017, 580: 734-743. |
88 | SINGLETON D R, HENDRIX P F, COLEMAN D C, et al. Identification of uncultured bacteria tightly associated with the intestine of the earthworm Lumbricus rubellus (Lumbricidae; Oligochaeta)[J]. Soil Biology and Biochemistry, 2003, 35(12): 1547-1555. |
89 | 蔡富才, 赵欢, 李艳楠, 等. 双齿围沙蚕对芘的生物可利用性研究[J]. 生态毒理学报, 2017, 12(3): 620-628. |
CAI Fucai, ZHAO Huan, LI Yannan, et al. Bioavailablility of pyrene in the perinereis aibuhitensis[J]. Asian Journal of Ecotoxicology, 2017, 12(3): 620-628. | |
90 | SHI Z M, TANG Z W, WANG C Y. Effect of phenanthrene on the physicochemical properties of earthworm casts in soil[J]. Ecotoxicology and Environmental Safety, 2019, 168: 348-355. |
91 | CHAOUI H I, ZIBILSKE L M, OHNO T. Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability[J]. Soil Biology and Biochemistry, 2003, 35(2): 295-302. |
92 | CONTRERAS-RAMOS S M, ÁLVAREZ-BERNAL D, DENDOOVEN L. Removal of polycyclic aromatic hydrocarbons from soil amended with biosolid or vermicompost in the presence of earthworms (Eisenia fetida)[J]. Soil Biology and Biochemistry, 2008, 40(7): 1954-1959. |
93 | CHACHINA S B, VORONKOVA N A, BAKLANOVA O N. Biological remediation of the engine lubricant oil-contaminated soil with three kinds of earthworms, Eisenia fetida, Eisenia andrei, dendrobena veneta, and a mixture of microorganisms[J]. Procedia Engineering, 2015, 113: 113-123. |
94 | CHACHINA S B, VORONKOVA N A, BAKLANOVA O N. Biological remediation of the petroleum and diesel contaminated soil with earthworms Eisenia fetida[J]. Procedia Engineering, 2016, 152: 122-133. |
4 | ZHAO M Y, WANG S, LI F M, et al. Petroleum pollution and microbial community structure in the soil of Liaohe Oilfield[J]. Chinese Journal of Applied Ecology, 2020(12): 239-248. |
5 | LI X, FENG Y, SAWATSKY N. Importance of soil-water relations in assessing the endpoint of bioremediated soils[J]. Plant and Soil, 1997, 192(2): 219-226. |
6 | 李晓楼. 石油污染对土壤微生物群落多样性的影响[J]. 生物工程学报, 2017, 33(6): 968-975. |
LI Xiaolou. Influence of oil pollution on soil microbial community diversity[J]. Chinese Journal of Biotechnology, 2017, 33(6): 968-975. | |
7 | 张金永, 汪林, 王明新, 等. 机械化学法修复石油烃污染土壤及对土壤特性的影响[J]. 化工进展, 2020, 39(11): 4726-4733. |
ZHANG Jinyong, WANG Lin, WANG Mingxin, et al. Mechanochemical remediation of petroleum hydrocarbons contaminated soil and its effects on soil properties[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4726-4733. | |
8 | NGUYEN T H, CHO H H, POSTER D L, et al. Evidence for a pore-filling mechanism in the adsorption of aromatic hydrocarbons to a natural wood char[J]. Environmental Science & Technology, 2007, 41(4): 1212-1217. |
9 | 孔露露, 周启星. 生物炭输入土壤对其石油烃微生物降解力的影响[J]. 环境科学学报, 2016, 36(11): 4199-4207. |
KONG Lulu, ZHOU Qixing. Effects of biochar input on biodegradation of petroleum hydrocarbons in soil[J]. Acta Scientiae Circumstantiae, 2016, 36(11): 4199-4207. | |
10 | ZHAO C, DONG Y, FENG Y P, et al. Thermal desorption for remediation of contaminated soil: a review[J]. Chemosphere, 2019, 221: 841-855. |
11 | 杨振, 柳林杉, 刘明杰, 等. 油浸泥土热脱附修复小试实验条件的探索[J]. 环境工程学报, 2019, 13(10): 2320-2327. |
YANG Zhen, LIU Linshan, LIU Mingjie, et al. Exploration on small-scale experimental conditions in thermal desorption remediation of petroleum-contaminated soil[J]. Chinese Journal of Environmental Engineering, 2019, 13(10): 2320-2327. | |
12 | VIDONISH J E, ZYGOURAKIS K, MASIELLO C A, et al. Pyrolytic treatment and fertility enhancement of soils contaminated with heavy hydrocarbons[J]. Environmental Science & Technology, 2016, 50(5): 2498-2506. |
13 | LI D C, XU W F, MU Y, et al. Remediation of petroleum-contaminated soil and simultaneous recovery of oil by fast pyrolysis[J]. Environmental Science & Technology, 2018, 52(9): 5330-5338. |
14 | VIDONISH J E, ALVAREZ P J J, ZYGOURAKIS K. Pyrolytic remediation of oil-contaminated soils: reaction mechanisms, soil changes, and implications for treated soil fertility[J]. Industrial & Engineering Chemistry Research, 2018, 57(10): 3489-3500. |
15 | KIM Y, OH J I, LEE S S, et al. Decontamination of petroleum-contaminated soil via pyrolysis under carbon dioxide atmosphere[J]. Journal of Cleaner Production, 2019, 236: 117724. |
16 | LI Y T, LI D, LAI L J, et al. Remediation of petroleum hydrocarbon contaminated soil by using activated persulfate with ultrasound and ultrasound/Fe[J]. Chemosphere, 2020, 238: 124657. |
17 | 孙增慧. 纳米光催化剂在石油污染土壤修复中的研究[J]. 资源节约与环保, 2018(10): 81-82. |
SUN Zenghui. Research of nanometer photocatalyst in remediation of petroleum contaminated soil[J]. Resources Economization & Environmental Protection, 2018(10): 81-82. | |
18 | ZHANG T, LIU Y Y, ZHONG S, et al. AOPs-based remediation of petroleum hydrocarbons-contaminated soils: efficiency, influencing factors and environmental impacts[J]. Chemosphere, 2020, 246: 125726. |
19 | CHEN K F, CHANG Y C, CHIOU W T. Remediation of diesel-contaminated soil using in situ chemical oxidation (ISCO) and the effects of common oxidants on the indigenous microbial community: a comparison study[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(6): 1877-1888. |
20 | LI Y, LIAO X Y, HULING S G, et al. The combined effects of surfactant solubilization and chemical oxidation on the removal of polycyclic aromatic hydrocarbon from soil[J]. Science of the Total Environment, 2019, 647: 1106-1112. |
21 | SILVA-CASTRO G A, UAD I, RODRÍGUEZ-CALVO A, et al. Response of autochthonous microbiota of diesel polluted soils to land-farming treatments[J]. Environmental Research, 2015, 137: 49-58. |
22 | 高飞. 基于生物刺激和生物强化策略的石油污染物降解效果研究[D]. 延安: 延安大学, 2019. |
GAO Fei. Study on degradation effect of petroleum pollutants by bioremediation based on biostimulation and bioaugmentation strategies[D]. Yan’an: Yan’an University, 2019. | |
23 | HINCHEE R E, DOWNEY D C, DUPONT R R, et al. Enhancing biodegradation of petroleum hydrocarbons through soil venting[J]. Journal of Hazardous Materials, 1991, 27(3): 315-325. |
24 | 杨金凤, 张成军, 赵同科, 等. 基于生物通风技术的柴油污染土壤修复的正交试验研究[C]//2013中国环境科学学会学术年会论文集. 昆明, 2013: 1626-1631. |
YANG Jinfeng, ZHANG Chengjun, ZHAO Tongke, et al. Orthogonal experiment study on diesel pollution soil restoration based on bioventilation[C]//2013 Proceedings of Academic Annual Meeting of Chinese Society of Environment Science, Kunming, 2013: 1626-1631. | |
25 | NZILA A. Update on the cometabolism of organic pollutants by bacteria[J]. Environmental Pollution, 2013, 178: 474-482. |
26 | 蔡丽希. 一株芘降解菌Bacilluscereus Py5的分离鉴定[J]. 海洋科学, 2018, 42(11): 29-34. |
CAI Lixi. Isolation and characterization of a pyrene-degrading bacterial strain Bacilluscereus Py5[J]. Marine Sciences, 2018, 42(11): 29-34. | |
27 | CRIDDLE C S. The kinetics of cometabolism[J]. Biotechnology and Bioengineering, 1993, 41(11): 1048-1056. |
28 | 李政, 顾贵洲, 赵朝成, 等. 高相对分子质量多环芳烃的生物共代谢降解[J]. 石油学报(石油加工), 2015, 31(3): 720-725. |
LI Zheng, GU Guizhou, ZHAO Chaocheng, et al. Co-metabolism biodegradation of polycyclic aromatic hydrocarbons with high relative molecular mass[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2015, 31(3): 720-725. | |
29 | HUSAIN S. Literature overview: microbial metabolism of high molecular weight polycyclic aromatic hydrocarbons[J]. Remediation Journal, 2008, 18(2): 131-161. |
30 | JUHASZ A, STANLEY G, BRITZ M. Metabolite repression inhibits degradation of benzo[a]pyrene and dibenz[a,h]anthracene by Stenotrophomonas maltophilia VUN 10, 003[J]. Journal of Industrial Microbiology and Biotechnology, 2002, 28(2): 88-96. |
31 | AITKEN M D, STRINGFELLOW W T, NAGEL R D, et al. Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with polycyclic aromatic hydrocarbons[J]. Canadian Journal of Microbiology, 1998, 44(8): 743-752. |
32 | FENG T C, CUI C Z, DONG F, et al. Phenanthrene biodegradation by halophilic Martelella sp. AD-3[J]. Journal of Applied Microbiology, 2012, 113(4): 779-789. |
33 | SCHNEIDER J, GROSSER R, JAYASIMHULU K, et al. Degradation of pyrene, benz[a]anthracene, and benzo[a]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site[J]. Applied and Environmental Microbiology, 1996, 62(1): 13-19. |
34 | 李政. 耐热石油降解混合菌群降解特性及多环芳烃共代谢作用的研究[D]. 青岛: 中国石油大学(华东), 2012. |
LI Zheng. Study on degradation characteristics of thermophilic microbial consortium and cometabolism of polycyclic aromatic hydrocarbons[D]. Qingtao: ChinaUniversity of Petroleum, 2012. | |
35 | 胡凤钗, 苏振成, 孙健, 等. 高效芘降解菌N12的分离鉴定与降解特性[J]. 应用生态学报, 2011, 22(6): 1566-1572. |
HU Fengchai, SU Zhencheng, SUN Jian, et al. Isolation and identification of a highly efficient pyrene-degrading Mycobacterium sp. strain N12[J]. Chinese Journal of Applied Ecology, 2011, 22(6): 1566-1572. | |
36 | ZHONG Y, ZOU S C, LIN L, et al. Effects of pyrene and fluoranthene on the degradation characteristics of phenanthrene in the cometabolism process by Sphingomonas sp. strain PheB4 isolated from mangrove sediments[J]. Marine Pollution Bulletin, 2010, 60(11): 2043-2049. |
37 | BIDJA ABENA M T, LI T T, SHAH M N, et al. Biodegradation of total petroleum hydrocarbons (TPH) in highly contaminated soils by natural attenuation and bioaugmentation[J]. Chemosphere, 2019, 234: 864-874. |
38 | 李丽, 张利平, 张元亮. 石油烃类化合物降解菌的研究概况[J]. 微生物学通报, 2001, 28(5): 89-92. |
LI Li, ZHANG Liping, ZHANG Yuanliang. Research overview of hydrocarbon degrading bacteria in petroleum[J]. Microbiology, 2001, 28(5): 89-92. | |
39 | 徐冯楠, 冯贵颖, 马雯, 等. 高效石油降解菌的筛选及其降解性能研究[J]. 生物技术通报, 2010(7): 221-226. |
XU Fengnan, FENG Guiying, MA Wen, et al. Study on the screening and degradation characteristics of highly efficient petroleum degrading bacteria[J]. Biotechnology Bulletin, 2010(7): 221-226. | |
40 | 李小猛. 高效石油降解菌的筛选及其降解性能研究[D]. 大连: 大连理工大学, 2018. |
LI Xiaomeng. Isolation of efficient crude oil degrading strains and study of their degrading performance[D]. Dalian: Dalian University of Technology, 2018. | |
41 | 吴作军, 卢滇楠, 张敏莲, 等. 微生物分子生态学技术及其在石油污染土壤修复中的应用现状与展望[J]. 化工进展, 2010, 29(5): 789-795. |
WU Zuojun, LU Diannan, ZHANG Minlian, et al. Progress in applications of microbiological molecular ecology in bioremediation of petroleum contaminated soil[J]. Chemical Industry and Engineering Progress, 2010, 29(5): 789-795. | |
42 | 谢云. 高效石油烷烃降解菌及原油降解基因工程菌构建研究[D]. 西安: 西北大学, 2014. |
XIE Yun. Construction of high efficient petroleum alkane degrading bacteria and genetic engineering bacteria for crude oil degradation[D]. Xi’an: Northwest University, 2014. | |
43 | VARJANI S J, UPASANI V N. A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants[J]. International Biodeterioration & Biodegradation, 2017, 120: 71-83. |
44 | ZHANG K, XU Y Y, HUA X F, et al. An intensified degradation of phenanthrene with macroporous alginate-lignin beads immobilized Phanerochaete chrysosporium[J]. Biochemical Engineering Journal, 2008, 41(3): 251-257. |
45 | HUANG W H, LEE D J, HUANG C. Modification on biochars for applications: a research update[J]. Bioresource Technology, 2021, 319: 124100. |
46 | ZHANG G X, HE L X, GUO X F, et al. Mechanism of biochar as a biostimulation strategy to remove polycyclic aromatic hydrocarbons from heavily contaminated soil in a coking plant[J]. Geoderma, 2020, 375: 114497. |
47 | LI X N, WANG T, CHANG S X, et al. Biochar increases soil microbial biomass but has variable effects on microbial diversity: a meta-analysis[J]. Science of the Total Environment, 2020, 749: 141593. |
48 | 唐正, 赵松, 钱雅洁, 等. 生物炭持久性自由基形成机制及环境应用研究进展[J]. 化工进展, 2020, 39(4): 1521-1527. |
TANG Zheng, ZHAO Song, QIAN Yajie, et al. Formation mechanisms and environmental applications of persistent free radicals in biochar: a review[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1521-1527. | |
49 | 陈思尹. 多环芳烃降解菌的筛选及生物炭固定化菌剂对土壤的修复[D]. 上海: 上海师范大学, 2017. |
CHEN Siyin. Screening for polycyclic aromatic hydrocarbon-degrading bacterium and emediation of naphthalene-contaminated soil with biochar immobilized microorganism[D]. Shanghai: Shanghai Normal University, 2017. | |
50 | ZHANG H R, TANG J C, WANG L, et al. A novel bioremediation strategy for petroleum hydrocarbon pollutants using salt tolerant Corynebacterium variabile HRJ4 and biochar[J]. Journal of Environmental Sciences, 2016, 47: 7-13. |
51 | SHEN T, PI Y, BAO M, et al. Biodegradation of different petroleum hydrocarbons by free and immobilized microbial consortia[J]. Environmental Science Processes & Impacts, 2015, 17(12): 2022-2033. |
52 | GAN S, LAU E V, NG H K. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs)[J]. Journal of Hazardous Materials, 2009, 172(2/3): 532-549. |
53 | LI N, LIU R, CHEN J J, et al. Enhanced phytoremediation of PAHs and cadmium contaminated soils by a Mycobacterium[J]. Science of the Total Environment, 2021, 754: 141198. |
54 | SARMA H, ISLAM N F, PRASAD M N V. Plant-microbial association in petroleum and gas exploration sites in the state of Assam, north-east India—Significance for bioremediation[J]. Environmental Science and Pollution Research, 2017, 24(9): 8744-8758. |
55 | 谢丽凤, 吴卫飞. 微生物-植物联合修复石油污染土壤的研究进展[J]. 环境与发展, 2019, 31(8): 34-35. |
XIE Lifeng, WU Weifei. Advances in microbial-phytoremediation of petroleum-contaminated soils[J]. Environment and Development, 2019, 31(8): 34-35. | |
56 | 张翼, 凌婉婷, 陈冬升, 等. 蒽在黑麦草体内的代谢作用[J]. 中国环境科学, 2010, 30(4): 544-547. |
ZHANG Yi, LING Wanting, CHEN Dongsheng, et al. Metabolism of anthracene in ryegrass (Lolium multiflorum Lam.)[J]. China Environmental Science, 2010, 30(4): 544-547. | |
57 | GAO Y Z, YANG Y, LING W T, et al. Gradient distribution of root exudates and polycyclic aromatic hydrocarbons in rhizosphere soil[J]. Soil Science Society of America Journal, 2011, 75(5): 1694-1703. |
58 | SUN B Q, GAO Y Z, LIU J, et al. The impact of different root exudate components on phenanthrene availability in soil[J]. Soil Science Society of America Journal, 2012, 76(6): 2041-2050. |
59 | HOANG S A, LAMB D, SESHADRI B, et al. Rhizoremediation as a green technology for the remediation of petroleum hydrocarbon-contaminated soils[J]. Journal of Hazardous Materials, 2021, 401: 123282. |
60 | 黄妍. 根系分泌物对微生物降解多环芳烃的影响[D]. 沈阳: 东北大学, 2015. |
HUANG Yan. The root secretion effects on microbial degradation of polycyclic aromatic hydrocarbons[D]. Shenyang: Northeastern University, 2015. | |
61 | SARMA H, NAVA A R, PRASAD M N V. Mechanistic understanding and future prospect of microbe-enhanced phytoremediation of polycyclic aromatic hydrocarbons in soil[J]. Environmental Technology & Innovation, 2019, 13: 318-330. |
[1] | 杨静, 李博, 李文军, 刘晓娜, 汤刘元, 刘月, 钱天伟. 焦化污染场地中萘降解菌的分离及降解特性[J]. 化工进展, 2023, 42(8): 4351-4361. |
[2] | 李若琳, 何少林, 苑宏英, 刘伯约, 纪冬丽, 宋阳, 刘博, 余绩庆, 徐英俊. 原位热解对油页岩物性及地下水水质影响探索[J]. 化工进展, 2023, 42(6): 3309-3318. |
[3] | 吕莹, 胡学武, 陈素素, 刘兴宇, 陈勃伟, 张明江. 多环芳烃污染土壤的微生物修复技术研究进展[J]. 化工进展, 2022, 41(6): 3249-3262. |
[4] | 汪林, 蒲思淇, 王明新, 薛金娟, 韩莹. 过碳酸钠修复石油污染土壤及其环境效应[J]. 化工进展, 2022, 41(4): 2171-2179. |
[5] | 唐垂云, 钟娟, 吕莹, 张明江, 孙娟, 刘兴宇. 土壤中铀污染修复技术研究进展[J]. 化工进展, 2021, 40(8): 4587-4599. |
[6] | 李薇, 王信粉, 时利香, 宋瑶, 张杰, 杜显元. 表面活性剂复配体系修复芘污染土壤实验[J]. 化工进展, 2021, 40(6): 3526-3535. |
[7] | 姜岩,周和平,张哲,刘红兵,沈顺祥. 石油烃污染场地低温修复机制研究进展[J]. 化工进展, 2020, 39(2): 419-428. |
[8] | 张金永, 汪林, 王明新, 肖扬, 韩莹. 机械化学法修复石油烃污染土壤及对土壤特性的影响[J]. 化工进展, 2020, 39(11): 4726-4733. |
[9] | 陆浩良, 田晴, 朱艳彬, 张健, 焦彭博, 林欢. 耐低温生物脱氮机制与对策研究进展[J]. 化工进展, 2020, 39(1): 372-379. |
[10] | 徐俊,朱雯喆,谢丽. 生物强化技术对厌氧消化特性影响研究进展[J]. 化工进展, 2019, 38(9): 4227-4237. |
[11] | 孙烁,刘其友,陈水泉,赵朝成,于文赫. 利用响应面法对L-2菌株降解石油烃进行优化[J]. 化工进展, 2019, 38(12): 5512-5518. |
[12] | 王晓峰, 陈晨, 宋瑶, 李春晓, 杜显元, 李薇. 槐糖脂-LAS-Na2SiO3复配修复石油污染土壤影响因素分析[J]. 化工进展, 2019, 38(06): 2933-2938. |
[13] | 姜岩, 张晓华, 梁新元, 张贤明. 生物法在油田地面处理及地下开采系统中的应用[J]. 化工进展, 2016, 35(11): 3383-3391. |
[14] | 郭琼,金仁村. 厌氧氨氧化(Anammox)工艺的强化方法研究进展[J]. 化工进展, 2014, 33(11): 3075-3081. |
[15] | 刁潘1,刘静2,张永奎3, 刘瑾1,姚太平2. 阴离子/非离子表面活性剂体系洗涤含油污泥[J]. 化工进展, 2014, 33(10): 2753-2757. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |